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Abstract

This paper concerns the study of the numerical approximation a

semilinear parabolic equation subject to Neumann boundary conditions

and positive initial data. We find some conditions under which the

solution of a semidiscrete form of the above problem quenches in a fi-

nite time and estimate its semidiscrete quenching time. We also prove

that the semidiscrete quenching time converges to the real one when

the mesh size goes to zero. A similar study has been also investigated

taking a discrete form of the above problem. Finally, we give some

numerical experiments to illustrate our analysis.
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1. Introduction

Consider the following boundary value problem

ut(x, t)− a(x)uxx(x, t) = −b(x)f(u(x, t)), (x, t) ∈ (0, 1)× (0, T ),(1.1)

ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ),(1.2)

u(x, 0) = u0(x) > 0, x ∈ [0, 1],(1.3)

where f : (0,∞)→ (0,∞) is a C1 convex, nonincreasing function, lims→0+

f(s) = ∞,
R γ
0

dσ
f(σ) < ∞ for any positive real γ, a ∈ C0([0, 1]), a(x) > 0,

x ∈ [0, 1]. The initial data u0 ∈ C2([0, 1]), u0(x) > 0, x ∈ [0, 1], u00(0) = 0
and u

0
0(1) = 0, a(x)u000(x) − b(x)f(u0(x)) < 0, x ∈ (0, 1). The potential

b ∈ C1([0, 1]), b(x) > 0, x ∈ (0, 1), b0(0) = 0, b0(1) = 0.

Here, (0, T ) is the maximal time interval of existence of the solution

u. The time T may be finite or infinite. When T is infinite, then we

say that the solution u exists globally. This means that u(x, t) > 0 in

[0, 1]× (0,∞). When T is finite, then the solution u develops a singularity
in a finite time, namely,

lim
t→T

umin(t) = 0,

where umin(t) = min0≤x≤1 u(x, t). In this last case, we say that the solution

u quenches in a finite time, and the time T is called the quenching time of

the solution u.

The theoretical study of solutions for semilinear parabolic equations

which quench in a finite time has been the subject of investigations of

many authors (see [2], [4]—[7], [12], [17], and the references cited therein).

Local in time existence of a classical solution has been proved and this

solution is unique. In addition, it is shown that if the initial data at (1.3)

satisfies a(x)u
00
0(x)−b(x)f(u0(x)) < 0 in (0, 1), then the classical solution u
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of (1.1)—(1.3) quenches in a finite time T, and there exist positive constants

c0, c1, C0, C1 such that the following estimates hold

C0

Z u0min

0

dσ

f(σ)
≤ T ≤ C1

Z u0min

0

dσ

f(σ)
,

H(c0(T − t)) ≤ umin(t) ≤ H(c1(T − t)),

where H(s) is the inverse of the function F (s) =
R s
0

dσ
f(σ) (see [4]-[7]).

In this paper, we are interested in the numerical study of the phe-

nomenon of quenching. Under some assumptions, we show that the so-

lution of a semidiscrete form of (1.1)—(1.3) quenches in a finite time and

estimate its semidiscrete quenching time. We also prove that the semidis-

crete quenching time goes to the real one when the mesh size goes to zero.

Similar results have been also given for a discrete form of (1.1)—(1.3). Re-

cently, an analogous study has been investigated by Nabongo and Boni

in [19], where they have considered the problem (1.1)-(1.3) for the case

a(x) = 1, b(x) = 1 and f(u) = u−p with p > 0. Let us notice that, in the

present paper, because of the potentials a(x) and b(x), we study the effect

of a pertubation of these last on the different approximations of the real

quenching time.

In the same way, in [16] and [18], Nabongo and Boni have used semidis-

crete schemes to study the phenomenon of quenching for other parabolic

problems. Our work was also motived by the papers in [1], [3] and [15]. In

[1] and [15], the authors have used semidiscrete and discrete forms for some

parabolic equations to study the phenomenon of blow-up (we say that a

solution blows up in a finite time if it reaches the value infinity in a finite

time). In [3], some schemes have been utilized to study the phenomenon of

extinction (we say that a solution extincts in a finite time if it becomes zero

after a finite time for equations without singularities). One may also con-

sult the papers in [8]—[10], where the authors have studied theoretically the

dependence with respect to the initial data of the blow-up time of nonlinear

parabolic problems. Concerning the numerical study, one may find some
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results in [13], [14], [21], [22], where the authors have proposed some numer-

ical schemes for computing the numerical solutions for parabolic problems

which present a solution with one singularity. Let us remark that in these

last papers, there is a lack of information about the convergence of the

numerical quenching time.

This paper is organized as follows. In the next section, we give some

results about the semidiscrete maximum principle. In the third section,

under some conditions, we prove that the solution of a semidiscrete form of

(1.1)—(1.3) quenches in a finite time and estimate its semidiscrete quenching

time. In the fourth section, we prove the convergence of the semidiscrete

quenching time. In the fifth section, we study the results of sections 3 and

4 taking a discrete form of (1.1)—(1.3). Finally, in the last section, we give

some numerical results to illustrate our analysis.

2. Properties of a semidiscrete problem

In this section, we give some results about the semidiscrete maximum prin-

ciple. We start by the construction of a semidiscrete scheme as follows. Let

I be a positive integer and let h = 1
I . Define the grid xi = ih, 0 ≤ i ≤ I

and approximate the solution u of the problem (1.1)—(1.3) by the solution

Uh(t) = (U0(t), U1(t), . . . , UI(t))
T of the following semidiscrete equations

dUi(t)

dt
− αiδ

2Ui(t) = −βif(Ui(t)), 0 ≤ i ≤ I, t ∈ (0, T h
q ),(2.1)

Ui(0) = ϕi, 0 ≤ i ≤ I,(2.2)

where ϕh > 0, βh > 0, αh > 0,

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,

δ2U0(t) =
2U1(t)− 2U0(t)

h2
, δ2UI(t) =

2UI−1(t)− 2UI(t)

h2
.
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Let us notice that, in our scheme, we pick αh, βh and ϕh so that

αi, βi, ϕi are approximations of a(xi), b(xi) and u0(xi), respectively. The

interest to choose these approximations is that sometimes, it is difficult to

have the exact values of the different potentials. It is the case when one of

then is, for instance, the solution of a complicated differential equation.

Here (0, T h
q ) is the maximal time interval on which Uhmin(t) > 0, where

Uhmin(t)= min
0≤i≤I

Ui(t).

When the time T h
q is finite, then we say that the solution Uh(t) of (2.1)—

(2.2) quenches in a finite time, and the time T h
q is called the quenching time

of the solution Uh(t).

The following lemma is a semidiscrete form of the maximum principle.

Lemma 2.1. Let γh ∈ C0([0, T ),RI+1) and let Vh ∈ C1([0, T ),RI+1) be

such that

dVi(t)

dt
− αiδ

2Vi(t) + γi(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ),(2.3)

Vi(0) ≥ 0, 0 ≤ i ≤ I.(2.4)

Then, we have Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let T0 be any positive quantity satisfying the inequality T0 < T ,

and define the vector Zh(t) = eλtVh(t), where λ is such that

γi(t)− λ > 0 for 0 ≤ i ≤ I, t ∈ [0, T0].

Setm = min0≤t≤T0 Zhmin(t). Since Zh(t) is a continuous vector on the com-

pact [0, T0], there exist i0 ∈ {0, ..., I} and t0 ∈ [0, T0] such that m = Zi0(t0).

We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,(2.5)
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δ2Zi0(t0) ≥ 0.(2.6)

According to (2.3), we obtain the following inequality

dZi0(t0)

dt
− αi0δ

2Zi0(t0) + (αi0(t0)− λ)Zi0(t0) ≥ 0.(2.7)

We infer from (2.5)—(2.7) that (αi0(t0)− λ)Zi0(t0) ≥ 0, which entails that
Zi0(t0) ≥ 0. Therefore, Vh(t) ≥ 0 for t ∈ [0, T0] and the proof is complete. 2

Another form of the maximum principle for semidiscrete equations is

the following comparison lemma.

Lemma 2.2. Let f ∈ C0(R×R,R). If Vh,Wh ∈ C1([0, T ),RI+1) are such

that

dVi(t)

dt
− αiδ

2Vi(t) + f(Vi(t), t) <
dWi(t)

dt
− αiδ

2Wi(t) + f(Wi(t), t),

0 ≤ i ≤ I, t ∈ (0, T ),

Vi(0) < Wi(0), 0 ≤ i ≤ I,

then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let Zh(t) = Wh(t) − Vh(t) and let t0 be the first t ∈ (0, T ) such
that Zh(t) > 0 for t ∈ [0, t0), but Zi0(t0) = 0 for a certain i0 ∈ {0, ..., I}.
We remark that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0,

δ2Zi0(t0) ≥ 0.

Using these inequalities and the fact that Wi0(t0) = Vi0(t0), we derive

the following estimate

dZi0(t0)

dt
− αi0δ

2Zi0(t0) + f(Wi0(t0), t0)− f(Vi0(t0), t0) ≤ 0.

But, this contradicts the first strict inequality of the lemma and the proof

is complete. 2
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3. Quenching in the semidiscrete problem

In this section, under some assumptions, we show that the solution Uh of

(2.1)—(2.2) quenches in a finite time and estimate its semidiscrete quenching

time. We need the following result about the operator δ2.

Lemma 3.1. Let Uh ∈ RI+1 be such that Uh > 0. Then, we have

δ2(f(U))i ≥ f 0(Ui)δ
2Ui, 0 ≤ i ≤ I.

Proof. Applying Taylor’s expansion, we find that

δ2(f(U))0 = f 0(U0)δ
2U0 +

(U1 − U0)
2

h2
f
00
(θ0),

δ2(f(U))i = f 0(Ui)δ
2Ui +

(Ui+1 − Ui)
2

2h2
f
00
(θi) +

(Ui−1 − Ui)
2

2h2
f
00
(ηi),

0 ≤ i ≤ I,

δ2(f(U))I = f 0(UI)δ
2UI +

(UI−1 − UI)
2

h2
f
00
(ηI),

where θi is an intermediate value between Ui and Ui+1, ηi the one between

Ui−1 and Ui. Use the fact that f
00(s) ≥ 0 for s > 0 and Uh > 0 to complete

the rest of the proof. 2

The statement of the result about solutions which quench in a finite

time is the following.

Theorem 3.1. Let Uh be the solution of (2.1)—(2.2). Assume that there

exists a positive constant A ∈ (0, 1] such that the initial data at (2.2)
satisfies

αiδ
2ϕi − βif(ϕi) ≤ −Af(ϕi), 0 ≤ i ≤ I.(3.1)

Then, the solution Uh quenches in a finite time T
h
q , and the following esti-

mate holds

Th
q ≤

1

A

Z ϕhmin

0

dσ

f(σ)
.
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Proof. Since (0, T h
q ) is the maximal time interval on which Uhmin(t) > 0,

our aim is to show that T h
q is finite and satisfies the above inequality.

Introduce the vector Jh(t) defined as follows

Ji(t) =
dUi(t)

dt
+Af(Ui(t)), 0 ≤ i ≤ I, t ∈ [0, Th

q ).

A straightforward calculation gives

dJi
dt
− αiδ

2Ji =
d

dt

µ
dUi

dt
− αiδ

2Ui

¶

+Af 0(Ui)
dUi

dt
− αiAδ

2(f(U))i, 0 ≤ i ≤ I, t ∈ (0, Th
q ).

Taking into account Lemma 3.1, we see that δ2(f(U))i ≥ f 0(Ui)δ
2Ui,

0 ≤ i ≤ I, which implies that

dJi
dt
− αiδ

2Ji ≤
d

dt

µ
dUi

dt
− αiδ

2Ui

¶
+Af 0(Ui)

µ
dUi

dt
− αiδ

2Ui

¶
,

0 ≤ i ≤ I, t ∈ (0, Th
q ).

Using (2.1), we arrive at

dJi
dt
− αiδ

2Ji ≤ −βif 0(Ui)
dUi

dt
− βiAf

0(Ui)f(Ui), 0 ≤ i ≤ I, t ∈ (0, Th
q ).

Making use of the expression of Jh, we discover that

dJi
dt
− αiδ

2Ji ≤ −βif 0(Ui)Ji, 0 ≤ i ≤ I, t ∈ (0, T h
q ).

Exploiting (3.1), we observe that Jh(0) ≤ 0. We infer from Lemma 2.1

that Jh(t) ≤ 0 for t ∈ (0, Th
q ), which implies that

dUi(t)

dt
≤ −Af(Ui(t)), 0 ≤ i ≤ I, t ∈ (0, Th

q ).(3.2)

These estimates may be rewritten in the following form

dUi

f(Ui)
≤ −Adt, 0 ≤ i ≤ I, t ∈ (0, T h

q ).
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Integrating the above inequalities over the interval (t, T h
q ), we get

T h
q − t ≤ 1

A

Z Ui(t)

0

dσ

f(σ)
, 0 ≤ i ≤ I.(3.3)

Using the fact that ϕhmin = Ui0(0) for a certain i0 ∈ {0, ..., I} and taking
t = 0 in (3.3), we obtain the desired result. 2

Remark 3.1. The inequalities (3.3) imply that

T h
q − t0 ≤

1

A

Z Uhmin(t0)

0

dσ

f(σ)
for t0 ∈ (0, Th

q ),

and

Uhmin(t) ≥ H(A(T h
q − t)) for t ∈ (0, T h

q ),

where H(s) is the inverse of the function F (s) =
R s
0

dσ
f(σ) .

Remark 3.2. Let Uh be the solution of (2.1)—(2.2). Then, we derive the

following inequalities

T h
q ≥

1

kβhk∞

Z ϕhmin

0

dσ

f(σ)
,

and

Uhmin(t) ≤ H(kβhk∞(Th
q − t)) for t ∈ (0, T h

q ).

To prove these estimates, we proceed as follows. Introduce the function v(t)

defined as follows v(t) = Uhmin(t) for t ∈ [0, Th
q ). Let t1, t2 ∈ [0, Th

q ). Then,

there exist i1, i2 ∈ {0, ..., I} such that v(t1) = Ui1(t1) and v(t2) = Ui2(t2).

We observe that

v(t2)− v(t1) ≥ Ui2(t2)− Ui2(t1) = (t2 − t1)
dUi2(t2)

dt
+ o(t2 − t1),

v(t2)− v(t1) ≤ Ui1(t2)− Ui1(t1) = (t2 − t1)
dUi1(t1)

dt
+ o(t2 − t1),

which implies that v(t) is Lipschitz continuous. Further, if t2 > t1, then

v(t2)− v(t1)

t2 − t1
≥ dUi2(t2)

dt
+ o(1) = αi2δ

2Ui2(t2)− βi2f(Ui2(t2)) + o(1).
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Obviously, δ2Ui2(t2) ≥ 0. Letting t1 → t2, and using the fact that βi2 ≤
kβhk∞, we obtain dv(t)

dt ≥ −kβhk∞f(v) for t ∈ (0, T h
q ) or equivalently

dv
f(v) ≥

−kβhk∞dt for t ∈ (0, T h
q ). Integrate the above inequality over (t, T

h
q ) to

obtain T h
q −t ≥ 1

kβhk∞
R v(t)
0

dσ
f(σ) . Since v(t) = Uhmin(t), we arrive at T

h
q −t ≥

1
kβhk∞

R Uhmin(t)
0

dσ
f(σ) and the second estimate follows. To obtain the first one,

it suffices to replace t by 0 in the above inequality and use the fact that

ϕhmin = Uhmin(0).

4. Convergence of the semidiscrete quenching time

In this section, under some assumptions, we show that the solution of the

semidiscrete problem quenches in a finite time, and its semidiscrete quench-

ing time converges to the real one when the mesh size goes to zero.

We denote ah = (a(x0), . . . , a(xI))
T , bh = (b(x0), . . . , b(xI))

T ,

uh(t) = (u(x0, t), ..., u(xI , t))
T and kUh(t)k∞ = max

0≤i≤I
|Ui(t)|.

In order to obtain the convergence of the semidiscrete quenching time, we

firstly prove the following theorem about the convergence of the semidis-

crete scheme.

Theorem 4.1. Assume that the problem (1.1)-(1.3) has a solution u ∈
C4,1([0, 1]×[0, T−τ ]) such thatmint∈[0,T−τ ] umin(t) = > 0 with τ ∈ (0, T ).
Suppose that ϕh, βh and αh satisfy

kϕh − uh(0)k∞ = o(1) as h→ 0,(4.1)

kβh − bhk∞ = o(1) as h→ 0, kαh − ahk∞ = o(1) as h→ 0.(4.2)

Then, for h sufficiently small, the problem (2.1)—(2.2) has a unique solution

Uh ∈ C1([0, Th
q ),R

I+1) such that the following relation holds

max
0≤t≤T−τ

kUh(t)− uh(t)k∞

= 0(kϕh − uh(0)k∞ + kβh − bhk∞ + kαh − ahk∞ + h2) as h→ 0.
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Proof. Let L > 0 be such that

−(kbhk∞ + 1)f 0(
ρ

2
) ≤ L.(4.3)

Let us notice that the term on the left hand side of the above inequality is

positive because the function f(s) is positive and nonincreasing for positive

values of s. The problem (2.1)—(2.2) has for each h, a unique solution

Uh ∈ C1([0, Th
q ),R

I+1). Let t(h) ≤ min{T − τ, T h
q } be the greatest value

of t > 0 such that

kUh(t)− uh(t)k∞ <
2

for t ∈ (0, t(h)).(4.4)

The relation (4.1) implies that t(h) > 0 for h sufficiently small. Invoking

the triangle inequality, we have

Ui(t) ≥ u(xi, t)− |Ui(t)− u(xi, t)|, 0 ≤ i ≤ I, t ∈ (0, t(h)).

This implies that

Ui(t) ≥ u(xi, t)− kUh(t)− uh(t)k∞, 0 ≤ i ≤ I, t ∈ (0, t(h)).

Let j ∈ {0, · · · , I} be such that Uhmin(t) = Uj(t). Replacing i by j in the

above inequalities, and using the fact that u(xj , t) ≥ uhmin(t), we find that

Uhmin(t) ≥ uhmin(t)− kUh(t)− uh(t)k∞ for t ∈ (0, t(h)),

which implies that

Uhmin(t) ≥ −
2
=
2

for t ∈ (0, t(h)).(4.5)

Since u ∈ C4,1, taking the derivative in x on both sides of (1) and due to

the fact that ux, uxt, bx vanish at x = 0 and x = 1, we observe that uxxx

also vanishes at x = 0 and x = 1. Applying Taylor’s expansion, we discover

that

uxx(xi, t) = δ2u(xi, t)−
h2

12
uxxxx(exi, t), 0 ≤ i ≤ I, t ∈ (0, t(h)).
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To establish the above equalities for i = 0 and i = I, we have used the fact

that ux and uxxx vanish at x = 0 and x = 1. A direct calculation renders

ut(xi, t)− αiδ
2u(xi, t) = −βif(u(xi, t))− a(xi)

h2

12
uxxxx(exi, t)

+(a(xi)− αi)δ
2u(xi, t) + (βi − b(xi))f(u(xi, t)), 0 ≤ i ≤ I, t ∈ (0, t(h)).

Let eh(t) = Uh(t) − uh(t) be the error of discretization. From the mean

value theorem, we have

dei(t)

dt
− αiδ

2ei(t) = −βif 0(θi(t))ei(t) + a(xi)
h2

12
uxxxx(exi, t)

−(a(xi)− αi)δ
2u(xi, t)− (βi − b(xi))f(u(xi, t)), 0 ≤ i ≤ I, t ∈ (0, t(h)),

where θi(t) is an intermediate value between Ui(t) and u(xi, t). We observe

that for i ∈ {0, · · · , I} and t ∈ (0, t(h)), f(u(xi, t)) is bounded from above

f(ρ). Since u ∈ C4,1, then making use of (4.3) and (4.5), we realize that

there exists a positive constant K such that

dei(t)

dt
− αiδ

2ei(t) ≤ L|ei(t)|+Kkβh − bhk∞ +Kkαh − ahk∞ +Kh2,

0 ≤ i ≤ I, t ∈ (0, t(h)).(4.6)

Introduce the vector zh(t) defined as follows

zi(t) = e(L+1)t(kϕh − uh(0)k∞ +Kkβh − bhk∞ +Kkαh − ahk∞ +Kh2),

0 ≤ i ≤ I, t ∈ (0, t(h)).(4.7)

A straightforward computation reveals that

dzi
dt
− δ2zi > L|zi|+Kkβh − bhk∞ +Kkαh − ahk∞ +Kh2,

0 ≤ i ≤ I, t ∈ (0, t(h)),
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zi(0) > ei(0), 0 ≤ i ≤ I.

It follows from Lemma 2.2 that

zi(t) > ei(t) for t ∈ (0, t(h)), 0 ≤ i ≤ I.

In the same way, we also prove that

zi(t) > −ei(t) for t ∈ (0, t(h)), 0 ≤ i ≤ I,

which implies that

kUh(t)− uh(t)k∞ ≤ e(L+1)t(kϕh − uh(0)k∞ +Kkβh − bhk∞

+Kkαh − ahk∞ +Kh2) for t ∈ (0, t(h)).

Let us show that t(h) = min{T − τ, T h
q }. Suppose that

t(h) < min{T − τ, Th
q }. Due to the fact that t(h) is the greatest value of

t > 0 such that (4.4) holds, we infer that kUh(t(h)) − uh(t(h))k∞ ≥ 2 ,

which implies that

2
≤ kUh(t(h))− uh(t(h))k∞

≤ e(L+1)T (kϕh − uh(0)k∞ +Kkβh − bhk∞ +Kkαh − ahk∞ +Kh2).

Let us notice that both last formulas for t(h) are valid for sufficiently

small h. Since the term on the right hand side of the above inequality

goes to zero as h goes to zero, we deduce that 2 ≤ 0, which is impossible.
Consequently t(h) = min{T − τ, Th

q }.
Now, let us show that t(h) = T − τ . Suppose that t(h) = T h

q < T − τ .

Reasoning as above, we prove that we have a contradiction and the proof

is complete. 2

Now, we are in a position to prove the main theorem of this section.

Theorem 4.2. Suppose that the problem (1.1)—(1.3) has a solution uwhich

quenches in a finite time T such that u ∈ C4,1([0, 1]× [0, T )). Assume that
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ϕh, βh and αh satisfy the conditions (4.1) and (4.2). Under the hypothesis

of Theorem 3.1, the problem (2.1)—(2.3) admits a unique solution Uh which

quenches in a finite time T h
q , and the following relation holds

lim
h→0

Th
q = T.

Proof. Let 0 < ε < T/2. There exists ∈ (0, 1) such that

1

A

Z
0

dσ

f(σ)
≤ ε

2
.(4.8)

Since u quenches in a finite time T , there exist h0(ε) > 0 and a time

T0 ∈ (T − ε
2 , T ) such that 0 < umin(t) < 2 for t ∈ [T0, T ), h ≤ h0(ε). It

is not hard to see that umin(t) > 0 for t ∈ [0, T0], h ≤ h0(ε). According to

Theorem 4.1, the problem (2.1)—(2.3) admits a unique solution Uh(t), and

the following estimate holds kUh(t)−uh(t)k∞ ≤ 2 for t ∈ [0, T0], h ≤ h0(ε),

which implies that kUh(T0) − uh(T0)k∞ ≤ 2 for h ≤ h0(ε). Applying the

triangle inequality, we find that

Uhmin(T0) ≤ kUh(T0)− uh(T0)k∞ + uhmin(T0) ≤
2
+
2
= for h ≤ h0(ε).

Invoking Theorem 3.1, we note that Uh(t) quenches at the time T
h
q . We

deduce from Remark 3.1 and (4.8) that for h ≤ h0(ε),

|T h
q − T | ≤ |Th

q − T0|+ |T0 − T | ≤ 1

A

Z Uhmin(T0)

0

dσ

f(σ)
+

ε

2
≤ ε.

This completes the proof. 2

5. Full discretizations

In this section, we pursue our study concerning the phenomenon of quench-

ing using a full discrete explicit scheme of (1.1)—(1.3). Approximate the so-

lution u(x, t) of the problem (1.1)—(1.3) by the solution U
(n)
h = (U

(n)
0 , U

(n)
1 , . . . , U

(n)
I )T

of the following explicit scheme

δtU
(n)
i = αiδ

2U
(n)
i − βif(U

(n)
i ), 0 ≤ i ≤ I,(5.1)
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U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,(5.2)

where n ≥ 0,

δtU
(n)
i =

U
(n+1)
i − U

(n)
i

∆tn
.

We observe that f(s)
s is nonincreasing by the followingµ
f(s)

s

¶0
=

f 0(s)s− f(s)

s2
≤ 0 for s > 0.

Hence, if U
(n)
h > 0, then −f(U

(n)
i )

U
(n)
i

≥ −f(U
(n)
hmin

)

U
(n)
hmin

, 0 ≤ i ≤ I, and a straight-

forward computation reveals that

U
(n+1)
0 ≥ 2α0∆tn

h2
U
(n)
1 +

Ã
1− 2kαhk∞

∆tn
h2
− kβhk∞∆tn

f(U
(n)
hmin)

U
(n)
hmin

!
U
(n)
0 ,

U
(n+1)
i ≥ αi∆tn

h2
U
(n)
i+1 +

Ã
1− 2kαhk∞

∆tn
h2
− kβhk∞∆tn

f(U
(n)
hmin)

U
(n)
hmin

!
U
(n)
i

+
αi∆tn
h2

U
(n)
i−1, 1 ≤ i ≤ I − 1,

U
(n+1)
I ≥ 2αI∆tn

h2
U
(n)
I−1 +

Ã
1− 2kαhk∞

∆tn
h2
− kβhk∞∆tn

f(U
(n)
hmin)

U
(n)
hmin

!
U
(n)
I .

In order to permit the discrete solution to reproduce the properties of the

continuous one when the time t approaches the quenching time T , we need

to adapt the size of the time step so that we pick

∆tn = min

(
(1− τ)h2

2kαhk∞
, τ

U
(n)
hmin

kβhk∞f(U (n)hmin)

)

with 0 < τ < 1. We observe that 1−2kαhk∞∆tn
h2
− kβhk∞∆tn

f(U
(n)
hmin

)

U
(n)
hmin

≥ 0,

which implies that U
(n+1)
h > 0. Thus, since by hypothesis U

(0)
h = ϕh > 0, if

we take ∆tn as defined above, then using a recursion argument, we see that
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the positivity of the discrete solution is guaranteed. Here, τ is a parame-

ter which will be chosen later to allow the discrete solution U
(n)
h to satisfy

certain properties useful to get the convergence of the numerical quenching

time defined below.

If necessary, we may take ∆tn = min{ (1−τ)h
2

Kkαhk∞ , τ
U
(n)
hmin

kβhk∞f(U
(n)
hmin

)
} with K > 2

because in this case, the positivity of the discrete solution is also guaran-

teed.

The following lemma is a discrete form of the maximum principle.

Lemma 5.1. Let γ
(n)
h and V

(n)
h be two sequences such that γ

(n)
h is bounded

and

δtV
(n)
i − αiδ

2V
(n)
i + γ

(n)
i V

(n)
i ≥ 0, 0 ≤ i ≤ I, n ≥ 0,(5.3)

V
(0)
i ≥ 0, 0 ≤ i ≤ I.(5.4)

Then, we have V
(n)
i ≥ 0 for n ≥ 0, 0≤ i ≤ I if ∆tn ≤ h2

2kαhk∞+kγ(n)h
k∞h2

.

Proof. If V
(n)
h ≥ 0, then a routine computation yields

V
(n+1)
0 ≥ 2α0∆tn

h2
V
(n)
1 +

µ
1− 2kαhk∞

∆tn
h2
−∆tnkγ(n)h k∞

¶
V
(n)
0 ,

V
(n+1)
i ≥ αi∆tn

h2
V
(n)
i+1 +

µ
1− 2kαhk∞

∆tn
h2
−∆tnkγ(n)h k∞

¶
V
(n)
i

+
αi∆tn
h2

V
(n)
i−1 , 1 ≤ i ≤ I − 1,

V
(n+1)
I ≥ 2αI∆tn

h2
V
(n)
I−1 +

µ
1− 2kαhk∞

∆tn
h2
−∆tnkγ(n)h k∞

¶
V
(n)
I .

Since ∆tn ≤ h2

2kαhk∞+kγ(n)h k∞h2
, we see that 1− 2∆tn

h2 −∆tnkγ
(n)
h k∞ is non-

negative. Making use of (5.4), we deduce by induction that V
(n)
h ≥ 0, which

ends the proof. 2

A direct consequence of the above result is the following comparison

lemma. Its proof is straightforward.
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Lemma 5.2. Let V
(n)
h , W

(n)
h and γ

(n)
h be three sequences such that γ

(n)
h is

bounded and

δtV
(n)
i − αiδ

2V
(n)
i + γ

(n)
i V

(n)
i ≤ δtW

(n)
i − αiδ

2W
(n)
i + γ

(n)
i W

(n)
i ,

0 ≤ i ≤ I, n ≥ 0,

V
(0)
i ≤W

(0)
i , 0 ≤ i ≤ I.

Then, we have V
(n)
i ≤W

(n)
i for n ≥ 0, 0 ≤ i ≤ I if ∆tn ≤ h2

2kαhk∞+kγ(n)h
k∞h2

.

Now, let us give a property of the operator δt stated in the following

lemma. Its proof is quite similar to that of Lemma 3.1, so we omit it here.

Lemma 5.3. Let U (n) ∈ R be such that U (n) > 0 for n ≥ 0. Then, we
have

δtf(U
(n)) ≥ f 0(U (n))δtU

(n), n ≥ 0.

We need the result below.

Lemma 5.4. Let a, b be two positive numbers such that b ∈ (0, 1). Then
the following estimate holds

∞X
n=0

abn

f(abn)
≤ a

f(a)
− 1

ln(b)

Z a

0

dσ

f(σ)
.

Proof. We have
R∞
0

abxdx
f(abx) =

P∞
n=0

R n+1
n

abxdx
f(abx) . We observe that ab

x ≥
abn+1 for n ≤ x ≤ n+ 1, which implies that

R n+1
n

abxdx
f(abx) ≥

abn+1

f(abn+1) . Conse-

quently, we getZ ∞
0

abxdx

f(abx)
≥

∞X
n=0

abn+1

f(abn+1)
= − a

f(a)
+

∞X
n=0

abn

f(abn)
.

By a change of variables, we see that
R∞
0

abxdx
f(abx) = −

1
ln(b)

R a
0

dσ
f(σ) , which

implies that

∞X
n=0

abn

f(abn)
≤ a

f(a)
− 1

ln(b)

Z a

0

dσ

f(σ)
.

This completes the proof. 2

The theorem below is the discrete version of Theorem 4.1.
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Theorem 5.1. Suppose that the problem (1.1)—(1.3) has a solution u ∈
C4,2([0, 1]× [0, T − τ ]) such that mint∈[0,T ] umin(t) = ρ > 0 with τ ∈ (0, T ).
Assume that ϕh, βh and αh satisfy the conditions (4.1) and (4.2). Then, the

problem (5.1)—(5.2) has a solution U
(n)
h for h sufficiently small, 0 ≤ n ≤ J

and the following relation holds

max
0≤n≤J

kU (n)h − uh(tn)k∞

= O(kϕh − uh(0)k∞ + kbh − βhk∞ + kαh − ahk∞ + h2) as h→ 0,

where J is any quantity satisfying the inequality

J−1X
j=0

∆tj ≤ T − τ and tn =
n−1X
j=0

∆tj .

Proof. For each h, the problem (5.1)—(5.2) has a solution U
(n)
h . Let N ≤ J

be the greatest value of n such that

kU (n)h − uh(tn)k∞ <
ρ

2
for n < N.(5.5)

We know that N ≥ 1 because of (4.1). Applying the triangle inequality, we
have

U
(n)
i ≥ u(xi, tn)− |U (n)i − u(xi, tn)|, 0 ≤ i ≤ I, n < N.

This implies that

U
(n)
i ≥ u(xi, tn)− kU (n)h − uh(tn)k∞, 0 ≤ i ≤ I, n < N.

Let i0 ∈ {0, · · · , I} be such that U (n)i0
= U

(n)
hmin. Replacing i by i0 in the

above inequalities and using the fact that u(xi0 , tn) ≥ uhmin(tn), we arrive

at

U
(n)
hmin ≥ uhmin(tn)− kU (n)h − uh(tn)k∞ ≥

ρ

2
for n < N.(5.6)

As in the proof of Theorem 4.1, using Taylor’s expansion, we find that for

n < N , 0 ≤ i ≤ I,

δtu(xi, tn)− αiδ
2u(xi, tn) + βif(u(xi, tn)) + (b(xi)− βi)f(u(xi, tn))
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+(αi − a(xi))δ
2u(xi, tn) = −a(xi)

h2

12
uxxxx(exi, tn) + ∆tn

2
utt(xi, etn).

Let e
(n)
h = U

(n)
h −uh(tn) be the error of discretization. From the mean value

theorem, we get for n < N , 0 ≤ i ≤ I,

δte
(n)
i − αiδ

2e
(n)
i = −βif 0(ξ(n)i )e

(n)
i + a(xi)

h2

12
uxxxx(exi, tn)

+(αi − a(xi))δ
2u(xi, tn)−

∆tn
2

utt(xi, etn) + (b(xi)− βi)f(u(xi, tn)),

where ξ
(n)
i is an intermediate value between u(xi, tn) and U

(n)
i . Since

uxxxx(x, t), δ
2u(xi, tn), 0 ≤ i ≤ I, utt(x, t) are bounded, u(x, t) ≥ ρ and

∆tn = O(h2), then there exists a positive constant M such that

δte
(n)
i − αiδ

2e
(n)
i ≤ −βif 0(ξ(n)i )e

(n)
i +Mkbh − βhk∞

+Mkαh − ahk∞ +Mh2, 0 ≤ i ≤ I, n < N.(5.7)

Set L = −(kbhk∞+1)f 0(ρ2) and introduce the vector V
(n)
h defined as follows

V
(n)
i = e(L+1)tn(kϕh − uh(0)k∞ +Mkbh − βhk∞ +Mkαh − ahk∞ +Mh2),

0 ≤ i ≤ I, n < N . It is clear that L is positive because the function f(s)

is positive and nonincreasing for positive values of s. A straightforward

computation gives

δtV
(n)
i − δ2V

(n)
i > −βif 0(ξ(n)i )V

(n)
i +Mkbh − βhk∞

+Mkαh − ahk∞ +Mh2, 0 ≤ i ≤ I, n < N,(5.8)

V
(0)
i > e

(0)
i , 0 ≤ i ≤ I.(5.9)

For i ∈ {0, · · · , I}, according to the fact that ξ(n)i is between U
(n)
i and

u(xi, tn), we infer from (5.6) that ξ
(n)
i ≥ ρ

2 because u(xi, tn) ≥ ρ. This im-

plies that −βif 0(ξ(n)i ) is bounded from above by the quantity −kβhk∞f 0(ρ2)
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which is positive because f(s) is positive and nonincreasing for positive

values of s. It follows from Lemma 5.2 that V
(n)
h ≥ e

(n)
h . In the same way,

we also prove that V
(n)
h ≥ −e(n)h , which implies that

kU (n)h − uh(tn)k∞

≤ e(L+1)tn(kϕh − uh(0)k∞ +Mkbh − βhk∞ +Mkαh − ahk∞ +Mh2), n < N.(5.10)

Let us show that N = J . Suppose that N < J . If we replace n by N in

(5.10) and use (5.5), we find that

ρ

2
≤ kU (N)h − uh(tN)k∞

≤ e(L+1)T (kϕh − uh(0)k∞ +Mkbh − βhk∞ +Mkαh − ahk∞ +Mh2).

Since the term on the right hand side of the second inequality goes to

zero as h goes to zero, we deduce that ρ
2 ≤ 0, which is a contradiction and

the proof is complete. 2

To handle the phenomenon of quenching for discrete equations, we need

the following definition.

Definition 5.1. We say that the solution U
(n)
h of (5.1)-(5.2) quenches in a

finite time if U
(n)
hmin > 0 for n ≥ 0, but

lim
n→∞

U
(n)
hmin = 0 and T∆t

h = lim
n→∞

n−1X
i=0

∆ti <∞.

The number T∆t
h is called the numerical quenching time of U

(n)
h .

The following theorem reveals that the discrete solution U
(n)
h of (5.1)-

(5.2) quenches in a finite time under some hypotheses.

Theorem 5.2. Let U
(n)
h be the solution of (5.1)-(5.2). Suppose that there

exists a constant A ∈ (0, 1] such that the initial data at (5.2) satisfies

αiδ
2ϕi − βif(ϕi) ≤ −Af(ϕi), 0 ≤ i ≤ I.(5.11)
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Then U
(n)
h is nonincreasing and quenches in a finite time T∆t

h which

satisfies the following estimate

T∆t
h ≤ τϕhmin

kβhk∞f(ϕhmin)
− τ

kβhk∞ ln(1− τ 0)

Z ϕhmin

0

dσ

f(σ)
,

where τ 0 = Amin{ (1−τ)h
2f(ϕhmin)

2kαhk∞ϕhmin
, τ}.

Proof. Introduce the vector J
(n)
h defined as follows

J
(n)
i = δtU

(n)
i +Af(U

(n)
i ), 0 ≤ i ≤ I, n ≥ 0.

A straightforward computation yields for 0 ≤ i ≤ I, n ≥ 0,

δtJ
(n)
i − αiδ

2J
(n)
i = δt

³
δtU

(n)
i − αiδ

2U
(n)
i

´
+Aδtf(U

(n)
i )−Aαiδ

2f(U
(n)
i ).

Using (5.1), we arrive at

δtJ
(n)
i − αiδ

2J
(n)
i = −(βi −A)δtf(U

(n)
i )

−Aαiδ2f(U (n)i ), 0 ≤ i ≤ I, n ≥ 0.

It follows from Lemmas 5.3 and 3.1 that for 0 ≤ i ≤ I, n ≥ 0,

δtJ
(n)
i − αiδ

2J
(n)
i ≤ −(βi −A)f 0(U (n)i )δtU

(n)
i −Aαif

0(U (n)i )δ2U
(n)
i .

After a little transformation, the above estimates become

δtJ
(n)
i − αiδ

2J
(n)
i ≤ −βif 0(U (n)i )δtU

(n)
i

+Af 0(U (n)i )(δtU
(n)
i − αiδ

2U
(n)
i ), 0 ≤ i ≤ I.

We deduce from (5.1) that

δtJ
(n)
i − αiδ

2J
(n)
i ≤ −βif 0(U (n)i )J

(n)
i , 0 ≤ i ≤ I, n ≥ 0.

Obviously, the inequalities (5.11) ensure that J
(0)
h ≤ 0. Applying

Lemma 5.1, we get J
(n)
h ≤ 0 for n ≥ 0, which implies that

U
(n+1)
i ≤ U

(n)
i

Ã
1−A∆tn

f(U
(n)
i )

U
(n)
i

!
, 0 ≤ i ≤ I, n ≥ 0.(5.12)
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These estimates reveal that the sequence U
(n)
h is nonincreasing. By induc-

tion, we obtain U
(n)
h ≤ U

(0)
h = ϕh. Thus, the following holds

A∆tn
f(U

(n)
hmin)

U
(n)
hmin

≥ Amin

(
(1− τ)h2f(ϕhmin)

2kαhk∞ϕhmin
,

τ

kβhk

)
= τ 0.(5.13)

Let i0 be the index such that U
(n)
hmin = U

(n)
i0
. Replacing i by i0 in (5.2),

we obtain

U
(n+1)
hmin ≤ U

(n)
hmin(1− τ 0), n ≥ 0,(5.14)

and by iteration, we arrive at

U
(n)
hmin ≤ U

(0)
hmin(1− τ 0)n = ϕhmin(1− τ 0)n, n ≥ 0.(5.15)

Since the term on the right hand side of the above equality goes to zero as n

approaches infinity, we conclude that U
(n)
hmin tends to zero as n approaches

infinity. Now, let us estimate the numerical quenching time. Due to (5.15)

and the restriction ∆tn ≤
τU

(n)
hmin

kβhk∞f(U
(n)
hmin

)
, it is not hard to see that

∞X
n=0

∆tn ≤
τ

kβhk∞

∞X
n=0

ϕhmin(1− τ 0)n

f(ϕhmin(1− τ 0)n)
,

because s
f(s) is nondecreasing for s > 0. It follows from Lemma 5.4 that

∞X
n=0

∆tn ≤
τϕhmin

kβhk∞f(ϕhmin)
− τ

kβhk∞ ln(1− τ 0)

Z ϕhmin

0

dσ

f(σ)
.

Use the fact that the quantity on the right hand side of the above inequality

is finite to complete the rest of the proof. 2

Remark 5.1. From (5.14), we deduce by induction that

U
(n)
hmin ≤ U

(q)
hmin(1− τ 0)n−q for n ≥ q,

and we see that

T∆t
h − tq =

∞X
n=q

∆tn≤
τ

kβhk∞

∞X
n=q

U
(q)
hmin(1− τ 0)n−q

f(U
(q)
hmin(1− τ 0)n−q)

,
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because s
f(s) is nondecreasing for s > 0. It follows from Lemma 5.4 that

T∆t
h − tq ≤

τU
(q)
hmin

kβhk∞f(U (q)hmin)
− τ

kβhk∞ ln(1− τ 0)

Z U
(q)
hmin

0

dσ

f(σ)
.

Since τ
0
= Amin{ (1−τ)h

2f(ϕhmin)
2kαhk∞ϕhmin

, τ
kβhk∞ }, if we take τ = h2, then we get

τ
0

τ
= Amin

(
(1− h2)f(ϕhmin)

2kαhk∞ϕhmin
,

1

kβhk∞

)
≥ Amin

½
f(ϕhmin)

4kαhk∞ϕhmin
,

1

kβhk∞

¾
.

Therefore, there exist constants c0, c1 such that 0 < c0 ≤ τ/τ
0 ≤ c1 and

−τ
ln(1−τ 0) = O(1), for the choice τ = h2.

In the sequel, we take τ = h2.

Now, we are in a position to state the main theorem of this section.

Theorem 5.3. Suppose that the problem (1.1)—(1.3) has a solution uwhich

quenches in a finite time T and u ∈ C4,2([0, 1] × [0, T )). Assume that ϕh,
βh and αh satisfy the conditions (4.1) and (4.2). Under the assumption of

Theorem 5.2, the problem (5.1)—(5.2) has a solution U
(n)
h which quenches

in a finite time T∆t
h and the following relation holds

lim
h→0

T∆t
h = T.

Proof. We know from Remark 5.1 that −τ
ln(1−τ 0) is bounded. Letting 0 <

ε < T/2, there exists a constant R ∈ (0, 1) such that

τR

kβhk∞f(R)
− τ

kβhk∞ ln(1− τ 0)

Z R

0

dσ

f(σ)
<

ε

2
.(5.16)

Since u quenches at the time T , there exist T1 ∈ (T− ε
2 , T ) and h0(ε) > 0

such that 0 < umin(t) <
R
2 for t ∈ [T1, T ), h ≤ h0(ε). Let q be a positive

integer such that tq =
Pq−1

n=0∆tn ∈ [T1, T ) for h ≤ h0(ε). It follows from

Theorem 5.1 that the problem (5.1)—(5.2) has a solution U
(n)
h which obeys

kU (n)h − uh(tn)k∞ < R
2 for n ≤ q, h ≤ h0(ε), which implies that

U
(q)
hmin ≤ kU

(q)
h − uh(tq)k∞ + uhmin(tq) <

R

2
+

R

2
= R, h ≤ h0(ε).
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From Theorem 5.2, U
(n)
h quenches at the time T∆t

h . It follows from

Remark 5.1 and (5.16) that

|T∆t
h − tq| ≤

τU
(q)
hmin

kβhk∞f(U (q)hmin)
− τ

kβhk∞ ln(1− τ 0)

Z U
(q)
hmin

0

dσ

f(σ)
<

ε

2

because

U
(q)
hmin < R for h ≤ h0(ε). We deduce that for h ≤ h0(ε),

|T − T∆t
h | ≤ |T − tq|+ |tq − T∆t

h | ≤ ε

2
+

ε

2
≤ ε,

which leads us to the result. 2

6. Numerical results

In this section, we present some numerical approximations to the quenching

time for the solution of the problem (1.1)—(1.3) in the case where f(u) =

u−p with p = const > 0, u0(x) =
2+ε cos(πx)

4 , a(x) = 2 − ε sin(πh), and

b(x) = 3− ε(x3+1) with 0 < ε ≤ 1. Firstly, we take the explicit scheme in
(5.1)—(5.2). Secondly, we use the following implicit scheme

U
(n+1)
i − U

(n)
i

∆tn
= αiδ

2U
(n+1)
i − βi(U

(n)
i )−p−1U (n+1)i , 0 ≤ i ≤ I,

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, ∆tn = h2(U
(n)
hmin)

(p+1) .

In both cases, ϕi =
2+ε cos(πih)

4 , 0 ≤ i ≤ I, αi = 2 − ε sin(iπh), βi =

3− ε(i2h2+1). For the above implicit scheme, the existence and positivity

of the discrete solution U
(n)
h are guaranteed using standard methods (see

[3]). In the tables 1—6, in rows, we present the numerical quenching times,

the numbers of iterations and the CPU times corresponding to meshes of

16, 32, 64, 128. We take for the numerical quenching time tn =
Pn−1

j=0 ∆tj

which is computed at the first time when

∆tn = |tn+1 − tn| ≤ 10−16.

First case: p = 1; ε = 1;
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Table 1: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the explicit Euler method

I tn n CPUt

16 0.055633 3806 2.8

32 0.055445 14556 12.4

64 0.055398 55460 152

128 0.0553867 210677 661

Table 2: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the implicit Euler method

I tn n CPUt

16 0.055558 3806 5.4

32 0.055426 14555 25

64 0.055393 55459 367

128 0.055863 210676 987

Second case: p = 1; ε = 1/100;

Table 3: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the explicit Euler method

I tn n CPUt

16 0.0419564 1278 1.2

32 0.0417734 4897 5.4

64 0.0417279 18656 63.5

128 0.0417116 70841 620
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Table 4: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the implicit Euler method

I tn n CPUt

16 0.0419552 1278 1.6

32 0.0417731 4897 8.5

64 0.0417278 18656 130

128 0.0417165 70841 2461

Third case: p = 1; ε = 1/10000;

Table 5: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the explicit Euler method

I tn n CPUt

16 0.0419126 1269 1.1

32 0.0417282 4861 4.3

64 0.0416823 18517 63

128 0.0416709 70300 942

Table 6: Numerical quenching times, numbers of iterations and CPU times

(seconds) obtained with the implicit Euler method

I tn n CPUt

16 0.0418126 1269 1.6

32 0.0417282 4861 8.4

64 0.0416823 18517 124

128 0.0416709 70300 2400

Remark 6.1. When ε = 0 and p = 1, we know that the quenching time of

the continuous solution of (1.1)—(1.3) is the same as the one of the solution

α(t) of the following differential equation α0(t) = −3(α(t))−p, t > 0, α(0) =
0.5. It is clear that the quenching time of the solution α(t) is 0.0416666.

We observe from Tables 1—8 that when ε decays to zero, then the numerical

quenching time of the discrete solution goes to 0.0416666.
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