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Universidad Católica del Norte
Antofagasta - Chile

Abstract

Some summability results are established for matrices of quasi-
homogeneous operators by uniformly vanishing sets.
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1. Introduction

In 2001, Li et al. [4] firstly gave the definition of quasi-homogeneous
operators and showed the family of quasi-homogeneous operators included
all linear and much more nonlinear operators. The introduction of quasi-
homogeneous operators has strongly broadened our research scope of oper-
ators. In [4, 5], the authors characterized some matrix families for matrices
of quasi-homogeneous operators between topological vector spaces. In [7, 8],
Qiu obtained some resonance theorems for families of quasi-homogeneous
operators between some special topological vector spaces. In [10], Song and
Fang proved some resonance theorems for families of quasi-homogeneous
operators between fuzzy normed linear spaces. The fact says that quasi-
homogeneous operators are useful and interesting. So it is necessary for us
to study it further.

In 2007, Li et al. [6] introduced the definition of uniformly vanishing
sets, and especially, obtained the strongest intrinsic meaning of sequential-
evaluation convergence by uniformly vanishing sets.

In this paper, we will give new characterizations of some matrix families
for matrices of quasi-homogeneous operators by uniformly vanishing sets.
Especially, from our results, the results of [4, 5] can easily be obtained.

2. Preliminaries

Let X, Y be topological vector spaces. For sequence families λ(X) ⊂ XN,
µ(Y ) ⊂ YN and fij : X → Y (i, j ∈ N) we say that the matrix
(fij)i,j∈N ∈ (λ(X), µ(Y )) if {

P∞
j=1 fij(xj)}∞i=1 ∈ µ(Y ) for each (xj) ∈ λ(X).

Let N (X) be the family of neighborhoods of 0 ∈ X, c0(X) = {(xj) ∈ XN :
limj xj = 0}, c(X) = {(xj) ∈ XN : limj xj exists }, c∞(X) = {(xj) ∈ XN :
{xj : j ∈ N} is bounded in X}, and c0(X)

βY = {(Aj) ⊂ Y X :
P∞

j=1Aj(xj)
converges for each (xj) ∈ c0(X)}.

A topological vector space X is said to be braked if for every
(xj) ∈ c0(X) there is a scalar sequence λj →∞ such that λjxj → 0, i.e., X
is braked if and only if for every (xj) ∈ c0(X) there exist (tj) ∈ c0 = {(tj)∞1 :
each tj is a scalar and limj tj = 0} and (uj) ∈ c0(X) such that xj = tjuj
for all j ∈N [9, p.43].

Every metrizable locally convex space is braked [2, p.382] and the Schur
lemma shows that the nonmetrizable (c1, weak) is also braked. The strict
inductive limit X of a sequence {Xn} of locally convex Fréchet spaces is
called an (LF ) space, e.g., the space D of test functions, the space of rapidly
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decreasing functions, etc. (LF ) spaces are not metrizable but every (LF )
space is braked [5, Example 2].

Definition 2.1. Let X, Y be vector spaces. An operator T from X to
Y is said to be quasi-homogeneous if there exists a function ϕ : C → C
satisfying limt→0 ϕ(t) = ϕ(0) = 0 such that T (tx) = ϕ(t)T (x) for all t ∈ C
and x ∈ X.

Obviously, if ϕ : C → C is a function such that T : X → Y is quasi-
homogeneous, then ϕ satisfies: ϕ(ts) = ϕ(t)ϕ(s), ∀ t, s ∈ C.

Let C(0) = {ϕ ∈ CC : limt→0 ϕ(t) = ϕ(0) = 0, ϕ(ts) = ϕ(t)ϕ(s), ∀ t, s ∈
C} and for each ϕ ∈ C(0), QHϕ(X,Y ) = {T ∈ Y X : T (tx) = ϕ(t)T (x),
∀ t ∈ C, x ∈ X}.

The following Uniform Convergence Principle can be found in [1, p.25;
3; 11].

Lemma 2.1 (Uniform Convergence Principle). Let G be an abelian
topological group and Ω a sequentially compact space and Fj : Ω → G a
sequentially continuous function for all j ∈N. If every sequence j1 < j2 <
· · · inN has a subsequence jk1 < jk2 < · · · such that

P∞
v=1 Fjkv (ω) converges

at each ω ∈ Ω and P∞
v=1 Fjkv (·) : Ω → G is sequentially continuous, then

limj Fj(ω) = 0 uniformly with respect to ω ∈ Ω.

Definition 2.2. Let X be a Banach space. M ⊂ c0(X) is said to be
uniformly vanishing if limj xj = 0 uniformly for (xj) ∈M .

For uniformly vanishing sets, [6] has obtained the following very good
results.

Lemma 2.2. For M ⊂ c0(X) the following (1) and (2) are equivalent:

(1) M is uniformly vanishing.

(2) For every Fréchet space E and (Aj) ∈ c0(X)
βE,

P∞
j=1Aj(xj) con-

verges uniformly for (xj) ∈M .

Now we give the similar definition and result in topological vector spaces
as Definition 2.2 and Lemma 2.2.
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Definition 2.3. Let X be a topological vector space. M ⊂ c0(X) is said
to be uniformly vanishing if limj xj = 0 uniformly for (xj) ∈M .

Lemma 2.3. Let X be a topological vector space. If M ⊂ c0(X) is uni-
formly vanishing, then for every topological vector space E and
(Aj) ∈ c0(X)

βE,
P∞

j=1Aj(xj) converges uniformly for (xj) ∈M .

Proof. Assume that
P∞

j=1Aj(xj) is not uniform for (xj) ∈ M . Then we
have a V ∈ N (X) and integers m1 < n1 < m2 < n2 < · · · and {(xkj)∞j=1 :
k ∈ N} ⊂M such that

Pnk
j=mk

Aj(xkj) 6∈ V , k = 1, 2, 3, · · ·.
Let

xj =

(
xkj, mk ≤ j ≤ nk, k = 1, 2, 3, ...,
0, otherwise.

Since M is uniformly vanishing, (xj) ∈ c0(X) but
Pnk

j=mk
Aj(xj) =Pnk

j=mk
Aj(xkj) 6∈ V , k = 1, 2, 3, · · ·. This contradicts (Aj) ∈ c0(X)

βE and
so
P∞

j=1Aj(xj) converges uniformly with respect to (xj) ∈ M for each

topological vector space E and (Aj) ∈ c0(X)
βE.

3. Main Results

Theorem 3.1. Let X, Y be topological vector spaces and X be braked.
If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (3) and (4) are equivalent:

(3) (Tij)i,j∈N ∈ (c0(X), c∞(Y )).

(4) {Tij(x)}∞i=1 is bounded for each x ∈ X and j ∈ N, and for every
uniformly vanishing M ⊂ c0(X),

P∞
j=1 Tij(xj) converges uniformly

with respect to i ∈N and (xj) ∈M .

Proof. (3)=⇒(4): Since (0, · · · ,
(j)
x , 0, 0, · · ·) ∈ c0(X) for every j ∈ N and

x ∈ X, it follows from (3) and Tij(0) = 0 for all i, j ∈ N that {Tij(x)}∞i=1
is bounded, ∀ j ∈ N, x ∈ X.

Assume that M ⊂ c0(X) is uniformly vanishing but the convergence
of
P∞

j=1 Tij(xj) is not uniform with respect to both i ∈ N and (xj) ∈ M .
Then there exists V ∈ N (X) such that for every m0 ∈ N we have integers
m > m0, i ∈ N and (xj) ∈ M for which

P∞
j=m Tij(xj) 6∈ V . Also there

exists W ∈ N (X) such that W +W ⊂ V .
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There exist integers m1 > 1, i1 ∈ N and (x1j) ∈M such thatP∞
j=m1

Ti1j(x1j) 6∈ V and
P∞

j=n1+1 Ti1j(x1j) ∈W for some n1 > m1. Hence,Pn1
j=m1

Ti1j(x1j) 6∈W .
By Lemma 2.3, there is an integer n0 > n1 such that

P∞
j=m Tij(xj) ∈ V

for all m > n0, 1 ≤ i ≤ i1 and all (xj) ∈ M . Then there exist integers
n2 > m2 > n0, i2 > i1 and (x2j) ∈M such that

Pn2
j=m2

Ti2j(x2j) 6∈W .
Continuing this construction produces integer sequences m1 < n1 <

m2 < n2 < · · ·, i1 < i2 < · · · and {(xkj)∞j=1 : k ∈ N} ⊂ M such thatPnk
j=mk

Tikj(xkj) 6∈W , k = 1, 2, 3, · · ·.
Let

xj =

(
xkj, mk ≤ j ≤ nk, k = 1, 2, 3, ...,
0, otherwise,

then (xj) ∈ c0(X) since M is uniformly vanishing. So

nkX
j=mk

Tikj(xkj) 6∈W, k = 1, 2, 3, · · · .(3.1)

Since X is braked, there exist (tj) ∈ c0 and (zj) ∈ c0(X) such that
xj = tjzj for all j ∈ N. Let δk = maxmk≤j≤nk |tj |. Then δk → 0 as k →∞
and, by (3.1), δk > 0 for all k ∈ N.

Observing Tij ∈ QHϕ(X,Y ), ∀ i, j ∈ N, for every mk ≤ j ≤ nk we

have Tikj(xj) = Tikj(tjzj) = Tikj(δk
tj
δk
zj) = ϕ(δk)Tikj(

tj
δk
zj) so, by (3.1),Pnk

j=mk
ϕ(δk) Tikj(

tj
δk
zj) 6∈W , k = 1, 2, 3, · · ·, i.e.,

ϕ(δk)
nkX

j=mk

Tikj(
tj
δk
zj) 6∈W, k = 1, 2, 3, · · · .(3.2)

Now Ω = {0, 1, 12 ,
1
3 , · · ·} is a sequentially compact subset of R. For

each k ∈ N, define Fk : Ω→ Y by

Fk(0) = 0, Fk(
1

n
) = ϕ(δn)

nkX
j=mk

Tinj(
tj
δk
zj), n = 1, 2, 3, · · · .

Since {Pnk
j=mk

Tij(
tj
δk
zj)}∞i=1 is bounded for each k ∈ N by (3) and

ϕ(δn) → 0 as n → ∞, limn Fk(
1
n) = limn ϕ(δn)

Pnk
j=mk

Tinj(
tj
δk
zj) = 0 =

Fk(0) so each Fk : Ω→ Y is sequentially continuous. If k1 < k2 < · · · in N
and

uj =

(
tj
δkv

zj , mkv ≤ j ≤ nkv , v = 1, 2, 3, ...,

0, otherwise,
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then uj → 0 so (uj) ∈ c0(X). Thus, {
P∞

j=1 Tij(uj)}∞i=1 is bounded by (3)
and

limn
P∞

v=1 Fkv(
1
n) = limn

P∞
v=1 ϕ(δn)

Pnkv
j=mkv

Tinj(
tj
δkv

zj)

= limn ϕ(δn)
P∞

j=1 Tinj(uj)

= 0 =
P∞

v=1 Fkv(0).

This shows that
P∞

v=1 Fkv(·) : Ω → Y is sequentially continuous and, by
Lemma 2.1, limk Fk(

1
n) = 0 is uniform with respect to n ∈N. Therefore,

lim
k
ϕ(δk)

nkX
j=mk

Tikj(
tj
δk
zj) = lim

k
fk(
1

k
) = 0.

This contradicts (3.2) and so (3) implies (4).
(4)=⇒(3): Let (xj) ∈ c0(X), and {

P∞
j=1 Tikj(xj)}∞k=1 ⊂ {

P∞
j=1 Tij(xj) :

i ∈ N}. Since P∞
j=1 Tij(xj) converges uniformly with respect to i ∈ N,

the series
P∞

j=1
1
kTij(xj) also converges uniformly with respect to i ∈ N for

each k ∈ N. And {Tij(xj)}∞i=1 is bounded for each j ∈ N so

limk
1
k

P∞
j=1 Tikj(xj) = limk

1
k limn

Pn
j=1 Tikj(xj)

= limk limn
Pn

j=1
1
kTikj(xj)

= limn limk
Pn

j=1
1
kTikj(xj)

= limn
Pn

j=1 limk
1
kTikj(xj)

= limn
Pn

j=1 0 = 0.

This shows that {P∞
j=1 Tij(xj) : i ∈N} is bounded. Thus, (4)=⇒(3) holds.

Corollary 3.1. Let X, Y be topological vector spaces and X be braked.
If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (5) and (6) are equivalent:

(5) (Tij)i,j∈N ∈ (c0(X), c0(Y )).

(6) limi Tij(x) = 0 for each x ∈ X and j ∈ N, and for each uniformly
vanishingM ⊂ c0(X),

P∞
j=1 Tij(xj) converges uniformly with respect

to i ∈ N and (xj) ∈M .

Proof. By Theorem 3.1, we just need to prove (6)=⇒(5). By (6),P∞
j=1 Tij(xj) converges for each (xj) ∈ c0(X) and i ∈ N, and for each

(xj) ∈ c0(X),
P∞

j=1 Tij(xj) converges uniformly with respect to i ∈ N.
For (xj) ∈ c0(X), we have

lim
i

∞X
j=1

Tij(xj) = lim
i
lim
n

nX
j=1

Tij(xj) = lim
n
lim
i

nX
j=1

Tij(xj) = lim
n

nX
j=1

lim
i
Tij(xj) = 0.
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Corollary 3.2. Let X, Y be topological vector spaces, X braked and Y
sequentially complete. If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (7)
and (8) are equivalent:

(7) (Tij)i,j∈N ∈ (c0(X), c(Y )).

(8) limi Tij(x) exists for each x ∈ X and j ∈ N, and for each uniformly
vanishingM ⊂ c0(X),

P∞
j=1 Tij(xj) converges uniformly with respect

to i ∈ N and (xj) ∈M .

Proof. By Theorem 3.1, we just need to prove (8)=⇒(7). By (8),P∞
j=1 Tij(xj)

converges for each (xj) ∈ c0(X) and i ∈ N, and for each (xj) ∈ c0(X)P∞
j=1 Tij(xj) converges uniformly with respect to i ∈ N.
Let (xj) ∈ c0(X) and V ∈ N (X). Then there is balanced

W ∈ N (X) such that W +W +W ⊂ V . There exists n0 ∈ N such thatP∞
j=n0+1 Tij(xj) ∈W for all i ∈ N. Since limi

Pn0
j=1 Tij(xj) =

Pn0
j=1 limi Tij(xj)

exists, there is i0 ∈ N such that
Pn0

j=1 Tkj(xj) −
Pn0

j=1 Tij(xj) ∈ W for all
k, j > i0. SoP∞

j=1 Tkj(xj)−
P∞

j=1 Tij(xj) =
Pn0

j=1(Tkj(xj)− Tij(xj))

+
P∞

j=n0+1 Tkj(xj)−
P∞

j=n0+1 Tij(xj)

∈W +W +W ⊂ V, ∀ k, i > i0.

This shows that {P∞
j=1 Tij(xj)}∞i=1 is Cauchy in sequentially complete space

Y and so limi
P∞

j=1 Tij(xj) exists.

From Theorem 3.1, Corollary 3.1 and Corollary 3.2, we can easily obtain
the following results of [4, 5].

Corollary 3.3. Let X, Y be topological vector spaces and X be braked.
If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (3) and (40) are equivalent:

(3) (Tij)i,j∈N ∈ (c0(X), c∞(Y )).

(40) {Tij(x)}∞i=1 is bounded for each x ∈ X and j ∈ N, and for each
(xj) ∈ c0(X),

P∞
j=1 Tij(xj) converges uniformly with respect to i ∈N.

Proof. Suppose that (40) holds andM ⊂ c0(X) is uniformly vanishing butP∞
j=1 Tij(xj) is not uniform with respect to (xj) ∈ M and i ∈ N. As the

proof of Theorem 3.1, we have V ∈ N (X), integer sequences m1 < n1 <
m2 < n2 < · · ·, i1 < i2 < · · · and {(xkj)∞j=1 : k = 1, 2, 3, · · ·} ⊂M such thatPnk

j=mk
Tikj(xj) 6∈ V , k = 1, 2, 3, · · ·.
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Let

xj =

(
xkj, mk ≤ j ≤ nk, k = 1, 2, 3, ...,
0, otherwise,

then (xj) ∈ c0(X) since M is uniformly vanishing. So

nkX
j=mk

Tikj(xj) 6∈ V, k = 1, 2, 3, · · · .

This contradicts (40). Thus (40)=⇒(4) and (3)⇐⇒(40) hold, respectively.

Corollary 3.4. Let X, Y be topological vector spaces and X be braked.
If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (5) and (60) are equivalent:

(5) (Tij)i,j∈N ∈ (c0(X), c0(Y )).

(60) limi Tij(x) = 0 for each x ∈ X and j ∈ N, and for each (xj) ∈ c0(X),P∞
j=1 Tij(xj) converges uniformly with respect to i ∈ N.

Corollary 3.5. Let X, Y be topological vector spaces, X braked and Y
sequentially complete. If (Tij)i,j∈N ⊂ QHϕ(X,Y ), then the following (7)
and (80) are equivalent:

(7) (Tij)i,j∈N ∈ (c0(X), c(Y )).

(80) limi Tij(x) exists for each x ∈ X and j ∈ N, and for each (xj) ∈ c0(X),P∞
j=1 Tij(xj) converges uniformly with respect to i ∈ N.
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