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Abstract

A representation field for a non-maximal order H in a central
simple algebra is a subfield of the spinor class field of maximal or-
ders which determines the set of spinor genera of maximal orders
representing H. In our previous work we have proved the existence
of the representation field for several important families of suborders,
like commutative orders, while we have also found examples where
the representation field fails to exist. To be precise, we have found
full-rank orders, in central simple algebras of dimension 9 or larger
over a suitable field, whose representation field is undefined. In this
article, we prove that the representation field is defined for any or-
der H of rank r ≤ 7. This is done by defining representation fields
for arbitrary representations of orders into central simple algebra and
showing that the computation of these generalized representation fields
can be reduced to the case of irreducible representations. The same
technique yields the existence of representation fields for any order
in an algebra whose semi-simple reduction is commutative. We also
construct a rank-8 order, in a 16-dimensional matrix algebra, whose
representation field is not defined.
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1. Introduction

Let K be a global field. Let Θ be a central simple K-algebra (K-CSA
or CSA when K is clear from the context). Let O = OK,S be the ring
of S integers in K, for some finite set S of places in K containing the
archimedean places if any. Finally, let Σ be the spinor class field for the
set Ω of maximal S-orders in Θ as defined in [3], i.e., Σ/K is an abelian
extension that classifies maximal orders of Θ into spinor genera, in the
sense that there exists an explicit map

ρ : Ω×Ω→ Gal(Σ/K),

with the following properties:

1. D and D0 are in the same spinor genus if and only if ρ(D,D0) = IdΣ,
and

2. ρ(D,D00) = ρ(D,D0)ρ(D0,D00), for any triple (D,D0,D00) ∈ Ω3,

[4, §1]. The importance of this concept lies in the fact that spinor genera
and conjugacy classes coincide whenever the group Θ∗ has strong aproxi-
mation with respect to the set S. This happens in particular, when S is
the set of archimedean places on a number field K and Θ℘ is not the real
quaternion division algebra for at least one such place, e.g., when the di-
mension of Θ is larger than 4. In this case, the spinor class field gives much
information on the set Θ∗\Ω of conjugacy classes of maximal S-orders, e.g.,
the number of such conjugacy classes is |Θ∗\Ω| = [Σ : K]. The set of spinor
genera of maximal orders also plays an important role, when K is a global
function field, in the description of a fundamental set for the action, of cer-
tain arithmethically interesting subgroups of the projective general linear
group PGL2(K), on some local Bruhat-Tit trees [5]. The corresponding
quotient graphs are closely related to the function field analog of Shimura
curves [13]. The extension of this theory to number fields also encodes
important arithmetic information, for example in [7] we characterize, in a
definite quaternion algebra, the orders of maximal rank containing cubic
roots of unity, in terms of the corresponding quotient graphs.

Describing the set of orders in a genus containing a copy of a given
suborder is known as the selectivity problem, and its understanding is
critical for the construction of isospectral but non-isometric Riemannian
manifolds. In the indefinite case, for example for algebras of dimension 9
or larger over number fields, this problem can be solved by the theory of
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spinor genera alone. For any suborder H there exists a lower representation
field F = F−(H), which is the largest subfield satisfying

H ⊆ D ∩D0 ⇒ ρ(D,D0)|F = IdF , ∀(D,D0) ∈ Ω2.

In [4] we gave an explicit description of the field F that is valid for
an arbitrary order in Θ. There exists also an upper representation field
F 0 = F−(H), which is the smallest field satisfying the converse property:
If H ⊆ D and ρ(D,D0)|F 0 = IdF 0 , then H is contained in some order in
the spinor genus of D0. When F = F 0, we call it the representation field
F (H) of H and say that the representation field for H is defined (or exists).
In this case the number of spinor genera representing H is [Σ : F ] and
the question of which spinor genera have a representative containing H (or
equivalently, a conjugate of H) can be completely solved in terms of the
distance ρ mentioned above. In fact, if D ∈ Ω is an order containing H,
a spinor genera Spin(D0) ⊆ Ω has a representative containing H if and
only if ρ(D,D0) is trivial on F . In particular, if the group Θ∗ has strong
approximation and F (H) = K, every maximal order represents H.

The existence of the representation field has been proved for several
important families of orders. In [3], we proved the existence of the rep-
resentation field whenever H is commutative, extending previous results
of Chevalley [9], Chinburg and Friedman [10], or Linowitz and Shemanske
[12]. Later we proved that when Θ is a division algebra, the representation
field of a commutative suborder can be at most a quadratic extension L of
K [6]. Here we prove the following existential result for orders of small rank:

Theorem 1 Let K be a global field, let Θ be a K-CSA, and let S be
a non-empty finite set of places in K containing the archimedean places if
any. Then the representation field F (H) is defined for any S-order H ⊆ Θ
whose rank does not exceed 7.

The main tool in our proof of Theorem 1 is an extension of the notion of
representation field to representations, rather than suborders, so that com-
putation of the spinor image (as defined in §2) can be reduced to irreducible
representations. The same technique yields the following generalization of
the main result in [3]:

Theorem 2 Let K be a global field, let Θ be a K-CSA, and let S be



134 Luis Arenas-Carmona

a non-empty finite set of places in K containing the archimedean places if
any. Let H ⊆ Θ be an S-order. If the maximal semisimple quotient of
the algebra L = KH is commutative, then the representation field F (H) is
defined.

On the other hand, in [2] we found a rank-9 order in a 9-dimensional
CSA for which the representation field is not defined. Here we prove that
the bound 7 in Theorem 1 is optimal by providing a counterexample of
rank 8. In all that follows we let Matn(E) denote the algebra of n by n
matrices over the field E.

Theorem 3 Let K be a number field whose ideal class group has an
element of order 4. Then there exists a quadratic extension F/K and an
order H of maximal rank in L = Mat2(F ) ⊆ Mat4(K) for which the rep-
resentation field is not defined.

Note that Mat2(F ) is identified with a sub-ring of Mat4(K) via the
natural representation of Mat2(F ) on F 2 ∼= K4. As far as we know, this
is the first example of an order of non-maximal rank whose representation
field fails to exist.

2. Representation fields for representations

Let K be a field, and let B be a finite dimensional central division K-
algebra. Let L be an arbitrary finite dimensional K-algebra. By a B-
representation of Lwe mean aK-algebra homomorphism φ : L→Matn(B).
For any such φ, the abelian group Bn = B×· · ·×B, regarded as the space
of column vectors, has a natural (L,B)-bimodule structure given by the
products l · v ∗ b = φ(l)vb, for any (l, v, b) ∈ L× Bn × B. We recall a few
well known facts from representation theory:

• A B-subspace W ⊆ Bn is L-invariant if and only if it is an (L,B)-
sub-bimodule.

• For any chain of (L,B)-sub-bimodules {0} = M0 ⊆ M1 ⊆ · · · ⊆
Mr = Bn there exists a B-basis T of Bn, such that the matrix of
φ(l), for any element l ∈ L, with respect to the basis T , has a block
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decomposition of the form:⎛⎜⎜⎜⎜⎝
a11 a12 · · · a1r
0 a22 · · · a2r
...

...
. . .

...
0 0 · · · arr

⎞⎟⎟⎟⎟⎠ ,(2.1)

where each aij = aij(l) is a block with dimB(Mi) rows and dimB(Mj)
columns. The map l 7→ aii(l) is the representation corresponding to
the bi-module M̃i =Mi/Mi−1.

• If M = Bn has no non-trivial proper sub-bimodules, or equivalently,
if the representation φ is irreducible, then φ(L) is a simple algebra.

• Given two representations, φ, ψ : L → Matn(B), there exists a ∈
Matn(B)

∗ satisfying ψ(l) = aφ(l)a−1 for every element l in L, if and
only if the bimodules defined by φ and ψ are isomorphic.

In the remaining of this section K, Θ, O are as in the introduction. Let
Π(K) be the set of all places, both archimedean and non-archimedean, in
K. Let S ⊆ Π(K) be a finite nonempty set, containing the archimedean
places, if any, and let U = Π(K) − S. We refer to U and S, respectively,
as the set of finite and infinite places of K. Every definition that follows
can be extended to the projective case, where K is a global function field,
S = ∅, while lattices and orders can be interpreted in a sheaf-theoretical
context (see the remark at the end of this section). For every place ℘ we
let I℘ be the maximal ideal corresponding to ℘. Note that m℘ = I℘℘ is the
maximal ideal of the complete local ring O℘ ⊆ K℘.

In all that follows, H is an S-order on a finite dimensional K-algebra
L, i.e., a lattice H ⊆ L that is also a subring of L and satisfies KH = L.
Let LA be the adelization of B, i.e.,

LA =

⎧⎨⎩a ∈ Y
℘∈Π(K)

L℘

¯̄̄̄
a℘ ∈ H℘ for almost all ℘ ∈ U

⎫⎬⎭ .

As usual, this definition is independent of the choice of the order H on
L, or the choice of the set U of finite places. The rings ΘA and A = KA
are defined analogously. We adopt the convention that H℘ = L℘ for ℘ ∈ S,
and define HA =

Q
℘∈Π(K)H℘. The definition of DA, for an order D on Θ

is analogous. Let JK = A∗. Let φ : L → Θ be a representation of L in a
K-CSA Θ. Then φ induces maps L℘ → Θ℘ and LA → ΘA which are also
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denoted φ by abuse of notation. Note that φ(H) is an order in Θ, whence
we can define the global spinor image, for any maximal S-order D on Θ
containing φ(H), by either of the following equivalent formulas [3]:

H(φ,D|H) =
©
N(a)|a ∈ Θ∗A, aφ(HA)a−1 ⊆ DA

ª
,

H(φ,D|H) = JK ∩
Q

℘∈Π(K)H℘(φ,D|H),

where N is the reduced norm, and the local spinor image H℘(φ,D|H) is
defined by

H℘(φ,D|H) =
n
N(a)|a ∈ Θ℘, aφ(H℘)a

−1 ⊆ D℘

o
⊆ K∗

℘.

In all that follows we assume that D is maximal. Note that, when φ(H)
is contained in a second maximal order D0 = aDa−1, then H(φ,D0|H) =
aH(φ,D|H), and both sets contain the identity. In particular, both sets
H(φ,D0|H) and H(φ,D|H) generate the same group Γ(φ,H). The class
field F = F−(φ,H) corresponding to Γ(φ,H)K∗ is called the lower repre-
sentation field. This definition extends the one quoted in the introduction,
since F−(H) = F−(Id,H) when Id : L /→ Θ is the identity. Let Σ denote
the spinor class field of maximal orders, and let ρ : Ω2 → Gal(Σ/K) be
the distance function defined in [3,§2], i.e., ρ(D,D0) = [N(a),Σ/K], where
D0 = aDa−1 and t 7→ [t,Σ/K] is the artin map on ideles. Then F is the
largest subfield satisfying

φ(H) ⊆ D0 ⇒ ρ(D,D0)|F = id.

There exists also an upper representation field F 0 = F−(φ,H) defined
as the class field of

∆(φ,H) = {a ∈ JK |aH(φ,D|H)K∗ = H(φ,D|H)K∗},

which is the smallest field satisfying

ρ(D,D0)|F 0 = id⇒ φ(H) ⊆ aD0a−1 for some a ∈ Θ.

These two fields coincide if and only if H(φ,D|H)K∗ is a group, and in
this case we call F the representation field and say that the representation
field is defined [1]. Next lemma gives an explicit description of F−(φ,H)
for any order H and any representation φ. It follows by replacing H by
φ(H) in [4, Lem.2.1]:
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Lemma 1 Let H be an order on a K-algebra L and let φ : L →
Θ be a representation satisfying φ(H) ⊆ D for some maximal order D
in the CSA Θ. For every place ℘ ∈ U , with maximal ideal m℘ ⊆ O℘

and residue field K℘, we let J℘ be the only maximal two-sided ideal of D℘

containing m℘1D℘, and let H℘ be the image of H℘ in D℘ = D℘/J℘. Let
E℘ be the center of the ring D℘. Let t℘ be the greatest common divisor
of the dimensions of the irreducible E℘-representations of the K℘-algebra
H℘. Then the lower representation field F−(φ,H) is the maximal subfield
F , of the spinor class field Σ, whose inertia degree f℘(F/K) divides t℘ for
every place ℘. Furthermore, if every irreducible E℘-representation of H℘

has dimension t℘, for every ℘, then the representation field is defined.

The residual algebrasH℘ in the previous lemma seem to depend heavily
on the maximal order D, but this is not the case.

Lemma 2 Let H be an order on a K-algebra L and let φ : L → Θ
be a faithful representation satisfying φ(H) ⊆ D for some maximal order
D in the CSA Θ. For every place ℘ ∈ U , with maximal ideal m℘ ⊆ O℘

and residue field K℘, the irreducible representations of the K℘-algebra H℘,
defined as above, have exactly the same set of dimensions as the irreducible
representations of the algebra eH℘ = H℘/m℘H℘.

Proof. It is immediate that H℘ is a homomorphic image of eH℘. It

suffices therefore to note that any idempotent T in eH℘ can be lifted to
an idempotent t of H℘ and π−1℘ φ(t) is not integral over O℘, for any local
uniformizing parameter π℘, whence the image of T in H℘ is never 0. 2

The set of dimensions of the irreducible representation may change upon
extending scalars to E℘ as in Lemma 1 but, as follows from [4, Lemma 3.1],
the last condition in Lemma 1 is preserved by extension of scalars, and it
holds therefore for every representation of the algebra L = KH, as long as
every irreducible representation of eH℘ has the same dimension.

Example When Θ is a quaternion algebra, The residual algebra D℘

is either a quadratic extension L℘, of the residue field K℘, or a matrix
algebra Mat2(K℘). Then, either H℘ ⊆ D℘ has a unique two-dimensional
irreducible representation or just one-dimensional representations. In ei-
ther case the last condition in Lemma 1 is satisfied, so the representation
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field exists for all representations in quaternion algebras. By Lemma 2,
the same holds for an arbitrary representation of an order contained in a
quaternion algebra.

Example Let Q be a quaternion division algebra ramifying at a place
℘, and let L be a maximal subfield that is inert (unramified) at ℘. Let Θ =
Mat2(Q). Let ω be an integral generator for L/K satisfying OL℘ = OK℘ [ω]
and consider the embeddings φ1, φ2 : H ⊆ L→ Θ defined by

φ1(ω) =

Ã
ω 0
0 ω

!
, φ2(ω) =

Ã
ω̄ 0
0 ω

!
,

where the bar denotes the usual involution. Then, if H = OL, the residual
algebra eH℘ is the unique quadratic extension L℘ of the residue field K℘. It
follows that H℘

∼= L℘ in each case, but E℘H℘
∼= L℘ in the first case, while

E℘H℘
∼= L℘ × L℘ in the second.

Remark This section can be extended, word-by-word, to orders over
an A-curve X, as defined in [3],with structure sheaf O = OX and field
of rational functions K = K(X). In other words, all results here apply
to X-orders for a projective curve X over a finite field, as defined in [8].
This latter setting is called the projective case in all that follows. Let |X|
be the set of closed points of X. Note that the set |X| of closed points
can be identified with the set Π(K) of places of K defined above. We set
U = |X| and S = ∅ in the projective case, i.e.,there are no infinite places.
In this case we define the maximal ideal I℘ corresponding to a place ℘ as
the one-dimensional lattice (sheaf) on K satisfying

I℘(V ) =

( n
f ∈ O(V )

¯̄̄
|f |℘ < 1

o
if ℘ ∈ V

O(V ) if ℘ /∈ V
,

for any open set V ⊆ U . An S-order H on a finite dimensional K-algebra
L is an X-order, i.e., a locally free sheaf of O-algebras, whose generic
fiber is L, i.e., L = K ⊗O H [8]. Lattices and ideals must be interpreted
similarly in this case. Certainly, strong approximation with respect to S = ∅
never holds, so spinor genera do not coincide with conjugacy classes in this
context, and in fact the number of conjugacy classes of maximal orders can
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be infinite (see the example at the end of §5), but two orders D and D0 in
the same spinor genus have conjugate rings of sections D(V ) and D0(V ) for
every open set V outside a finite set. The image of an order H on L under

a representation φ : L→ Θ is the sheaf defined by φ(H)(V ) = φ
³
H(V )

´
.

3. Proof of Theorem 1 and Theorem 2.

In all of this section we let E be a finite dimensional algebra over a local
field k. We let C be a k-CSA, and we fix a representation φ : E → C. Let
E be a (local) order in E. Recall that C is isomorphic to a matrix algebra
Matf (B) over a division algebra B, so we can assume C = Matf (B). In
particular, the space of column vectors Bf is a (E,B)-bimodule (§2).

In all that follows, we use the definition

Hk(φ,D/H) = {N(a)|a ∈Matf (B), aφ(H)a−1 ⊆ D},

for any maximal order D ⊆ Matf (B) and any order H ⊆ E. This is

consistent with our previous notation in the sense that H℘(φ, eD/ eH) =
HK℘(φ,

eD℘/ eH℘), when eD and eH are global orders.

Lemma 3 Let E be an order in the k-algebra E, where k is a local
field. Let φ : E → Matf (B) be a representation, and let {0} = M0 ⊆
· · · · · · ⊆ Mr = Bf be a composition series of the corresponding (E,B)-
bimodule. Let Ci be the algebra of right-B-linear maps in Mi/Mi−1, and let
φi : L → Ci denote the corresponding subrepresentation. Then there exist
a family of maximal orders {Di}, with φi(E) ⊆ Di ⊆ Ci, and a maximal
order D ⊆ C, containing φ(E), such that

H(φ,D|E) ⊇
rY

i=1

H(φi,Di|E).

Proof. By the remarks at the begining of §2, there exists a basis of Bf

for which the algebra L = φ(E) is contained in the ring of matrices with
a block decomposition of the form (2.1). Choose Di, for i = 1, . . . , r (resp.
D), as the rings of integral matrices in the corresponding basis of Mi/Mi−1
(resp. Bf ). Let π = πB be a uniformizing parameter. Note that, whenever
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ui is a generator for Di|φi(E), as defined1 in [3, §2], then

u =

⎛⎜⎜⎜⎜⎜⎝
πfNu1 0 · · · 0
0 π2fNu2 · · · 0
...

...
. . .

...

0 0
... πtfNur

⎞⎟⎟⎟⎟⎟⎠(3.1)

is a generator forD|φ(E) whenN is large enough, so that the block πfNaij(h)
is integral, for every i < j and every h in the compact set E . Note also that
the reduced norm of u satisfies

N(u)O∗kk∗f =
Ã

rY
i=1

N(ui)

!
O∗kk∗f ,

whence the result follows. 2

Proposition 1 Let K be a global field, L a K-algebra, Θ a K-CSA,
and φ : L→ Θ a representation. Let S be a non-empty finite set of places in
K containing the archimedean places if any, and let H ⊆ L be an S-order.
Assume that, for each irreducible component φi, i = 1, . . . , r, of the repre-
sentation φ : L→ Θ, the representation field F (φi,H) is defined. Then the
representation field F (φ,H) is defined, and in fact F (φ,H) = T

i F (φi,H).

Proof. Choose the orders D and Di, for i = 1, . . . , r, as in the preceding
lemma. It suffices to prove that

H℘(φ,D|H) =
rY

i=1

H℘(φi,Di|H),

locally at every place ℘ /∈ S. One contention follows from Lemma 3. The
other contention follows from Lemma 1 if we note that the irreducible rep-
resentations of the residual algebra bH℘ = φ(H℘)/πφ(H℘) correspond to the

irreducible representations of the residual algebras bHi,℘ = φi(H℘)/πφi(H℘)
for i = 1, . . . , r, by the proof of Lemma 2. The result follows. 2

Theorem 1 and Theorem 2 follow from next corollary:

1This use of the word generator is taken from the theory of representations of integral
quadratic forms, see for example [11, §2].
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Corollary 1 Let K, L, Θ, φ, S, and H be as in the preceding propo-
sition. If every irreducible component ψ : L → Θ0 of the representation
φ : L→ Θ satisfies any of the following conditions:

1. ψ(L) is a quaternion algebra, or

2. ψ(L) is commutative,

then the spinor class field is defined.

Proof. It suffices to prove that either hypotheses implies the last condi-
tion in Lemma 1. This follows as in the proof of [3, Proposition 4.3] when
ψ(L) is commutative. When ψ(L) is contained in a quaternion algebra,
this follows from Lemma 2, an the example following it. 2

4. Proof of Theorem 3.

Let k = K℘ be a local field, let E/k be the unique unramified quadratic
extension, and let L = Matn(E). Note that there exists, up to change of
basis, a unique faithful representation φ : L → Mat2n(k) and it can be
realized by identifying En with k2n. Moreover, the basis can be chosen in
a way that On

E is identified with O2nk . In this case we say that the repre-
sentation is integral. Next result is now immediate:

Lemma 4 Let E/k be an unramified quadratic extension of local fields.
If φ : Matn(E) → Mat2n(k) is a faithful integral representation, for any

vector v in O2nk \πO2nk we have φ

µ
Matn(OE)

¶
v = O2nk .

Until the end of this section, we consider the order

H =
Ã
Ok1E OE

0 OE

!
+ π

Ã
OE OE

OE OE

!
⊆Mat2(E),(4.1)

where π is a uniformizing parameter of k, or E.
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Lemma 5 Let L = Mat2(E) for an unramified quadratic extension
E/k, let H be as in (4.1), and let φ : L → Mat4(k) be a faithful integral
representation. Let D =Mat4(Ok). Then the relative spinor image is

Hk(φ,D|H) = k∗4O∗k ∪
µ
π2k∗4O∗k

¶
∪
µ
π3k∗4O∗k

¶
.

Proof. To simplify notations, we identify H with φ(H), i.e., we assume
φ is the identity. Note that aHa−1 ⊆ D if and only if H ⊆ a−1Da, and
the statements d ∈ D and d0 ∈ D0 = a−1Da are equivalent to dO4k = O4k
and d0a−1O4k = a−1O4k, respectively. It follows that Hk(φ,D|H) is the set
of norms of elements a for which a−1O4k is invariant under H. Let M be a
lattice that is invariant under H. Multiplying by a power of π if needed,
we can assume that M is contained in O4k, but not πO4k. Note that M is
also invariant under every sub-order or ideal in H:

1. SinceM is invariant under πMat2(OE), a direct application of Lemma
4 shows that M contains πO4k.

2. The order H1 =
Ã
Ok1E 0
0 OE

!
can only stabilize lattices of the

form Λ1 × Λ2 with Λ2 = πrO2k (set n = 1 in Lemma 4).

3. The order H2 =
Ã
Ok1E OE

0 Ok1E

!
can only stabilize lattices of the

form Λ1 × Λ2 with OEΛ2 ⊆ Λ1.

Let Z denote the ring of rational integers. We define the local distance
between D1 and D2 = bD1b−1 by

ρ(D1,D2) = v
³
N(b)

´
+ 4Z ∈ Z/4Z,

where N :Mat4(k)
∗ → k∗ is the determinant, and v denotes the valuation

on k, normalized in a way that v(π) = 1. Note that ρ is well defined, since
the normalizer2 of D1 is k∗D∗1, and its set of norms is k∗4O∗k. From what
precedes, any H-invariant lattice as above has the form M = Λ1×Λ2, with
Λ1 and Λ2 of rank 2, πO4k ⊂ M ⊆ O4k, and falls into one of the following
cases:

2Since D1 is not a subgroup, some authors prefer the term conjugation-stabilizer.
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1. If Λ2 6= πO2k, then necessarily Λ2 = O2k, and in that case Λ1 = O2k, so
that M = O4k, and ρ(D,D0) = 0̄ ∈ Z/4Z.

2. If Λ2 = πO2k, then Λ1 is an arbitrary lattice satisfying πO2k ⊆ Λ1 ⊆
O2k. There are three subcases:

1. If Λ1 = πO2k we have ρk(D,D0) = 0̄.
2. If Λ1 = O2k we have ρk(D,D0) = 2̄.
3. If Λ1 = Okv+πO2k, for some v ∈ O2k\πO2k, we have ρk(D,D0) = 3̄.

The result follows. 2

Proof of Theorem 3. Let H be the Hilbert class field of K. Let
Σ be the spinor class field of maximal orders in Mat4(K). Then Σ is the
maximal sub-extension of H of exponent 4, and in particular, the Galois
group Gal(Σ/K) has an element σ of order 4. Let ℘ be a place satisfying
|[I℘,Σ/K]| = σ, where I℘ is the maximal ideal corresponding to ℘, and
I 7→ |[I,Σ/K]| denotes the artin map on ideals. Let F 0 be a degree-4 un-
ramified cyclic extension of K such that f℘(F

0/K) = 4, and let F/K be the
unique quadratic sub-extension. We let H℘ be defined as in equation (4.1)
with E = F ⊗K K℘, while we let H be maximal in Mat2(F ) at all other
places. It is immediate from Lemma 4 that any maximal order ofMat2(F )
is contained in a unique maximal order of Mat4(K) at inert places ℘

0 6= ℘
for F/K, whence

H℘0(φ,D|H) = K∗4
℘0O∗℘0 ,

at those places. On the other hand, at places ℘00 6= ℘ splitting F/K, every
invariant lattice has the form πt℘00O2℘00×πs℘00O2℘00 , for a suitable uniformizing
parameter π℘00 of K℘00 , whence

H℘00(φ,D|H) = K∗2
℘00O∗℘00 .

As f℘00(F
0/K) ≤ 2 at the latter places, the Artin symbol of every ele-

ment in H℘̃(φ,D|H) is trivial on F 0 for every place ℘̃ 6= ℘. It follows that
the image in Gal(F 0/K) of H(φ,D|H) is the set

{id, [℘,F 0/K]2, [℘,F 0/K]3}.

We conclude that the upper representation field F−(φ,H) contains F 0,
while the lower representation field F−(φ,H) intersects F 0 trivially. The
result follows.
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Remark Assume we have a rank-8 order H, and a representation φ,
for which the representation field is not defined. By Proposition 1, we
can assume that the representation φ is irreducible (and faithfull). Fur-
thermore, H cannot be commutative. We conclude that L = KH is a
quaternion algebra over a quadratic extension E/K. In particular, we con-
clude that the representation field is defined for all orders of non-maximal
rank in a 9-dimensional CSA.

5. Applications and examples

For every integer n ≥ 3, we constructed in [2] an order in Matn(K), for
a suitable number field K, whose representation field is not defined3 (see
also [3, Ex.3.6]). We choose H℘, locally at some place ℘, as the pre-image
in Matn(O℘) of the residual algebra

H℘ =

Ã
K K
0 Matn−1(K)

!
, K = OK/I℘,

where I℘ is the global prime ideal corresponding to ℘, and we showed that
the residual algebra H℘ alone is not sufficient to determine wether the
spinor image H℘(φ,D|H) is a group. In fact, here we can prove a stronger
statement:

Proposition 2 Let k be a local field with ring of integers Ok and
maximal ideal mk. Let E be a division k-CSA, and let D = Matf (OE) ⊆
Matf (E). Let E = OE/mE, where mE is the unique maximal bilateral
ideal of OE. For every residual algebra H ⊆ Matf (E), there exists a local
order H ⊆ D of maximal rank whose image in Matf (E) is H and whose
relative local spinor image Hk(id,D|H) is a group.

Proof. LetM1 ⊆M2 ⊆ · · · ⊆Mr be a maximal flag of (H,E)-bimodules
in Ef , and choose a basis such that H is contained in the ring of matrices
ofMatf (E) with a block decomposition of the form (2.1). Lift H to a local
order H0 which also consists only on matrices with a block decomposition

3The fact that the algebra is globally split is not essential here. We have only assumed
it for simplicity.
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of the form (2.1) for a suitable basis, so in particular, whenever ui is a
generator for Di|Hi, then the matrix u as in (3.1) is a generator for D|H0 as
soon as N is big enough. Note also that, for every irreducible representa-
tion φi corresponding to this flag, the residual algebra φi(H)/mkφi(H) has
a unique irreducible representation, hence the representation field F (H0)
is defined. Now we choose a finite number of generators for D|H0 whose
reduced norms form a set of representatives for Hk(id,D|H0)/k∗2, and note
that they are also generators for D|H, where H = H0 + πMD, for a uni-
formizing parameter π of k, if M is chosen big enough. It follows that, if
Γk(id,H) is the group generated by Hk(id,D|H), and Γk(id,H0) is defined
analogously, then

Γk(id,H) = Γk(id,H0) = Hk(id,D|H0) ⊆ Hk(id,D|H) ⊆ Γk(id,H),

where the first identity holds since Γk(φ,H), when φ is faithfull, depends
only on the residual algebra H (and the field E) by Lemma 2. The result
follows. 2

Next result is a straightforward consequence of Proposition 1:

Proposition 3 Let K be a global field, L a K-algebra, Θ a K-CSA,
and φ : L→ Θ a representation. Let φ0 : L→Matn(Θ) be the composition
of φ with the cannonical embedding of Θ into Matn(Θ), and let D ⊆ Θ and
D0 ⊆ Matn(Θ) be maximal orders containing the respective images of H.
Then the representation field F (φ0,D0|H) is defined whenever F (φ,D|H) is
defined, an in this case they are equal.

In fact, for commutative algebras4, we can prove the following partial
generalization:

Proposition 4 Let K be a global field, L a commutative K-algebra,
let Θ and Θ0 be two K-CSAs of relatively prime order, and let φ : L→ Θ a
representation. Let φ0 = φ⊗ id : L ∼= L⊗K K → Θ⊗K Θ0, and let D ⊆ Θ
and D0 ⊆ Θ ⊗K Θ0 be maximal orders containing the respective images of
H. Assume that dimK(Θ

0) is odd. Then F (φ0,D0|H) = F (φ,D|H).

Proof. It suffices to prove that H℘(φ,D|H) = H℘(φ
0,D0|H) at all places.

At complex infinite places there is nothing to prove. At real infinite places

4Actually, any condition that guarantees the existence of the representation field can
replace commutativity here.
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℘, the odd-dimensional R-CSA Θ0℘ is a matrix algebra, so the result is im-
mediate. Assume now that ℘ is a finite place. By the proof of Proposition 1
we can assume Θ0℘ = B0℘ is a division algebra with residue field B

0
℘, and φ is

irreducible, so φ(L℘) is a field. We can assume L℘ = φ(L℘). The semisim-
ple part of the residual algebra H℘ in Lemma 1 is the residue field L℘ of
L℘. In particular, if Θ℘ =Matf (E℘), where E℘ is a division algebra, every
irreducible E℘-representation ofH℘E℘, where E℘ is the residue field of E℘,
has dimension [E℘L℘ : E℘]. Note that B

0
℘ is an extension of the residue

field K℘ of K℘ whose degree is relatively prime to dimK(Θ). Furthermore,
Θ℘ ⊗K℘ Θ

0
℘
∼= Matf (E℘ ⊗K℘ B0℘), and E℘ ⊗K℘ B0℘ is a division algebra

with residue field E0℘ = E℘ ⊗K℘
B0℘. Replacing E℘ by E

0
℘ in Lemma 1 has

the effect of replacing [E℘L℘ : E℘]. by [E
0
℘L℘ : E

0
℘], but these degrees are

equal by the hipotheses on the dimension of the algebras. 2

Example In [10], examples of commutative orders that are selective
on indefinite quaternion division algebras, were explicitly computed. If we
follow [12], and call an order selective, when it is contained in some but
not all the maximal orders in a given central simple algebra, the existence
of selective orders on division algebras of dimension n2 whenever n is twice
an odd number is a consequence of Proposition 4. In [6] we proved that, in
fact, all selectivity in division algebras arises in this way from quaternion
subalgebras.

Example The condition on the dimensions of the algebras in Propo-
sition 4 is necessary. In fact, If L/K is a quadratic extension and H = OL

is a selective suborder in a quaternion algebra Θ, the same proof as above
shows that H is no longer selective as a suborder of Θ⊗KΘ0 for any quater-
nion algebra Θ0 that ramifies at a place that is inert for L.

Example Let H and H0 be global orders in Matn(K) of the form

H =

⎛⎜⎜⎜⎜⎝
H1 M12 · · · M1r

0 H2 · · · M2r
...

...
. . .

...
0 0 · · · Hr

⎞⎟⎟⎟⎟⎠ , H0 =

⎛⎜⎜⎜⎜⎝
H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hr

⎞⎟⎟⎟⎟⎠ .

The results in this work show that whenever H0 embeds into every max-
imal order (and S 6= ∅), so does H. In fact, using strong approximation, it
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is easy to construct a sequence of global conjugates of H whose adelization
converges in the Hausdorff topology to H0, whence a similar result holds for
any genus of orders of maximal rank. This fails to hold in the projective
case (see the remark at the end of §2 and the following example). How-
ever, in this case we still have an analogous result in terms of spinor genera.

Example Let H be the order

H =

Ã
O I
0 O

!
,

for an arbitrary ideal I. Then H is contained in an order of every spinor
genus of maximal orders in Mat2(K), as in the preceding example. On the
other hand, in the projective case (see the las remark in §2), there exists
conjugacy classes of maximal X-orders that fail to contain a copy of H.
For example, if for a fixed divisor D on X, we denote by I = LD the sheaf
defined on open subsets V ⊆ X by

LD(V ) =
½
f ∈ K

¯̄̄̄
div(f)|V ≥ −D|V

¾
,

then the ring of global sections H(X) is the set of all matrices of the formÃ
a f
0 b

!
where a and b are constants and f ∈ LD(X). The dimension of

LD(X) grows with the degree of D acording to Riemann-Roch’s Theorem,
whence by chosing a divisor D of sufficiently large degree, we can assume
that H cannot be embedded in any order of an arbitrary prescribed finite
family.
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