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Universidad Católica del Norte
Antofagasta - Chile

Abstract

The aim of this work is to prove a version of the Fiber Dimension
Theorem, emphasizing the case of non-closed points.
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1. INTRODUCTION

The fiber dimension theorem is an important mathematical tool in the
everyday life of an algebraic geometer. For example, we can calculate the
dimension of the space of matrices whose rank is less than or equal to k;
the dimension of the incidence variety Γ = {(π, c, p) | p ∈ c ⊂ π} where π
is a plane, c is a line and p is a point in some projective space as indicated
in the figure below (see Harris [8] for other applications).

We can also use this theorem to know for example if a nonsingular hy-
persurface contains a finite number of lines, planes, etc., in particular, we
can show that a nonsingular cubic surface in the three-dimensional projec-
tive space contains exactly 27 lines (see Reid [12], Beauville [3], Crauder-
Miranda [4]).

The aim of this article is to prove the following theorem.

1.1. Theorem. (Fiber dimension theorem) Let X and Y be integral
affine schemes of finite type over a field K, f : X −→ Y be a dominant
morphism. Then there exists a nonempty open subset U⊆Y such that
dim f−1(y) = r for all y ∈ U (r = dimX − dimY ).

Indeed, the theorem above can be read from Eisenbud’s compendium,
Corollary 14.5 (see p. 310 in [6]). But, the strategy that we will use to
prove the theorem 1.1 above, was suggested by exercise 3.22 in Hartshorne’s
book [10] at page 95. In fact, the exercise 3.22 in Hartshorne’s book tell us
that it is enough to prove the following theorem.

1.2. Theorem. (see Theorem 3 in chapter I, section 8 of [11]) Let
X and Y be affine schemes and f : X −→ Y be a dominant morphism. Let
r = dimX−dimY , then there exists U a nonempty open subset of Y such
that

1. f(X) ⊂ U .
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2. If W is any irreducible closed subset of Y such that W ∩ U 6= ∅ and
Z is an irreducible component of f−1(W ) such that Z ∩ f−1(U) 6= ∅
then we have that dimZ = dimW + r.

It is important to notice that the proof of Theorem 1.1 is not just an
application of Theorem 1.2, due to the existence of non-closed points, as is
the case of affine schemes with the Zariski topology (see Section 3). In fact,
in this work we are not going to prove Theorem 1.2. We focus our attention
to the proofs of the results that we will use to conclude Theorem 1.1 in the
case of non-closed points, showing that, we need to be more careful with
these ones.

For those who are not familiar with the nature of algebraic varieties, in
particular with schemes of points, where we can find non-closed points, fat
points, etc., we recommend the beautiful exposition in Harris-Eisenbud [9],
where certain fat points appear as the limits of a finite number of simple
points and other very interesting results. Also in [7] you can find some
results on fat points in the projective plane made by Harbourne.

We refer the reader to the study of quadruplets of points in the projective
plane made by Avritzer-Vainsencher in [2] and conical sextuplets made by
Rojas-Vainsencher in [13], where they give an explicit descriptions of the
varieties that parametrize these subschemes of degree 4 (respectively 6)
contained in a conic.

2. Basic definitions and examples

2.1. Affine varieties and Zariski’s topology

By the affine space over a field C, we mean simply the vector space Cn;
this is usually denoted by An (the main distinction between affine space
and the vector space Cn is that the origin plays no special role in affine
space). An affine variety X in An is simply the common zero locus of a
collection of polynomials in C[x1, ..., xn].

More precisely, let f1, ..., fk ∈ C[x1, ..., xn] be polynomials. Then

Z({f1, ..., fk}) =
½
(a1, ..., an) ∈ Cn | fi(a1, ..., an) = 0 ∀ i = 1, ..., k

¾
,

(2.1)

is the affine variety in An determined by the polynomials f1, ..., fk.
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Thus, if we consider f = 0 ∈ C[x1, ..., xn] then we have that
An = Z(0) = Cn.

2.1. Remarks.

1. Let I ⊆ C[x1, ..., xn] be an ideal. Assume that I is generated by
f1, ..., fk ∈ C[x1, ..., xn] then we define Z(I) = Z({f1, ..., fk}) as in
(2.1). Note that Z(I) is independent of the choice of the generators
of I.

2. Let S be any collection of polynomials in C[x1, ..., xn]. Then we put
Z(S) = Z(hSi) where hSi is the ideal in C[x1, ..., xn] generated by S.

2.2. Examples. Let us consider the ring C[x1, x2].

1. Z({1}) = ∅.

2. Z({0}) = A2, it is called affine plane.

3. Z(hx2i) =
½
(a, 0) ∈ C2

¾
is an affine line.

The Zariski Topology onAn, is simply the topology where the closed sets are
given by Z(I) for some ideal I ⊆ C[x1, ..., xn]. Let us see some examples.

2.3. Examples.

1. Every point (a1, ..., an) in A
n is closed. In fact, {(a1, ..., an)} =

Z(x1 − a1, ..., xn − an).

2.

The set X =
n
(a, 0) | a ∈ C

oc
∪
n
(0, 0)

o
=

is neither closed nor open. Whereas U = X − {(0, 0)} is open, since
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3. Affine schemes and non-closed points

3.1. The Zariski topology on Spec(A)

Let A be a commutative ring with unity and

Spec(A) =

½
x ⊂ A | x is a prime ideal of A

¾
,(3.1)

be the prime spectrum of A.

3.1. Remarks.

1. If the ring A is an integral domain then we will denote by 0 ∈
Spec(A) the prime ideal h0i, where 0 ∈ A is the zero element of
the ring A.

2. We will use the notation An
C for Spec(C[x1, ..., xn]).

Note that, An can be considered as a subset of An
C = Spec(C[x1, ..., xn])

through the following correspondence

(a1, ..., an) 7−→ hx1 − a1, ..., xn − ani(3.2)

where to each point (a1, ..., an) ∈ An we associate the maximal ideal
hx1 − a1, ..., xn − ani in C[x1, ..., xn].

Thus the above identification implies that A1C = Spec(C[x]) possesses ex-
actly one more point than A1, namely x = 0. Nevertheless, in the case
n > 1, there are an infinite number of points, or more precisely, of prime
ideals.

Then we can make the following question:

Is it possible to define a topology in An
C = Spec(C[x1, ..., xn]) such that

under the identification in (3.2) the points of An still remain closed?

Yes, it is enough to observe that for any commutative ring with unity A,

the family of sets V (I) =

½
x ∈ Spec(A) | I ⊆ x

¾
with I ⊆ A an ideal of A,

defines a topology on Spec(A), called the Zariski topology of Spec(A) (see
problem 15, p. 12 in Atiyah-MacDonald [1]).
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In fact, we have the following bijection

Closed sets inAn

Z(I) ←→

Radical ideals

in C[x1, ..., xn]
I ←→

Closed sets inAn

C
V (I)(3.3)

(see p. 4 in Hartshorne [10])

Coming back to the case of A1C, we would like to known: is x = 0 a closed
point of A1C or not?

Note that, {0} ⊂ V (0) since 0 ∈ V (0). On the other hand

{0} =
\

0∈V (I)
V (I).

Therefore, if 0 ∈ V (I) then we have that I ⊆ 0, that is, V (I) = Spec(C[x]) =
A1C. From this we conclude that {0} = V (0) = Spec(C[x]) = A1C. Thus,
x = 0 is not a closed point in A1C. In fact, 0 is the generic point of A

1
C.

More generally, if X is a topological space and x ∈ X is a point of X such
that {x} = X, then x is called a generic point of X (see p. 74 in Hartshorne
[10]).

3.2. Remarks.

1. The consequence of 0 to be the generic point of A1C follows from
the fact that C[x] is an integral domain, as the following result
guarantees.

Let A be an integral domain then 0 ∈ Spec(A) is the generic
point of Spec(A).

2. Using a similar reasoning for x ∈ Spec(A) in place of 0 ∈
Spec(C[x]) above, we conclude that {x} = V (x). From this,
we can deduce that,

x is a generic point of Spec(A) if and only if x = NA.

NA denote the nilradical of the ring A as in (4.1).

3.2. The sheaf of regular functions on Spec(A)

Let X be any topological space. A presheaf F on X assigns to each open
set U in X a set, denoted F(U), and to every pair of nested open sets
U ⊂ V ⊂ X a restriction map

rV,U : F(V ) −→ F(U)
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satisfying the basic property that

rU,U = idU ∀ U ⊂ X,
rV,U ◦ rW,V = rW,U ∀ U ⊂ V ⊂W ⊂ X.

A presheaf F on X is a sheaf if for each open covering U = ∪a∈IUa of an
open set U ⊂ X and each collection of elements fa ∈ F(Ua) for each a ∈ I
having the property that

rUa,Ua∩Ub(fa) = rUb,Ua∩Ub(fb) ∀ a, b ∈ I

there is a unique element f ∈ F(U) such that rU,Ua(f) = fa ∀ a ∈ I.

3.3. Remark. If each F(U) is a group, ring, etc. and each restriction
map rV,U is an homomorphism of groups, rings, etc. then F is called a
presheaf of groups, rings, etc.

The concept of B-sheaf (which will be soon introduced) will allow us to
define a sheaf from certain special types of bases for the topological space
X. Thus it is not necessary to define a sheaf in all the open sets of the
topology of X.

Given a base B for the open sets of a topological space X, we say that
a collection of sets, groups, rings, etc. F(U) for open sets U ∈ B and
maps rV,U : F(V ) −→ F(U) for V ⊂ U form a B-sheaf if they sat-
isfy the sheaf axiom with respect to inclusions of basic open sets in ba-
sic open sets and coverings of basic open sets by basic open sets. (The
condition that fa ∈ F(Ua) for each a ∈ I, Ua ∈ B having the property
rUa,Ua∩Ub(fa) = rUb,Ua∩Ub(fb)∀ a, b ∈ I; Ua, Ub ∈ B must be replaced by
the following condition

rUa,V (fa) = rUb,V (fb) ∀ a, b ∈ I; Ua, Ub, V ∈ B such that V ⊂ Ua ∩ Ub.)

And it can be shown that.

3.4. Proposition. Every B-sheaf on X extends uniquely to a sheaf on
X.

Proof. See p. 17 in Harris-Eisenbud [9].
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Coming back to the topological space Spec(A) defined in (3.1) we have that

Spec(A)f = Spec(A)− V (f) =

½
x ∈ Spec(A) | f 6∈ x

¾
with f ∈ A,

form a base for the Zariski topology on Spec(A). The open sets Spec(A)f
are called distinguished (or basic) open sets of Spec(A).

We define the sheaf of regular functions OSpec(A) on Spec(A) as follows

OSpec(A)(Spec(A)f ) := Af ∀ f ∈ A

where Af denoted the localization of the ring A at f ∈ A.

Note that, Spec(A)g ⊂ Spec(A)f if and only if some power of g is a multiple
of f then we define the restriction map

rSpec(A)f ,Spec(A)g : Af −→ Ag

a
fk

7−→ aµk

gNk where gN = µf.

In fact, if B is the collection of distinguished open sets Spec(A)f of Spec(A)
then OSpec(A) is a B-sheaf on Spec(A) (see proposition I-18, p. 19 in Harris-
Eisenbud [9]).

4. Affine schemes

An affine scheme is a pair (Spec(A),OSpec(A)) where Spec(A) is the prime
spectrum of the commutative ring A considered as a topological space with
the Zariski topology and OSpec(A) is the sheaf of regular functions over
Spec(A).

4.1. Remarks.

1. Let (Spec(A),OSpec(A)) be an affine scheme, then the ring A is
called the coordinate ring of this affine scheme.

2. The closed set V (I) ⊂ An
C can be identified with the affine

scheme

(Spec(C[x1, ..., xn]/
√
I ),OSpec(C[x1,...,xn]/

√
I )),

where
√
I = {p ∈ C[x1, ..., xn] | pn ∈ I for some n ∈ N} is

called the radical of I. An ideal I in the ring A is called radical
if
√
I = I.

In the next section, we will define morphisms between affine schemes.
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4.1. Morphisms between affine schemes

Let us take X = Spec(A) and Y = Spec(B) with A and B commutative
rings with unity. Note that every homomorphism of rings ϕ : B −→ A
determines a continuous function ϕ∗ : X −→ Y , defined by ϕ∗(x) = ϕ−1(x).

We will say that f : X −→ Y is a morphism between affine schemes if it is
obtained from a ring homomorphism, that is, there exist ϕ : B −→ A us
above such that f = ϕ∗.

4.2. Remark. More precisely a morphism between two affine schemes is
a pair (f, f#), where f : Spec(A) −→ Spec(B) is continuous function and
f# : OSpec(B) −→ f∗OSpec(A) (f∗OSpec(A) is a sheaf over Spec(B) defined by
f∗OSpec(A)(V ) = OSpec(A)(f

−1(V )) for V ⊆ Spec(B) open and it is called
the direct image of OSpec(A) by f), is a family of ring homomorphisms

{f#Spec(B)g}g∈B commuting with the restriction maps given by

f#Spec(B)g : OSpec(B)(Spec(B)g) = Bg −→ f∗OSpec(A)(Spec(B)g) = Aϕ(g)
b
gk

7−→ ϕ(b)

ϕ(g)k

where we assume that f = ϕ∗ for some ring homomorphism ϕ : B −→ A
and we use the basic fact that f−1(Spec(B)g) = Spec(A)ϕ(g) for all g ∈ B.

In fact, we have the following equivalence of categories½
Rings

¾
−→

½
Affine schemes

¾
B 7−→ (Spec(B),OSpec(B))
↓ ϕ ↑ (ϕ∗, ϕ#)
A 7−→ (Spec(A),OSpec(A))

Thus we have thatHomRings(B,A) ∼= HomAffineSchemes(X,Y ). That is, each
morphism between affine schemes is determined by a unique homomorphism
of rings (see Theorem I-40 in Harris-Eisenbud [9]).

Let us see some examples.

4.3. Examples.

1. Let A be a ring, I ⊂ A be an ideal and π : A −→ A/I the
canonical homomorphism. Then π induces the morphism

f : V (I) −→ Spec(A).
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2. There exists a morphism f : A2C −→ A1C such that f(a, b) = a
on the closed points of A2?

The answer will be affirmative if we can find ϕ : C[t] −→
C[u, v] such that ϕ−1 hu− a, v − bi = ht− ai.
We can define ϕ by ϕ(t) = u. Then, since hu − a, v − bi is a
prime ideal of C[u, v], we have that ϕ−1 hu− a, v − bi is also a
prime ideal of C[t]. Note that ϕ(t − a) = u − a, then t − a ∈
ϕ−1 hu− a, v − bi. Therefore, ϕ−1 hu− a, v − bi = ht− ai.

3. Analogously we can ask, does there exist a morphism f : A2C −→
A2C such that f(a, b) = (ab, b) on the closed points of A

2
C?

Define,

ϕ : C[x, y] −→ C[u, v]
p(x, y) 7−→ p(uv, v).

Then note that ϕ(y − b) = v − b and ϕ(x − ab) = uv − ab =
u(v−b)+b(u−a). Therefore, ϕ−1 hu− a, v − bi = hx− ab, y − bi.

Finally, let us remember that a function f : X −→ Y between topological
spaces is said to be dominant if f(X) = Y , that is, if the image of f is
dense in Y .

4.4. Remark. Let ϕ : A −→ B be a ring homomorphism that determines
the morphism f : Spec(B) −→ Spec(A), then

f is dominant ⇐⇒ Kernel(ϕ) ⊂
\

P∈Spec(A)
P

where

\
P∈Spec(A)

P = NA =

½
a ∈ A | an = 0 for some n ∈ N

¾
,(4.1)

is called the nilradical of the ring A (see problem 21 (v), p. 13 in Atiyah-
MacDonald [1]).

4.5. Example. The homomorphism ϕ : C[x, y] −→ C[u, v] in the exam-
ple 4.3 3., that determines f , is injective. Thus we have Kernel(ϕ) = {0} ⊂
NC[x,y] = {0}. Therefore, f is dominant.
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5. The notion of dimension

In this section, we consider the notion of dimension from an algebraic and
topological point of view.

• Algebraic

The Krull dimension

Let A be a commutative ring and Spec(A) the prime spectrum of A. Con-
sider all the chains of the form

P0 ⊂ P1 ⊂ ... ⊂ Pn

with Pi ∈ Spec(A). Then the Krull dimension of A is

dimKrullA = max

½
n | P0 ⊂ P1 ⊂ ... ⊂ Pn is a chain of A

¾
.

The transcendence degree

The concept of dimension also has a close relation with the maximum num-
ber of algebraically independent variables in a field. More explicitly, let us
consider a finitely generatedK-algebra A (K is a field), that is, there exists
a surjective ring homomorphism ϕ : K[x1, ..., xn] −→ A.

Note that, if A is an integral domain then Frac(A), the field of fractions
of the ring A, is an extension field of K. And we can ask for the maximum
number of algebraically independent elements of Frac(A) over K, that is,
the transcendence degree of Frac(A) over K.

• Topological

Let X be a topological space and Y ⊆ X be a subset of X. Consider Y
equipped with the natural topology induced from that of X. Y is called ir-
reducible if Y is not union of two proper closed subsets of Y , see Hartshorne
[10] and Atiyah-MacDonald [1].

Consider all the chains of the form

Y0 ⊂ Y1 ⊂ ... ⊂ Yn

with Yi ⊂ X closed irreducible. Then the dimension of X is

dimX = max

½
n | Y0 ⊂ Y1 ⊂ ... ⊂ Yn is a chain of X

¾
.
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5.1. Remark. Note that, if X is a noetherian topological space (see
Hartshorne [10], Atiyah-MacDonald [1]), then X admits a decomposition
as follows

X = X1 ∪ · · · ∪Xm

where each Xi is an irreducible closed subset of X, such that, for all i 6= j ∈
{1, ...,m} Xi 6⊆ Xj . Each one of these Xi is called an irreducible component
of X and in this case it is verified that,

dimX = max

½
dimXi | i ∈ {1, ...,m}

¾
.(5.1)

Thus, in order to compute dimensions of topological spaces, it will be
enough to consider the case of irreducible ones.

Let us see the following example.

5.2. Example. Let X = Spec(C[x1, x2, x3]/ hx1x2, x1x3i) ⊂ A3C. Note
that

hx1x2, x1x3i = hx1i ∩ hx2, x3i .

Therefore X = V (x1) ∪ V (x2, x3). Thus X consists of two irreducible
components, namely, the line V (x2, x3) and the plane V (x1). And we
conclude that dimX = 2.

It is important to note that these three approaches to the notion of dimen-
sion agree, as the following theorem guarantees.

5.3. Theorem. Let X = Spec(A) with A a finitely generated K-algebra
without divisors of zero then

dimSpec(A) = dimKrullA = trdegKK(X)

where K(X) = Frac(A) is called the field of rationals functions of X.

Proof. See Lecture 11, Theorem 1, p. 70 in Dolgachev [5].
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5.4. Remarks.

1. Note that, Spec(A) and Spec(A/NA) are isomorphic as topologi-
cal spaces, hence we have that dimSpec(A) = dimSpec(A/NA),
where NA is the nilradical of A as in (4.1). That is, in order to
compute the dimension of an affine scheme we can assume that
its coordinate ring is reduced. More precisely, from remark 5.1
we can assume that its coordinate ring is an integral domain.

2. Let x ∈ Spec(A) be a point in Spec(A) then {x} can be identified
with Spec(κ(x)), where κ(x) = Frac(A/x) is the residual field of
x. If A is an integral domain then we have that Spec(A) = V (0),
since 0 is a prime ideal of A and it is contained in all the ideals
of A. Thus we have that 0 is the generic point of Spec(A) and
in fact it is the only one (see p. 80 in [10]). On the other hand,
note that,

K({0}) = K(Spec(A)) = Frac(A),
K({0}) = K(Spec(κ(0))) = κ(0) = Frac(A).

Therefore, K(Spec(A)) = K({0}).

6. Preparatory results

From now on, we will assume that all the rings are finitely generated K-
algebras and also integral domains (K is a field).

Let f : X = Spec(A) −→ Y = Spec(B) be a morphism of finite type, that
is, A is a finitely generated B-algebra. Let y ∈ Y then {y} can be identified
with Spec(κ(y)), where κ(y) = Frac(B/y) is the residual field of y.

Having in mind remark 3.2 2. and the definition of Fibered Products (see
p. 35 in Harris-Eisenbud [9]), we have the following diagram

X = Spec(A) ←0 f−1(y) = Spec(κ(y)⊗BA) /→ f−1({y}) = Spec(B/y⊗BA)
↓ f ↓ ↓

Y = Spec(B) ←0 {y} = Spec(κ(y)) /→ {y} = V (y) = Spec(B/y)

In order to determine the dimension of the fiber f−1(y), we need the fol-
lowing two lemmas.

6.1. Lemma. f−1(y) is of finite type over {y}. In particular, if Z ⊆
f−1(y) is an irreducible component of f−1(y), then it is verified that, Z is
of finite type over {y}.
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Proof. We have to show that R = κ(y)⊗B A (R is the coordinate ring of
f−1(y)) is a finitely generated κ(y)-algebra (κ(y) is the coordinate ring of
{y}). Note that, by hypothesis, A is a finitely generated B-algebra, then
there exist b1, ..., bk ∈ A such that A = B[b1, ..., bk]. Thus we have that,

κ(y)⊗B A = κ(y)⊗B B[b1, ..., bk] ∼= κ(y)[b1, ..., bk].

In case that Z ⊆ f−1(y) is an irreducible component of f−1(y), then we
have that Z = Spec(R/P ), for some minimal prime ideal P ⊂ R.

6.2. Remark. Having in mind exercise 3.20 (b), p. 94 in Hartshorne [10]
and using the above lemma, we have that

dimZ = trdegκ(y)K(Z)(6.1)

for any irreducible component Z of f−1(y).

6.3. Lemma. Let Z ⊆ f−1(y) and Z 0 ⊆ f−1({y}) be irreducible compo-
nents such that Z ⊆ Z 0. Then we have that Z = Z 0 and K(Z) = K(Z 0).

Proof. Let z ∈ Z and z0 ∈ Z 0 be their respective generic points. Since we
are considering the topology induced on Z and Z 0 from that of X, we have
that

Z = {z}Z = {z} ∩ Z and Z 0 = {z0} (Z 0 is closed in X).

Thus,

{z}Z = Z = Z 0 ∩ Z = {z0} ∩ Z = {z0}Z .

Therefore, from remark 5.4 2. we conclude that z = z0.

On the other hand, {z} ⊂ Z ⊂ Z 0. Then we conclude that Z = Z 0.

Again from remark 5.4 2. we have that

K(Z 0) = K({z0}) = K({z}) = K(Z).
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7. Main result

Now we will apply Theorem 1.2 and proof our main result.

Theorem. (Fiber dimension theorem) Let X and Y be affine schemes,
f : X −→ Y be a dominant morphism. Then there exists a nonempty open
subset U⊆Y such that dimf−1(y) = r for all y ∈ U (r = dimX − dimY ).

Proof. First of all we choose U as in Theorem 1.2 and we will analyze
the following two cases.

Case 1: Let y ∈ Y be a closed point such that y ∈ U .

Let us consider W = {y} and note that W is an irreducible closed subset
of Y such that W ∩ U 6= ∅, then any irreducible component Z of the fiber
f−1(y) that intersects the inverse image of U has dimension exactly r.

Case 2: Let y ∈ Y be a non-closed point such that y ∈ U .

Now letW 0 = {y} be the closure of the point y ∈ Y and note that W 0 is an
irreducible closed subset of Y such that W 0 ∩ U 6= ∅, then any irreducible
component Z 0 of f−1(W 0) that intersects the inverse image of U has di-
mension exactly dimW 0+ r. Due to remark 5.4 1. we can assume that W 0

is reduced. Thus K(W 0) = K({y}) = κ(y).

On the other hand, let Z be a component of f−1(y); then there exists a
component Z 0 of f−1(W 0) such that Z ⊂ Z 0. Thus from lemma 6.3 we have
that K(Z) = K(Z 0).

Also from (6.1) we conclude that dimZ = trdegk(y)K(Z). Therefore

dimZ = trdegk(y)K(Z)
= trdegkK(Z)− trdegkk(y)
= trdegkK(Z

0)− trdegkK(W
0)

= dimZ 0 − dimW 0

= r.
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Pura e Aplicada (IMPA), Rio de Janeiro, that provided us the right envi-
ronment for concluding this work.



72 Jacqueline Rojas and Ramón Mendoza

References

[1] M. F. Atiyah & I. G. Macdonald, Introduction to Commutative
Algebra, Addison-Wesley, Reading, MA, (1969).

[2] D. Avritzer & I. Vainsencher, Hilb4P2, Lecture Notes in Math-
ematics, 1436, Springer Verlag, pp. 30-59, (1990).

[3] A. Beauville, Complex Algebraic Surfaces, Astérisque 54, pp. 63-
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