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Abstract

We investigate the integral representation of infinite sums involv-
ing the ratio of binomial coefficients. We also recover some well-
known properties of ζ (3) and extend the range of results given by
other authors.
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1. Introduction

In this paper we investigate the summation of the ratio of products of com-
binatorial coefficients. In particular, we develop integral representations
for
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For the representation of sums of reciprocals of single and double bi-

nomial coefficients, in integral form, one may refer to some results in the
papers [5], [4] and [7], see also the book [6].

For designated cases of the parameter values (a, b, c, j, k, l,m, p, t), vari-
ous particular sums may be expressed in terms of ζ(2) and ζ(3). For many
interesting properties of the Zeta function the interested reader is refered
to the internet site [9].

The representation of sums in terms of integrals is extremely useful
because it allows one to estimate bounds on the sums in cases they cannot
be written in closed form. Convexity properties for sums may also be
investigated, see [8].

Apéry’s [1], see also Beukers [2], proof of the irrationality of ζ(3) uses an
elementary and quite complicated construction of the approximants αn

βn
∈ Q

to this number based on a recurrence relation. The integral representationZ 1

0
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0

{x (1− x) y (1− y) z(1− z)}n

(1− (1− x y) z)n+1
dx dy dz = 2βnζ(3)− 2αn

for the sequence {αn, βn} was proposed.
More recently Rhin and Viola [3] introduced the integral
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uh (1− u)l vk (1− v)s wj(1− w)q

(1− (1− uv) w)q+h−r+1
du dv dw ∈ Qζ(3) +Q

in their study of an irrationality measure for ζ(3).

2. The Main Results

In this section we develop integral identities for reciprocals of triple prod-
ucts of binomial coefficients.

The following lemma is given
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Lemma 1. For a, b and c positive real numbers and t ∈ R let

f = txaybzc(2.1)

and

λ (f) =
∞X
n=0

f n =
1

1− f

The consecutive partial derivative operator of the continuous function
(1− f)−1 for (x, y, z) ∈ {[0, 1]× [0, 1]× [0, 1]} is defined as
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are Stirling numbers of the second kind.

Proof. The proof follows by noting that x∂f
∂x = af and
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By induction we see that
[λ (f)](p+1)

= x ∂
∂x [λ (f)]

(p) = ap x ∂
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hPp
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#
.

We may write

S (p, 1) = S (p+ 1, 1) = 1, S (p, p) = S (p+ 1, p+ 1) = 1

and by the recurrence of Stirling numbers of the second kind, S (p+ 1, p) =
S (p, p− 1) + pS (p, p) we have that
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so that (2.7) follows. 2

Now we investigate the following theorem

Theorem 1. For a, b and c positive real numbers and j, k, l ≥ 0, t ∈ R,
p ≥ 0 then
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Proof. Consider (2.3)
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by an allowable change of integral and sum.
By Lemma 1
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which is the result (2.4). 2
The hypergeometric representation (2.5) can be obtained by the con-

sideration of the ratio of successive terms (2.3).
We may also note that from known properties of the hypergeometric func-
tion, we may write, from (2.5):
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1. For a = 1/2, b = 1, c = 1/2, j = 1, k = 2, l = 3, p = 1, t = 1/2
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2. For a = b = c = j = k = l = t = 1, , p = 0, we obtain the classical result

R =
∞X
n=0

1

(n+ 1)3
= ζ (3)

Now consider the following lemma and theorem, which is a generalisa-
tion of Theorem 1.
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Lemma 2. For a, b, c and m positive real numbers and t ∈ R let
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= ap+1
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Now we investigate the following theorem
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By Lemma 2
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which is the result (2.10). 2
The hypergeometric representation (2.11) can be obtained by the con-

sideration of the ratio of successive terms (2.8) respectively.
In the case when m = 1, Theorem 2 reduces to Theorem 1.

Example: For a = 2, b = 2, c = 4, j = 4, k = 3, l = 3,m = 5, p = 2, t =
−1

Q =
P∞

n=0
(−1)n n2(n+44 )

(2n+44 )(
2n+3
3 )(

4n+3
3 )

= 180
R 1
0

R 1
0

R 1
0
(1−x)3(1−y)2(1−z)2x2y2z4(1−5x2y2z4)³

1+x2y2z4

2

´7 dx dy dz

= − 1
1050 9F8

"
6, 33 ,

3
2 ,
3
2 ,
7
4 ,
5
4 , 2, 2, 2

4, 72 ,
7
2 ,
5
2 ,
11
4 ,

7
4 , 3, 1

¯̄̄̄
¯ 1
#

= 3591
2560 +

³
1341

√
2

160 − 34173
5120

´
π + 2223

256 G−
9
2 ln (2)

− 945
2098πζ(2) +

2583
√
2

320 ln
³
3− 2

√
2
´
.

where G is Catalans constant.

3. Conclusion

We have provided triple integral identities for sums of the reciprocal of
triple binomial coefficients. In doing so we have recovered the standard
representation for ζ(2) and ζ(3) and have generalised and extended some
results published previously by other authors.

In another forum we shall extend our results to consider more general
sums of binomial coefficients.
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