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Abstract

The principal aim of the paper is to establish the function Et(c, ν, γ, q)
and its properties by using Fractional Calculus. We also obtained
some integral representations of the function Eγ,q

α,β(z) which is recently
introduced by Shukla and Prajapati [6].
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1. INTRODUCTION

In 2007, Shukla and Prajapati [6] introduced the function Eγ,q
α,β(z) which is

defined for α, β, γ ∈ C ; Re (α) > 0 , Re (β) > 0 , Re (γ) > 0 and
q ∈ (0, 1) ∪N as:

Eγ,q
α,β(z) =

∞X
n=0

(γ)qn zn

Γ (αn+ β) n !
,(1.1)

where (γ)qn =
Γ(γ+qn)
Γ(γ) denotes the generalized Pochhammer symbol

(Rainville[5]) which in particular reduces to qqn
qQ

r=1

³
γ+r−1

q

´
n
if q ∈ N.

Kilbas et. al [1] studied the several properties of generalized fractional
calculus operators and the Mittag-Leffler function [3], the Wiman function
[9] and its extension was discussed by Prabhakar and Suman [4].

We can write ordinary binomial expression (Rainville[5]) as,

(1− z)− a =
∞X
n=0

(a)n z
n

n !
.(1.2)

Shukla and Prajapati [7] also studied several properties of Eγ,q
α,β(z) in

the light of Fractional Integral and Differential operators.
The fractional integral operator of order ν defined as (Miller and Ross

[2])
for Reν > 0,

Iν f(t) =
1

Γ(ν)

tZ
0

(t− ξ)ν−1f(ξ) dξ(1.3)

and the fractional differential operator of order µ defined as

Dµ f(t) = Dn{Ik−µ f(t)},(1.4)

where Reµ > 0 and if k is the smallest integer with the property that
k ≥ Reµ.

2. FRACTIONAL OPERATORS ANDGENERALIZEDMITTAG—
LEFFLER FUNCTION

Consider the function f(t) =
∞P
n=0

(γ)qn (ct)n

(n !)2 , where γ ∈ C (Re(γ) > 0),

q ∈ (0, 1) ∪N



Some remarks on generalized Mittag—Leffler function 29

and c is an arbitrary constant then using (1.3) the fractional integral oper-
ator of order ν is given as

Iν f(t) =
1

Γ(ν)

tZ
0

(t− ξ)ν−1
∞X
n=0

(γ)qn (cξ)
n

(n !)2
dξ

=
1

Γ(ν)

∞X
n=0

(γ)qn c
n

(n !)2

tZ
0

(t− ξ)ν−1 ξn dξ.

Above equation reduces to,

= tν
∞X
n=0

(γ)qn (ct)
n

Γ (ν + n+ 1)n !
.(2.1)

Use of (1.1), the above equation can be written as,

= tν Eγ,q
1, ν+1 (ct).(2.2)

We denote the function (2.2) as Et(c, ν, γ, q), i.e.

Et(c, ν, γ, q) = tν Eγ,q
1,ν+1(ct).(2.3)

Now, using (1.4) the fractional differential operator of order µ is given
as

Dµ f(t) = Dn

"
Ik−µ

∞X
n=0

(γ)qn (ct)
n

(n !)2

#
.

Applying (2.1), we can write

= Dn

"
tk−µ

∞X
n=0

(γ)qn (ct)
n

Γ (k − µ+ n+ 1) n !

#
.

The simplification of above equation gives

= t−µ
∞X
n=0

(γ)qn (ct)
n

Γ (n+ 1− µ) n !
.

Use of (1.1), the above equation can be written as,

= t−µEγ,q
1, 1−µ (ct).(2.4)

We denote the function (2.7) as Et(c,−µ, γ, q), i. e.

Et(c,−µ, γ, q) = t−µEγ,q
1,1−µ(ct).(2.5)
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3. PROPERTIES OF THE FUNCTIONS Et(c, ν, γ, q) AND
Et(c,−µ, γ, q)

Theorem 1. γ ∈ C (Re(γ) > 0),q ∈ (0, 1)∪N, c is an arbitrary constant
and fractional integral operator of order ν then

IλEt(c, ν, γ, q) = Et(c, λ+ ν, γ, q).(3.1)

DλEt(c, ν, γ, q) = Et(c, ν − λ, γ, q).(3.2)

The Laplace transform of Et(c, ν, γ, q) is given as

L{Et(c, ν, γ, q)} =
1

sν+1

µ
1− c

s

¶−γ,q
,(3.3)

Shukla and Prajapati [8] introduced a new notation for binomial ex-
pression as

(1− z)−γ,q =
∞X
n=0

(γ)qn z
n

n !
.(3.4)

If q = 1 then (3.4) becomes (1.2) as

(1− z)−γ,1 = (1− z)−γ .(3.5)

Proof. From (1.3), we get

IλEt(c, ν, γ, q) =
1

Γ(λ)

tZ
0

(t− ξ)λ−1Eξ(c, ν, γ, q) dξ.

Using (2.3), above equation becomes

=
1

Γ(λ)

tZ
0

(t− ξ)λ−1 ξν
∞X
n=0

(γ)qn (cξ)
n

Γ (ν + n+ 1) n !
dξ

and substituting ξ = xt, which yields

=
1

Γ(λ)
tλ+ν

∞X
n=0

(γ)qn c
n tn

Γ (ν + n+ 1) n !

1Z
0

(1− x)λ−1 xk+ν dx.

The simplification of above equation gives

= tλ+ν Eγ,q
1, λ+ν+1 (ct).
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Again from (1.3), we get

= Et(c, λ+ ν, γ, q).

This is the proof of (3.1).
From (1.4), we get

DλEt(c, ν, γ, q) = Dk{Ik−λEt(c, ν, γ, q)}.

Using (3.1), we can write

= Dk{tk+ν−λEγ,q
1,k+ν−λ+1(ct)}.

Applying (2.3), above equation can be written as

=Dk

" ∞X
n=0

(γ)qn c
n

Γ (n+ k + ν − λ+ 1)

tn+k+ν−λ

n !

#
.

The above equation reduces to,

= tν−λEγ,q
1, ν−λ+1 (ct).

Again from (1.3), we obtain

= Et(c, ν − λ, γ, q).

This is the proof of (3.2).
From (2.3), consider

L{Et(c, ν, γ, q)} = L{tν Eγ,q
1,ν+1(ct)}.

Therefore,

= 1
sν+1

∞P
n=0

(γ)qn
n !

cn

sn .

Use of (3.4), we arrived at

=
1

sν+1

µ
1− c

s

¶−γ,q
.

This is the proof of Theorem 1.
In the light of Theorem 1, we can prove following Theorem 2.

Theorem 2. µ ∈ C (Re(µ) > 0),q ∈ (0, 1)∪N, c is an arbitrary constant
and fractional integral operator of order µ then

IλEt(c,−µ, γ, q) = Et(c, λ− µ, γ, q).(3.6)
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DλEt(c,−µ, γ, q) = Et(c,−λ− µ, γ, q).(3.7)

L{Et(c,−µ, γ, q)} =
1

s1−µ

µ
1− c

s

¶−γ,q
.(3.8)

4. SOME INTEGRAL REPRESENTAIONS OF Eγ,q
α,β(z)

In this section, we obtained three interesting integral representations of the
functionEγ,q

α,β(z).

Theorem 3. If α, β, γ ∈ C ; Re (α) > 0 , Re (β) > 0 , Re (γ) > 0, β > α >
0 and q ∈ (0, 1) ∪N then

Eγ,q
α,β(z) = k zα−β

∞Z
0

exp

Ã
− tk

zk

!
tβ−α−1

∞X
n=0

(γ)qn t
n

Γ(αn+ β)n ! Γ
³
β−α+n

k

´ dt.

(4.1)

Proof. Consider,

∞Z
0

exp

Ã
− tk

zk

!
tβ−α−1

∞X
n=0

(γ)qn t
n

Γ(αn+ β)n ! Γ
³
β−α+n

k

´ dt.

Substituting t
k

zk
= u, we get

=
∞X
n=0

(γ)qn z
β−α+n

Γ(αn+ β)n ! Γ
³

β−α+n
k

´ 1

k

∞Z
0

e−u u
β−α+n

k
−1dt.

Using (1.1), above equation immediately leads to,

=
zβ−α

k
Eγ,q
α,β(z).

This is the proof of Theorem 3.

Theorem 4. If α, β, γ ∈ C ; Re (α) > 0 , Re (β) > 0 , Re (γ) > 0, β > α >
0 and q ∈ (0, 1) ∪N then

Eγ,q
α,β(z) =

1

αΓ (β − α)

1Z
0

(1− t
1
α ) β−α−1 Eγ,q

α,α(t z) dt.(4.2)
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Proof. Now consider,

1Z
0

(1− t
1
α ) β−α−1 Eγ,q

α,α(t z) dt.

Applying (1.1) and substitutingt
1
α = u, we get

= α
∞X
n=0

(γ)qn zn

Γ (αn+ α) n !

1Z
0

uαn+α−1(1− u) β−α−1 du.

Therefore we arrived at

= αΓ(β − α)
∞X
n=0

(γ)qn zn

Γ (αn+ α) n !
.

Again use of (1.1), we arrived at

= αΓ (β − α)Eγ,q
α,β(z).

This is the proof of Theorem 4.
Applying (1.1) in RHS of (4.3), It is easy to prove following Theorem.

Theorem 5. If α, β, γ ∈ C ; Re (α) > 0 , Re (β) > 0 , Re (γ) > 0, β > α >
0 and q ∈ (0, 1) ∪N then

Eγ,q
α,β(z) =

1

Γ (α)

1Z
0

tα−1(1− t) β−α−1 Eγ,q
α,β−α (z(1− t)α) dt.(4.3)
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