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Universidad Católica del Norte
Antofagasta - Chile

Abstract

Let H be a Hilbert space. we show that the following statements
are equivalent: (a) B(H) is finite dimension, (b) every left Banach
module action l : B(H)×H −→ H, is Arens regular (c) every bilinear
map f : B(H)∗ −→ B(H) is Arens regular. Indeed we show that a
Banach space X is reflexive if and only if every bilinear map f :
X∗ ×X −→ X∗ is Arens regular.
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1. Introduction

The regularity of bilinear maps on norm spaces, was introduced by Arens
in 1951. Let X , Y and Z be normed spaces and let f : X × Y −→ Z be a
continuous bilinear map, then f∗ : Z∗ ×X −→ Y ∗ (the transpose of f ) is
defined by

hf∗(z∗, x), yi = hz∗, f(x, y)i (z∗ ∈ Z∗ , x ∈ X , y ∈ Y ).

f∗ is a continuous bilinear map.
Set f∗∗ = (f∗)∗ and f∗∗∗ = (f∗∗)∗, .... Then f∗∗∗ : X∗∗ × Y ∗∗ −→

Z∗∗ is the unique extension of f such that f∗∗∗(·, y00) : X∗∗ −→ Z∗∗ is
weak∗ − weak∗ continuous for every y00 ∈ Y ∗∗. Let f r : Y × X −→ Z
defined by f r(y, x) = f(x, y), (x ∈ X, y ∈ Y ), then fr is a continuous
bilinear map. f is called Arens regular whenever f∗∗∗ = f r∗∗∗r. It is easy
to show that f is Arens regular if and only if f∗∗∗(x00, ·) : Y ∗∗ −→ Z∗∗ is
weak∗ −weak∗ continuous for every x00 ∈ X∗∗. For further details we refer
the reader to [A], [E-F], [D-R-V], and [M-Y]. Let A be a Banach algebra
and let π : A×A −→ A be the product of A. Then the second dual space
A∗∗ of A is Banach algebra with both products π∗∗∗ and πr∗∗∗r. A is called
Arens regular if π is Arens regular. See [A], [D-H] and [F-S]. An element
f ∈ A∗ is called weakly almost periodic if the maps

a 7→ a.f, a 7→ f.a, A −→ A∗

are weakly compact. The collection of weakly almost periodic elements in
A∗ is denoted by Wap(A∗).
1.Theorem. Let X be a Banach space and let l : B(X) × X −→ X
defined by l(T, x) = T (x), (T ∈ B(X), x ∈ X). If l is Arens regular, then
B(X)∗∗ is isomorphic to a subalgebra of B(X∗).
Proof: Let π : B(X) × B(X) −→ B(X) be the product of B(X). Then
for every e ∈ X, e0 ∈ X∗, and T, S ∈ B(X), we have

hl∗(e0, π(T, S)), ei = he0, l(T, S(e)i
= hl∗(e0, T ), l(S, e)i
= hl∗(l∗(e0, T )S), ei.

This means that

l∗(e0, π(T, S)) = l∗(L∗(e0, T ), S) (1).
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By applying (1), for every e00 ∈ X∗∗, we have

hπ∗(l∗∗(e00, e0), T ), Si = hl∗∗(e00, e0), π(T, S)i
= he00, l∗(e0, π(T, S)i
= he00, l∗(L∗(e0, T ), S)i
= hl∗∗(e00, L∗(e0, T ), Si.

Thus we have

π∗(l∗∗(e00, e0), T ) = l∗∗(e00, L∗(e0, T ) (2).

Let B ∈ B(X)∗∗, then by (2), we have

hπ∗∗(B, l∗∗(e00, e0), T )i = hB, π∗(l∗(e00, e0), T )i
= hB, l∗∗(e00, L∗(e0, T ))i
= hl∗∗∗(B, e00), L∗(e0, T )i
= hl∗∗(l∗∗∗(B, e00), e0), T i.

This means that

π∗∗(B, l∗∗(e00, e0) = l∗∗(l∗∗∗(B, e00), e0) (3).

Let now A ∈ B(X)∗∗. By (3), we have

hl∗∗∗π∗∗∗(A,B), e00), e0i = hπ∗∗∗(A,B), l∗∗(e00, e0)i
= hA, π∗∗(B, l∗∗(e00, e0))i
= hA, l∗∗(l∗∗∗(B, e00), e0)i.

Therefore

l∗∗∗(π∗∗∗(A,B), e00) = l∗∗∗(A, l∗∗∗(B, e00)).

This means that the mapping f : B(X)∗∗ −→ B(X∗∗), defined by f(A) =
l∗∗∗(A, .) (A ∈ B(X)∗∗), is a Banach algebras homomorphism. On the
other hand l is Arens regular, then f(A) : X∗∗ −→ X∗∗ is weak∗ − weak∗

continuous for every A ∈ B(X)∗∗. Let now

Bw∗(X
∗∗) := {U ∈ B(X∗∗) | U : X∗∗ → X∗∗ is weak∗−weak∗ continuous },

and let φ : B(X∗) −→ Bw∗(X
∗∗) defined by φ(T ) = T ∗ (T ∈ B(X∗)).

Then φ−1of : B(X)∗∗ −→ B(X∗) is a injective Banach algebras anti ho-
momorphism.
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2.Theorem. Let A be a Banach algebra and let L be a reflexive left
BanachAmodule with module action g : A×L −→ L. Then g∗∗(L∗∗×L∗) ⊆
Wap(A∗).
Proof: Let x00 ∈ L∗∗, x0 ∈ X∗, and let {an} and {bn} be sequences in A,
in which the limits:

lim
m
lim
n
hg∗∗(x00, x0), amani, and lim

n
lim
m
hg∗∗(x00, x0), amani,

are both exist. Then we have

lim
m
lim
n
hg∗∗(x00, x0), ambni = limm limnhx00, g∗(x0, ambn)i

= limm limnhx00, g∗(g∗(x0, am), bn)i
= limm limnhg∗∗(x00, g∗(x0, am)), bni
= limm limnhg∗∗∗(cbn, x00), g∗(x0, am)i

= limn limmhg∗∗∗(cbn, x00), g∗(x0, am)i (L is reflexive)

= limn limmhg∗∗(x00, g∗(x0, am)), bni
= limn limmhx00, g∗(g∗(x0, am), bn)i
= limn limmhx00, g∗(x0, ambn)i
= limm limnhg∗∗(x00, x0), ambni.

This means that g∗∗(x00, x0) ∈Wap(A∗) [Pa, Theorem 1.4.11].

3.Corollary. Let A,L and g are as above. If g∗∗(L∗∗ × L∗) = A∗, then
A is Arens regular.

4.Corollary [D]. Let X be a Banach space and let L be a reflexive left
Banach B(X) module. We define the map φ : Lb⊗L∗ −→ B(X)∗ by

hφ(f ⊗ µ), T i = hµ, T.fi (f ⊗ µ ∈ Lb⊗L∗, T ∈ B(X)).

If φ is surjective then B(X) is Arens regular.

5.Theorem. Let X be a Banach space. Then X is reflexive if and only
if every bilinear map f : X∗ ×X −→ X∗ is Arens regular.
Proof: Obviously every bilinear map f : X∗ ×X −→ X∗ is Arens regular
if X is reflexive. For the converse, let 0 6= x0 ∈ X. Then by Hahn-Banach
Theorem, there exists g ∈ X∗ such that hg, x0i = 1. Let f : X ×X −→ X
defined by f((x, y)) = hg, yix. f is a bilinear map. Then f∗ : X∗×X −→ X∗

is Arens regular. Let now x000 ∈ X∗∗∗ and let x00α
weak∗

−−−→ x00 in X∗∗, then

f∗∗∗∗(x000, x00α)
weak∗

−−−→ f∗∗∗∗(x000, x00) in X∗∗∗. Thus for every y00 ∈ X∗∗ we
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have

lim
α
hx000, f∗∗∗(x00α, y00)i = lim

α
hf∗∗∗∗(x000, x00α, y00i

= hf∗∗∗∗(x000, x00, y00i
= hx000, f∗∗∗(x00, y00)i (4).

On the other hand for each y00 ∈ X∗∗, there exists a net (yβ) in Y such

that cyβ weak∗

−−−→ y00 in X∗∗. We know that f∗∗∗(·,cx0) : X∗∗ −→ X∗∗ is
weak∗ − weak∗ continuous, then

f∗∗∗(y00,cx0) = w∗ − lim
β

f∗∗∗(cyβ,cx0) = w∗ − limcyβ = y00 (5).

By (4) and (5), we have

lim
α
hx000, x00αi = lim

α
hx000, f∗∗∗(x00α,cx0)i

= hx000, f∗∗∗(x00,cx0)i
= hx000, x00i.

This means that x000 : X∗∗ −→ C is weak∗ − weak∗ continuous. Thus
x000 ∈dX∗, and X∗ is reflexive. So X is reflexive.

6.Corollary. Let H be Hilbert space. Then the following assertions are
equivalent:

(a) B(H) is finite dimension.
(b) The mapping l : B(H)×H −→ H defined by l(T, x) = T (x), (T ∈

B(H), x ∈ H), is Arens regular.

(c) Every bilinear map f : B(H)∗ ×B(H) −→ B(H)∗ is Arens regular.
Proof. (a) ⇔ (b): Let B(H) be finite dimension, the B(H) is reflexive.
Then by Theorem 1, l is Arens regular. For the converse we know that
H ∼= H∗ as Banach spaces. Then by Theorem 1, we have B(H)∗∗ = B(H),
so B(H) is finite dimension.

(a)⇔ (c): It follows from the Theorem 5.

Example. Let H = l1(N). Then the bilinear map l : B(H) ×H −→ H
defined by l(T, x) = T (x), (T ∈ B(H), x ∈ H), is not Arens regular.
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