Proyecciones Vol. 28, N^o 1, pp. 21–26, Mayo 2009. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172009000100002

ARENS REGULARITY OF SOME BILINEAR MAPS

M. ESHAGHI GORDJI SEMNAN UNIVERSITY, IRÁN

Received : February 2008. Accepted : November 2008

Abstract

Let H be a Hilbert space. we show that the following statements are equivalent: (a) B(H) is finite dimension, (b) every left Banach module action $l: B(H) \times H \longrightarrow H$, is Arens regular (c) every bilinear map $f: B(H)^* \longrightarrow B(H)$ is Arens regular. Indeed we show that a Banach space X is reflexive if and only if every bilinear map $f: X^* \times X \longrightarrow X^*$ is Arens regular.

Subjclass [2000] : Primary 46H25, 16E40.

Keywords : Banach algebra, Bilinear map, Arens products

1. Introduction

The regularity of bilinear maps on norm spaces, was introduced by Arens in 1951. Let X, Y and Z be normed spaces and let $f: X \times Y \longrightarrow Z$ be a continuous bilinear map, then $f^*: Z^* \times X \longrightarrow Y^*$ (the transpose of f) is defined by

$$\langle f^*(z^*,x),y\rangle = \langle z^*,f(x,y)\rangle \qquad (z^*\in Z^* \ , \ x\in X \ , \ y\in Y).$$

 f^* is a continuous bilinear map.

Set $f^{**} = (f^*)^*$ and $f^{***} = (f^{**})^*$, Then $f^{***} : X^{**} \times Y^{**} \longrightarrow Z^{**}$ is the unique extension of f such that $f^{***}(\cdot, y'') : X^{**} \longrightarrow Z^{**}$ is $weak^* - weak^*$ continuous for every $y'' \in Y^{**}$. Let $f^r : Y \times X \longrightarrow Z$ defined by $f^r(y, x) = f(x, y)$, $(x \in X, y \in Y)$, then f^r is a continuous bilinear map. f is called Arens regular whenever $f^{***} = f^{r***r}$. It is easy to show that f is Arens regular if and only if $f^{***}(x'', \cdot) : Y^{**} \longrightarrow Z^{**}$ is $weak^* - weak^*$ continuous for every $x'' \in X^{**}$. For further details we refer the reader to [A], [E-F], [D-R-V], and [M-Y]. Let \mathcal{A} be a Banach algebra and let $\pi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ be the product of \mathcal{A} . Then the second dual space \mathcal{A}^{**} of \mathcal{A} is Banach algebra with both products π^{***} and π^{r***r} . \mathcal{A} is called Arens regular if π is Arens regular. See [A], [D-H] and [F-S]. An element $f \in \mathcal{A}^*$ is called weakly almost periodic if the maps

$$a \mapsto a.f, \quad a \mapsto f.a, \quad \mathcal{A} \longrightarrow \mathcal{A}^*$$

are weakly compact. The collection of weakly almost periodic elements in \mathcal{A}^* is denoted by $Wap(\mathcal{A}^*)$.

1.Theorem. Let X be a Banach space and let $l : B(X) \times X \longrightarrow X$ defined by l(T, x) = T(x), $(T \in B(X), x \in X)$. If l is Arens regular, then $B(X)^{**}$ is isomorphic to a subalgebra of $B(X^*)$.

Proof: Let $\pi : B(X) \times B(X) \longrightarrow B(X)$ be the product of B(X). Then for every $e \in X$, $e' \in X^*$, and $T, S \in B(X)$, we have

$$\begin{aligned} \langle l^*(e', \pi(T, S)), e \rangle &= \langle e', l(T, S(e)) \rangle \\ &= \langle l^*(e', T), l(S, e) \rangle \\ &= \langle l^*(l^*(e', T)S), e \rangle. \end{aligned}$$

This means that

$$l^*(e', \pi(T, S)) = l^*(L^*(e', T), S) \quad (1).$$

By applying (1), for every $e'' \in X^{**}$, we have

$$\begin{aligned} \langle \pi^*(l^{**}(e'', e'), T), S \rangle &= \langle l^{**}(e'', e'), \pi(T, S) \rangle \\ &= \langle e'', l^*(e', \pi(T, S)) \rangle \\ &= \langle e'', l^*(L^*(e', T), S) \rangle \\ &= \langle l^{**}(e'', L^*(e', T), S) \rangle. \end{aligned}$$

Thus we have

$$\pi^*(l^{**}(e'', e'), T) = l^{**}(e'', L^*(e', T) \quad (2).$$

Let $B \in B(X)^{**}$, then by (2), we have

$$\langle \pi^{**}(B, l^{**}(e'', e'), T) \rangle = \langle B, \pi^{*}(l^{*}(e'', e'), T) \rangle = \langle B, l^{**}(e'', L^{*}(e', T)) \rangle = \langle l^{***}(B, e''), L^{*}(e', T) \rangle = \langle l^{***}(B, e''), e'), T \rangle.$$

This means that

$$\pi^{**}(B, l^{**}(e'', e') = l^{**}(l^{***}(B, e''), e') \quad (3).$$

Let now $A \in B(X)^{**}$. By (3), we have

$$\langle l^{***}\pi^{***}(A,B), e''), e' \rangle = \langle \pi^{***}(A,B), l^{**}(e'',e') \rangle = \langle A, \pi^{**}(B, l^{**}(e'',e')) \rangle = \langle A, l^{**}(l^{***}(B,e''),e') \rangle.$$

Therefore

$$l^{***}(\pi^{***}(A,B),e'') = l^{***}(A,l^{***}(B,e'')).$$

This means that the mapping $f: B(X)^{**} \longrightarrow B(X^{**})$, defined by $f(A) = l^{***}(A, .)$ $(A \in B(X)^{**})$, is a Banach algebras homomorphism. On the other hand l is Arens regular, then $f(A): X^{**} \longrightarrow X^{**}$ is $weak^* - weak^*$ continuous for every $A \in B(X)^{**}$. Let now

$$B_{w^*}(X^{**}) := \{ U \in B(X^{**}) \mid U : X^{**} \to X^{**} \text{ is } weak^* - weak^* \text{ continuous } \},\$$

and let $\phi : B(X^*) \longrightarrow B_{w^*}(X^{**})$ defined by $\phi(T) = T^*$ $(T \in B(X^*))$. Then $\phi^{-1}of : B(X)^{**} \longrightarrow B(X^*)$ is a injective Banach algebras anti homomorphism. **2.Theorem.** Let \mathcal{A} be a Banach algebra and let L be a reflexive left Banach \mathcal{A} module with module action $g : \mathcal{A} \times \mathcal{L} \longrightarrow \mathcal{L}$. Then $g^{**}(L^{**} \times L^*) \subseteq Wap(\mathcal{A}^*)$.

Proof: Let $x'' \in L^{**}$, $x' \in X^*$, and let $\{a_n\}$ and $\{b_n\}$ be sequences in \mathcal{A} , in which the limits:

$$\lim_{m}\lim_{n}\langle g^{**}(x'',x'),a_{m}a_{n}\rangle, \quad \text{and} \quad \lim_{n}\lim_{m}\langle g^{**}(x'',x'),a_{m}a_{n}\rangle,$$

are both exist. Then we have

$$\begin{split} \lim_{m} \lim_{n} \langle g^{**}(x'', x'), a_{m}b_{n} \rangle &= \lim_{m} \lim_{n} \langle x'', g^{*}(x', a_{m}b_{n}) \rangle \\ &= \lim_{m} \lim_{n} \langle x'', g^{*}(g^{*}(x', a_{m}), b_{n}) \rangle \\ &= \lim_{m} \lim_{n} \langle g^{**}(x'', g^{*}(x', a_{m})), b_{n} \rangle \\ &= \lim_{m} \lim_{n} \langle g^{***}(\widehat{b_{n}}, x''), g^{*}(x', a_{m}) \rangle \\ &= \lim_{n} \lim_{m} \langle g^{***}(\widehat{b_{n}}, x''), g^{*}(x', a_{m}) \rangle \quad \text{(L is reflexive)} \\ &= \lim_{n} \lim_{m} \langle g^{**}(x'', g^{*}(x', a_{m}), b_{n} \rangle \\ &= \lim_{n} \lim_{m} \langle x'', g^{*}(g^{*}(x', a_{m}), b_{n}) \rangle \\ &= \lim_{m} \lim_{m} \langle x'', g^{*}(x', a_{m}), b_{n} \rangle \\ &= \lim_{m} \lim_{m} \langle g^{**}(x'', g^{*}(x', a_{m}), b_{n} \rangle \\ &= \lim_{m} \lim_{m} \langle g^{**}(x'', g^{*}(x', a_{m}), b_{n} \rangle \\ &= \lim_{m} \lim_{m} \langle g^{**}(x'', g^{*}(x', a_{m}), b_{n} \rangle . \end{split}$$

This means that $g^{**}(x'', x') \in Wap(\mathcal{A}^*)$ [Pa, Theorem 1.4.11]. **3.Corollary.** Let \mathcal{A}, \mathcal{L} and g are as above. If $g^{**}(L^{**} \times L^*) = \mathcal{A}^*$, then \mathcal{A} is Arens regular.

4.Corollary [D]. Let X be a Banach space and let L be a reflexive left Banach B(X) module. We define the map $\phi : L \widehat{\otimes} L^* \longrightarrow B(X)^*$ by

$$\langle \phi(f \otimes \mu), T \rangle = \langle \mu, T.f \rangle \quad (f \otimes \mu \in L \widehat{\otimes} L^*, T \in B(X)).$$

If ϕ is surjective then B(X) is Arens regular.

5.Theorem. Let X be a Banach space. Then X is reflexive if and only if every bilinear map $f: X^* \times X \longrightarrow X^*$ is Arens regular.

Proof: Obviously every bilinear map $f: X^* \times X \longrightarrow X^*$ is Arens regular if X is reflexive. For the converse, let $0 \neq x_0 \in X$. Then by Hahn-Banach Theorem, there exists $g \in X^*$ such that $\langle g, x_0 \rangle = 1$. Let $f: X \times X \longrightarrow X$ defined by $f((x, y)) = \langle g, y \rangle x$. f is a bilinear map. Then $f^*: X^* \times X \longrightarrow X^*$ is Arens regular. Let now $x''' \in X^{***}$ and let $x''_{\alpha} \xrightarrow{weak^*} x''$ in X^{**} , then $f^{****}(x''', x''_{\alpha}) \xrightarrow{weak^*} f^{****}(x''', x'')$ in X^{***} . Thus for every $y'' \in X^{**}$ we have

$$\begin{aligned} \lim_{\alpha} \langle x''', f^{***}(x''_{\alpha}, y'') \rangle &= & \lim_{\alpha} \langle f^{****}(x''', x''_{\alpha}, y'') \\ &= & \langle f^{****}(x''', x'', y'') \\ &= & \langle x''', f^{***}(x'', y'') \rangle \end{aligned} (4).$$

On the other hand for each $y'' \in X^{**}$, there exists a net (y_{β}) in Y such that $\widehat{y_{\beta}} \xrightarrow{weak^*} y''$ in X^{**} . We know that $f^{***}(\cdot, \widehat{x_0}) : X^{**} \longrightarrow X^{**}$ is $weak^* - weak^*$ continuous, then

$$f^{***}(y'', \widehat{x_0}) = w^* - \lim_{\beta} f^{***}(\widehat{y_\beta}, \widehat{x_0}) = w^* - \lim \widehat{y_\beta} = y'' \quad (5).$$

By (4) and (5), we have

$$\begin{split} \lim_{\alpha} \langle x''', x''_{\alpha} \rangle &= \lim_{\alpha} \langle x''', f^{***}(x''_{\alpha}, \widehat{x_0}) \rangle \\ &= \langle x''', f^{***}(x'', \widehat{x_0}) \rangle \\ &= \langle x''', x'' \rangle. \end{split}$$

This means that $x''' : X^{**} \longrightarrow C$ is $weak^* - weak^*$ continuous. Thus $x''' \in \widehat{X^*}$, and X^* is reflexive. So X is reflexive.

6.Corollary. Let H be Hilbert space. Then the following assertions are equivalent:

(a) B(H) is finite dimension.

(b) The mapping $l: B(H) \times H \longrightarrow H$ defined by l(T, x) = T(x), $(T \in B(H), x \in H)$, is Arens regular.

(c) Every bilinear map $f: B(H)^* \times B(H) \longrightarrow B(H)^*$ is Arens regular. **Proof.** (a) \Leftrightarrow (b): Let B(H) be finite dimension, the B(H) is reflexive. Then by Theorem 1, l is Arens regular. For the converse we know that $H \cong H^*$ as Banach spaces. Then by Theorem 1, we have $B(H)^{**} = B(H)$, so B(H) is finite dimension.

 $(a) \Leftrightarrow (c)$: It follows from the Theorem 5.

Example. Let $H = l^1(N)$. Then the bilinear map $l : B(H) \times H \longrightarrow H$ defined by l(T, x) = T(x), $(T \in B(H), x \in H)$, is not Arens regular.

Acknowledgements: The author would like to express his sincere thanks to refere for his invaluable comments. Also he would like to thank the Semnan University for its financial support.

References

- [A] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2(1951), pp. 839-848, (1951).
- [D-R-V] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2) 64, pp. 707-721, (2001).
- [D] M. Daws, Arens regularity of the algebra of operators on a Banach space. Bull. London Math. Soc. 36, No. 4, pp. 493–503, (2004).
- [D-H] J. Duncan and S. A. Hosseiniun, The second dual of Banach algebra, Proc. Roy. Soc. Edinburgh Set. A 84, pp. 309-325, (1979).
- [E-F] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math., Vol 181, No 3, pp. 237-254, (2007).
- [F-S] M. Filali and A. I. Singh, Recent developments on Arens regularity and ideal structure of the second dual of a group algebra and some related topological algebras. General topological algebras (Tartu, 1999), pp. 95– 124, Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001. MR1853838
- [M-Y] Gh. Mohajeri-Minaei, T. Yazdanpanah, Arens regularity of modules. J. Inst. Math. Comput. Sci. Math. Ser. 18, No. 3, pp. 195–197. MR2194165, (2005).
- [Pa] Theodore W. Palmer, Banach Algebra and The General Theory of *-Algebras Vol 1 Cambridge University Press,(1994).

M. Eshaghi Gordji

Department of Mathematics Semnan University, P. O. Box 35195-363, Semnan, Iran e-mail : maj_ess@yahoo.com ; madjid.eshaghi@gmail.com