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1. Introduction

The notion homeomorphism plays a very important role in topology. By
definition, a homeomorphism between two topological spaces X and Y is a
bijective map f : X → Y when both f and f−1 are continuous. It is well
known that as Jänich [[5], p.13] says correctly: homeomorphisms play the
same role in topology that linear isomorphisms play in linear algebra, or
that biholomorphic maps play in function theory, or group isomorphisms
in group theory, or isometries in Riemannian geometry. In the course of
generalizations of the notion of homeomorphism, Maki et al. [9] intro-
duced g-homeomorphisms and gc-homeomorphisms in topological spaces.
Recently, Devi et al. [2] studied semi-generalized homeomorphisms and
generalized semi-homeomorphisms.
In this paper, we first introduce eg-closed maps in topological spaces and
then we introduce and study eg-homeomorphisms, which are weaker than
homeomorphisms. We prove that gc-homeomorphism and eg-homeomorphism
are independent. We also introduce eg∗-homeomorphisms. It turns out that
the set of all eg*-homeomorphisms forms a group under the operation com-
position of functions.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on
which no separation axioms are assumed unless otherwise mentioned. For
a subset A of a space (X, τ), cl(A), int(A) and Ac denote the closure of A,
the interior of A and the complement of A in X, respectively.

We recall the following definitions and some results, which are used in
the sequel.

Definition 1. A subset A of a space (X, τ) is called:
(i) semi-open [6] if A ⊂ cl(int(A)),
(ii) α-open [11] if A ⊂ int(cl(int(A))),
(iii) regular open [17] if A = int(cl(A)),
(iv) pre-closed [10] if cl(int(A)) ⊂ A.

The semi-closure [1] (resp. α-closure [11]) of a subset A of X, denoted
by sclX(A) (resp. αclX(A)) briefly scl(A), (resp. αcl(A)) is defined to be
the intersection of all semi-closed (resp. α-closed) sets containing A.
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Definition 2. A subset A of a space (X, τ) is called a:
(i) generalized closed (briefly g-closed) set [7] if cl(A) ⊂ U whenever A ⊂ U
and U is open in (X, τ).
(ii) generalized α-closed (briefly gα-closed) set [8] if αcl(A) ⊂ U whenever
A ⊂ U and U is α-open in (X, τ).
(iii) bg-closed set [19] if cl(A) ⊂ U whenever A ⊂ U and U is semi-open in
(X, τ).
(iv) ∗g-closed set [20] if cl(A) ⊂ U whenever A ⊂ U and U is bg-open in
(X, τ).
(v) #g-semi-closed (briefly #gs-closed) set [21] if scl(A) ⊂ U whenever
A ⊂ U and U is ∗g-open in (X, τ).
(vi) eg-closed set [4] if cl(A) ⊂ U whenever A ⊂ U and U is #gs-open in
(X, τ).

Where bg-open (resp. g-open, gα-open, rg-open, ∗g-open, #gs-open, eg-
open), are defined as the complement of bg-closed (resp. g-closed, gα-closed,
rg-closed, ∗g-closed, #gs-closed, eg-closed).
Definition 3. A function f : (X, τ)→ (Y, σ) is called:
(i) g-continuous [18] if f−1(V ) is g-closed in (X, τ) for every closed set V
in (Y, σ).
(ii) bg-continuous [19] if f−1(V ) is bg-closed in (X, τ) for every closed set V
in (Y, σ).
(iii) eg-continuous [15] if f−1(V ) is eg-closed in (X, τ) for every closed set V
in (Y, σ).
(iv) eg-irresolute [13] if f−1(V ) is eg-closed in (X, τ) for every eg-closed set V
in (Y, σ).
(v) gc-irresolute [18] if f−1(V ) is g-closed in (X, τ) for each g-closed set V
of (Y, σ).
(vi) #gs-irresolute [21] if f−1(V ) is #gs-closed in (X, τ) for each #gs-
closed set V of (Y, σ).
(vii) strongly eg-continuous [13] if the inverse image of every eg-open set in
(Y, σ) is open in (X, τ).

Definition 4. A function f : (X, τ)→ (Y, σ) is called:
(i) g-open [18] if f(V ) is g-open in (Y, σ) for every g-open set V in (X, τ).
(ii) bg-open [19] if f(V ) is bg-open in (Y, σ) for every bg-open set V in (X, τ).

Definition 5. A bijective function f : (X, τ)→ (Y, σ) is called a:
(i) generalized homeomorphism (briefly g-homeomorphism) [9] if f is both
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g-continuous and g-open,
(ii) gc-homeomorphism [9] if both f and f−1 are gc-irresolute maps,
(iii) bg-homeomorphism [19] if f is both bg-continuous and bg-open.
Definition 6. [14] Let (X, τ) be a topological space and E ⊂ X. We define
the eg-closure of E (briefly eg-cl(E)) to be the intersection of all eg-closed sets
containing E. i.e.,eg-cl(E) = ∩{A : E ⊂ A and A ∈ eGC(X, τ)}.

Proposition 2.1. [13] If f : (X, τ) → (Y, σ) is eg-irresolute, then it is eg-
continuous.

Proposition 2.2. [14] Let (X, τ) be a topological space and E ⊂ X. The
following properties are satisfied:
(i) eg-cl(E)) is the smallest eg-closed set containing E and
(ii) E is eg-closed if and only if eg-cl(E)) = E.

Proposition 2.3. [14] For any two subsets A and B of (X, τ),
(i) If A ⊂ B, then eg-cl(A)) ⊂ eg-cl(B)),
(ii) eg-cl(A ∩B)) ⊂ eg-cl(A)) ∩ eg-cl(B)).
Proposition 2.4. [4] Every eg-closed set is gα-closed and hence pre-closed.

Proof. Let A be eg-closed in (X, τ) and U be any α-open set containing
A. Since every α-open set is #gs-open [21] and since αcl(A) ⊂ cl(A) for
every subset A of X, we have by hypothesis, αcl(A) ⊂ cl(A) ⊂ U and so A
is gα-closed in (X, τ).

In [8], it has been proved that every gα-closed set is pre-closed. There-
fore, every eg-closed set is pre-closed.
Theorem 2.5. [4] Suppose that B ⊂ A ⊂ X, B is a eg-closed set relative to
A and that A is open and eg-closed in (X, τ). Then B is eg-closed in (X, τ).

Corollary 2.6. [4] If A is a eg-closed set and F is a closed set, then A∩F
is a eg-closed set.
Theorem 2.7. [4] A set A is eg-open in (X, τ) if and only if F ⊂ int(A)
whenever F is #gs-closed in (X, τ) and F ⊂ A.

Definition 7. [14] Let (X, τ) be a topological space and E ⊂ X. We
define the eg-interior of E (briefly eg-int(E)) to be the union of all eg-open
sets contained in E.
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Lemma 2.8. [14] For any E ⊂ X, int(E) ⊂ eg-int(E) ⊂ E.

Proof. Since every open set is eg-open, the proof follows immediately.
Definition 8. A topological space (X, τ) is a,
(i) T1/2 space [7] if every g-closed subset of (X, τ) is closed in (X, τ),
(ii) Teg space [16] if every eg-closed subset of (X, τ) is closed in (X, τ),
(iii) semi-T1/2 space [19] if every bg-closed subset of (X, τ) is closed in (X, τ).

3. eg-closed maps
Malghan [12] introduced the concept of generalized closed maps in topo-
logical spaces. In this section, we introduce eg-closed maps, eg-open maps,eg*-closed maps, eg*-open maps and obtain certain characterizations of these
maps.

Definition 9. A map f : (X, τ)→ (Y, σ) is said to be eg-closed if the image
of every closed set in (X, τ) is eg-closed in (Y, σ).
Example 3.1. (a) Let X = Y = {a, b, c}, τ = {∅,X, {a}} and σ =
{∅, Y, {b}}. Define a map f : (X, τ) → (Y, σ) by f(a) = b, f(b) = a
and f(c) = c. Then f is a eg-closed map.
(b) LetX = Y = {a, b, c}, τ = {∅,X, {a}, {b}, {a, b}} and σ = {∅, Y, {a, b}}.
Let f : (X, τ)→ (Y, σ) be the identity map. Then f is not a eg-closed map.
Proposition 3.2. A mapping f : (X, τ)→ (Y, σ) is eg-closed if and only ifeg-cl(f(A)) ⊂ f(cl(A)) for every subset A of (X, τ).

Proof. Suppose that f is eg-closed and A ⊂ X. Then f(cl(A)) is eg-
closed in (Y, σ). We have f(A) ⊂ f(cl(A)) and by Propositions 2.2 and 2.3,eg-cl(f(A)) ⊂ eg-cl(f(cl(A))) = f(cl(A)).
Conversely, let A be any closed set in (X, τ). By hypothesis and Proposition
2.2, we have A = cl(A) and so f(A) = f(cl(A)) ⊃ eg-cl(f(A)). Therefore,
f(A) = eg-cl(f(A)). i.e., f(A) is eg-closed and hence f is eg-closed.
Proposition 3.3. If f : (X, τ) → (Y, σ) is a eg-closed mapping, then for
each subset A of (X, τ), cl(int(f(A))) ⊂ f(cl(A)).

Proof. Let f be a eg-closed map and A ⊂ X. Then since cl(A) is a closed
set in (X, τ), we have f(cl(A)) is eg-closed and hence pre-closed by Propo-
sition 2.4. Therefore, cl(int(f(cl(A)))) ⊂ f(cl(A)). i.e., cl(int(f(A))) ⊂
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f(cl(A)).

The converse of this Proposition need not be true in general as seen
from the following example.

Example 3.4. Let X = Y = {a, b, c}, τ = {∅,X, {a}, {b}, {a, b}} and
σ = {∅, Y, {a, b}}. Let f : (X, τ) → (Y, σ) be the identity map. Then
for each subset A ⊂ X, we have cl(int(f(A))) ⊂ f(cl(A)), but f is not aeg-closed map.
Theorem 3.5. A map f : (X, τ) → (Y, σ) is eg-closed if and only if for
each subset S of (Y, σ) and for each open set U containing f−1(S) there is
a eg-open set V of (Y, σ) such that S ⊂ V and f−1(V ) ⊂ U .

Proof. Suppose that f is a eg-closed map. Let S ⊂ Y and U be an open
subset of (X, τ) such that f−1(S) ⊂ U . Then V = (f(U c))c is a eg-open set
containing S such that f−1(V ) ⊂ U .
For the converse, let S be a closed set of (X, τ). Then f−1((f(S))c) ⊂ Sc

and Sc is open. By assumption, there exists a eg-open set V of (Y, σ)
such that (f(S))c ⊂ V and f−1(V ) ⊂ Sc and so S ⊂ (f−1(V ))c. Hence
V c ⊂ f(S) ⊂ f((f−1(V ))c) ⊂ V c which implies f(S) = V c. Since V c iseg-closed, f(S) is eg-closed and therefore f is eg-closed.
Proposition 3.6. If f : (X, τ) → (Y, σ) is #gs-irresolute eg-closed and A
is a eg-closed subset of (X, τ), then f(A) is eg-closed.

Proof. Let U be a #gs-open set in (Y, σ) such that f(A) ⊂ U . Since f
is #gs-irresolute, f−1(U) is a #gs-open set containing A. Hence cl(A) ⊂
f−1(U) as A is eg-closed in (X, τ). Since f is eg-closed, f(cl(A)) is a eg-closed
set contained in the #gs-open set U , which implies that cl(f(cl(A)) ⊂ U
and hence cl(f(A)) ⊂ U . Therefore, f(A) is a eg-closed set.

The following example shows that the composition of two eg-closed maps
need not be eg-closed.
Example 3.7. Let X = Y = Z = {a, b, c}, τ = {∅,X, {a}, {b, c}}, σ =
{∅, Y, {a, c}} and γ = {∅, Z, {b}, {a, c}}. Define a map f : (X, τ) → (Y, σ)
by f(a) = f(b) = b and f(c) = a and a map g : (Y, σ)→ (Z, γ) by g(a) = c,
g(b) = b and g(c) = a. Then both f and g are eg-closed maps but their
composition g ◦ f : (X, τ) → (Z, γ) is not a eg-closed map, since for the
closed set {b, c} in (X, τ), (g ◦ f)({b, c}) = {a, b}, which is not a eg-closed
set in (Z, γ).
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Corollary 3.8. Let f : (X, τ)→ (Y, σ) be a eg-closed map and g : (Y, σ)→
(Z, γ) be eg-closed and #gs-irresolute map, then their composition g ◦ f :
(X, τ)→ (Z, γ) is eg-closed.

Proof. Let A be a closed set of (X, τ). Then by hypothesis f(A) is
a eg-closed set in (Y, σ). Since g is both eg-closed and #gs-irresolute by
Proposition 3.6, g(f(A)) = (g ◦ f)(A) is eg-closed in (Z, γ) and therefore
g ◦ f is eg-closed.
Proposition 3.9. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, γ) are eg-
closed maps and (Y, σ) is a Teg space, then their composition g◦f : (X, τ)→
(Z, γ) is a eg-closed map.

Proof. Let A be a closed set of (X, τ). Then by assumption f(A) iseg-closed in (Y, σ). Since (Y, σ) is a Teg space, f(A) is closed in (Y, σ) and
again by assumption g(f(A)) is eg-closed in (Z, γ). i.e., (g◦f)(A) is eg-closed
in (Z, γ) and so g ◦ f is eg-closed.
Proposition 3.10. If f : (X, τ)→ (Y, σ) is eg-closed, g : (Y, σ)→ (Z, γ) is
g-closed and (Y, σ) is a Teg space, then their composition g ◦ f : (X, τ) →
(Z, γ) is g-closed.

Proof. Similar to Proposition 3.9.

Proposition 3.11. Let f : (X, τ) → (Y, σ) be a closed map and g :
(Y, σ)→ (Z, γ) be a eg-closed map, then their composition g ◦ f : (X, τ)→
(Z, γ) is eg-closed.

Proof. Similar to Proposition 3.9.

Remark 3.12. If f : (X, τ)→ (Y, σ) is eg-closed and g : (Y, σ)→ (Z, γ) is
closed, then their composition need not be a eg-closed map as seen from the
following example.

Example 3.13. Let X = Y = Z = {a, b, c}, τ = {∅,X, {a}, {b, c}}, σ =
{∅, Y, {a, c}} and γ = {∅, Z, {b}, {a, c}}. Define a map f : (X, τ) → (Y, σ)
by f(a) = f(b) = b and f(c) = a and g : (Y, σ) → (Z, γ) be the identity
map. Then f is a eg-closed map and g is a closed map. But their composition
g ◦ f : (X, τ)→ (Z, γ) is not a eg-closed map, since for the closed set {b, c}
in (X, τ), (g ◦ f)({b, c}) = {a, b}, which is not a eg-closed set in (Z, γ).
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Theorem 3.14. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, γ) be two
mappings such that their composition g ◦ f : (X, τ)→ (Z, γ) be a eg-closed
mapping. Then the following statements are true if:
(i) f is continuous and surjective, then g is eg-closed.
(ii) g is eg-irresolute and injective, then f is eg-closed.
(iii) f is g-continuous, surjective and (X, τ) is a T1/2 space, then g is eg-
closed.
(iv) f is eg-continuous, surjective and (X, τ) is a semi-T1/2 space, then g iseg-closed.
(v) g is strongly eg-continuous and injective, then f is closed.

Proof. (i) Let A be a closed set of (Y, σ). Since f is continuous, f−1(A)
is closed in (X, τ) and since g ◦ f is eg-closed, (g ◦ f)(f−1(A)) is eg-closed in
(Z, γ). i.e., g(A) is eg-closed in (Z, γ), since f is surjective. Therefore, g is
a eg-closed map.
(ii) Let B be a closed set of (X, τ). Since g ◦ f is eg-closed, (g ◦ f)(B) is eg-
closed in (Z, γ). Since g is eg-irresolute, g−1((g ◦f)(B)) is eg-closed in (Y, σ).
i.e., f(B) is eg-closed in (Y, σ), since g is injective. Thus, f is a eg-closed
map.
(iii) Let A be a closed set of (Y, σ). Since f is g-continuous, f−1(A) is
g-closed in (X, τ). Since (X, τ) is a T1/2 space, f

−1(A) is closed in (X, τ)
and so as in (i), g is a eg-closed map.
(iv) Let A be a closed set of (Y, σ). Since f is eg-continuous, f−1(A) iseg-closed in (X, τ). Since (X, τ) is a semi-T1/2 space, f

−1(A) is closed in
(X, τ) and so as in (i), g is a eg-closed map.
(v) Let D be a closed set of (X, τ). Since g ◦ f is eg-closed, (g ◦ f)(D) iseg-closed in (Z, γ). Since g is strongly eg-continuous, g−1((g◦f)(D)) is closed
in (Y, σ). i.e., f(D) is closed in (Y, σ), since g is injective. Therefore, f is
a closed map.

As for the restriction fA of a map f : (X, τ)→ (Y, σ) to a subset A of
(X, τ), we have the following:

Theorem 3.15. Let (X, τ) and (Y, σ) be any topological spaces. Then if:
(i) f : (X, τ) → (Y, σ) is eg-closed and A is a closed subset of (X, τ), then
fA : (A, τA)→ (Y, σ) is eg-closed.
(ii) f : (X, τ) → (Y, σ) is #gs-irresolute and eg-closed and A is an open
subset of (X, τ), then fA : (A, τA)→ (Y, σ) is eg-closed.
(iii) f : (X, τ) → (Y, σ) is eg-closed (resp. closed) and A = f−1(B) for
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some closed (resp. eg-closed) set B of (Y, σ), then fA : (A, τA) → (Y, σ) iseg-closed.
Proof. (i) Let B be a closed set of A. Then B = A∩ F for some closed

set F of (X, τ) and so B is closed in (X, τ). By hypothesis, f(B) is eg-closed
in (Y, σ). But f(B) = fA(B) and therefore fA is a eg-closed map.
(ii) Let C be a closed set of A. Then C is g-closed in A. Since A is both
open and eg-closed, C is eg-closed, by Theorem 2.5. Since f is both #gs-
irresolute and eg-closed, f(C) is eg-closed in (Y, σ), by Proposition 3.6. Since
f(C) = fA(C), fA is a eg-closed map.
(iii) Let D be a closed set of A. Then D = A ∩H for some closed set H
of (X, τ). Now fA(D) = f(D) = f(A ∩H) = f(f1(B) ∩H) = B ∩ f(H).
Since f is eg-closed, f(H) is eg-closed and so B ∩ f(H) is eg-closed in (Y, σ)
by Corollary 2.6. Therefore, fA is a eg-closed map.

The next theorem shows that normality is preserved under continuouseg-closed maps.
Theorem 3.16. If f : (X, τ)→ (Y, σ) is a continuous, eg-closed map from
a normal space (X, τ) onto a space (Y, σ) then (Y, σ) is normal.

Proof. It follows from Theorem 1.12 of [12] and the fact that everyeg-closed map is g-closed.
Analogous to a eg-closed map, we define a eg-open map as follows:

Definition 10. A map f : (X, τ) → (Y, σ) is said to a eg-open map if the
image f(A) is eg-open in (Y, σ) for each open set A in (X, τ).

Proposition 3.17. For any bijection f : (X, τ) → (Y, σ), the following
statements are equivalent:
(i) f−1 : (Y, σ)→ (X, τ) is eg-continuous,
(ii) f is a eg-open map and
(iii) f is a eg-closed map.

Proof. (i) ⇒ (ii): Let U be an open set of (X, τ). By assumption
(f−1)−1(U) = f(U) is eg-open in (Y, σ) and so f is eg-open.
(ii) ⇒ (iii): Let F be a closed set of (X, τ). Then F c is open in (X, τ).
By assumption, f(F c) is eg-open in (Y, σ). i.e., f(F c) = (f(F ))c is eg-open
in (Y, σ) and therefore f(F ) is eg-closed in (Y, σ). Hence f is eg-closed.
(iii)⇒ (i): Let F be a closed set in (X, τ). By assumption f(F ) is eg-closed
in (Y, σ). But f(F ) = (f−1)−1(F ) and therefore f−1 is eg-continuous on Y .
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Definition 11. Let x be a point of (X, τ) and V be a subset of X. Then
V is called a eg-neighbourhood of x in (X, τ) if there exists a eg-open set U
of (X, τ) such that x ∈ U ⊂ V .

In the next two theorems, we obtain various characterizations of eg-open
maps.

Theorem 3.18. Let f : (X, τ)→ (Y, σ) be a mapping. Then the following
statements are equivalent:
(i) f is a eg-open mapping.
(ii) For a subset A of (X, τ), f(int(A)) ⊂ eg-int(f(A).
(iii) For each x ∈ X and for each neighborhood U of x in (X, τ), there
exists a eg-neighbourhood W of f(x) in (Y, σ) such that W ⊂ f(U).

Proof. (i) ⇒ (ii): Suppose f is eg-open. Let A ⊂ X. Since int(A) is
open in (X, τ), f(int(A)) is eg-open in (Y, σ). Hence f(int(A)) ⊂ f(A) and
we have, f(int(A)) ⊂ eg-int(f(A)).
(ii) ⇒ (iii): Suppose (ii) holds. Let x ∈ X and U be an arbitrary
neighborhood of x in (X, τ). Then there exists an open set G such that
x ∈ G ⊂ U . By assumption, f(G) = f(int(G)) ⊂ eg-int(f(G)). This im-
plies f(G) = eg-int(f(G)). Therefore, f(G) is eg-open in (Y, σ). Further,
f(x) ∈ f(G) ⊂ f(U) and so (iii) holds, by taking W = f(G).
(iii) ⇒ (i): Suppose (iii) holds. Let U be any open set in (X, τ), x ∈ U
and f(x) = y. Then x ∈ U and for each y ∈ f(U), by assumption there
exists a eg-neighbourhoodWy of y in (Y, σ) such that Wy ⊂ f(U). SinceWy

is a eg-neighbourhood of y, there exists a eg-open set Vy in (Y, σ) such that
y ∈ Vy ⊂ Wy. Therefore, f(U) = ∪{Vy : y ∈ f(U)}. Since the arbitrary
union of eg-open sets is eg-open, f(U) is a eg-open set of (Y, σ). Thus, f is aeg-open mapping.
Theorem 3.19. A function f : (X, τ)→ (Y, σ) is eg-open if and only if for
any subset B of (Y, σ) and for any closed set S containing f−1(B), there
exists a eg-closed set A of (Y, σ) containing B such that f−1(A) ⊂ S.

Proof. Similar to Theorem 3.5.

Corollary 3.20. A function f : (X, τ) → (Y, σ) is eg-open if and only if
f−1(eg-cl(B)) ⊂ cl(f−1(B)) for every subset B of (Y, σ).

Proof. Suppose that f is eg-open. Then for any B ⊂ Y , f−1(B) ⊂
cl(f−1(B)). By Theorem 3.19, there exists a eg-closed set A of (Y, σ)
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such that B ⊂ A and f−1(A) ⊂ cl(f−1(B)). Therefore, f−1(eg-cl(B)) ⊂
f−1(A) ⊂ cl(f−1(B)), since A is a eg-closed set in (Y, σ).

Conversely, let S be any subset of (Y, σ) and F be any closed set con-
taining f−1(S). Put A = eg-cl(S). Then A is a eg-closed set and S ⊂ A.
By assumption, f−1(A) = f−1(eg-cl(S)) ⊂ cl(f−1(S)) ⊂ A and therefore by
Theorem 3.19, f is eg-open.

Finally in this section, we define another new class of maps called eg*-
closed maps which are stronger than eg-closed maps.
Definition 12. A map f : (X, τ)→ (Y, σ) is said to be a eg*-closed map if
the image f(A) is eg-closed in (Y, σ) for every eg-closed set A in (X, τ).

For instance the map f in Example 3.1 is a eg*-closed map
Remark 3.21. Since every closed set is a eg-closed set we have every eg*-
closed map is a eg-closed map. The converse is not true in general as seen
from the following example.

Example 3.22. LetX = Y = {a, b, c}, τ = {∅,X, {a, b}}, σ = {∅, Y, {a}, {a, b}}
and f : (X, τ)→ (Y, σ) be the identity map. Then f is a eg-closed map but
not a eg*-closed map, since {a, c} is a eg-closed set in (X, τ), but its image
under f is {a, c}, which is not eg-closed in (Y, σ).
Proposition 3.23. A mapping f : (X, τ)→ (Y, σ) is eg*-closed if and only
if eg-cl(f(A)) ⊂ f(eg-cl(A)) for every subset A of (X, τ).

Proof. Similar to Proposition 3.2.

Analogous to eg*-closed map we can also define eg*-open map.
Proposition 3.24. For any bijection f : (X, τ)→ (Y, σ), the following are
equivalent:
(i) f−1 : (Y, σ)→ (X, τ) is eg-irresolute,
(ii) f is a eg*-open and
(iii) f is a eg*-closed map.

Proof. Similar to Proposition 3.17.

Proposition 3.25. If f : (X, τ) → (Y, σ) is #gs-irresolute and eg-closed,
then it is a eg*-closed map.
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Proof. Follows from Proposition 3.6.

Lemma 3.26. Let A be a subset of X. Then p ∈ eg-cl(A) if and only if for
any eg-neighborhood N of p in X, A ∩N 6= ∅.

Definition 13. Let A be a subset of X. A mapping r : X → A is called
a eg-continuous retraction if r is eg-continuous and the restriction rA is the
identity mapping on A.

Definition 14. A topological space (X, τ) is called a eg-Hausdorff if for
each pair x, y of distinct points of X, there exists eg-neighborhoods U1 and
U2 of x and y, respectively, that are disjoint.

Theorem 3.27. Let A be a subset of X and r : X → A be a eg-continuous
retraction. If X is eg-Hausdorff, then A is a eg-closed set of X.

Proof. Suppose that A is not eg-closed. Then there exists a point x
in X such that x ∈ eg-cl(A) but x /∈ A. It follows that r(x) 6= x because
r is eg-continuous retraction. Since X is eg-Hausdorff, there exists disjointeg-open sets U and V in X such that x ∈ U and r(x) ∈ V . Now let W be
an arbitrary eg-neighborhood of x. Then W ∩ U is a eg-neighborhoodof x.
Since x ∈ eg-cl(A), by Lemma 3.26, we have (W ∩ U) ∩ A 6= ∅. Therefore
there exists a point y in W ∩ U ∩ A. Since y ∈ A, we have r(y) = y ∈ U
and hence r(y) /∈ V . This implies that r(W ) 6⊂ V because y ∈ W . This is
contrary to the eg-continuity of r. Consequently, A is a eg-closed set of X.
Theorem 3.28. Let {Xi : i ∈ I} be any family of topological spaces. If
f : X → Q

Xi is a eg-continuous mapping, then Pri ◦ f : X → Xi iseg-continuous for each i ∈ I, where Pri is the projection of
Q
Xj onto Xi.

Proof. We shall consider a fixed i ∈ I. Suppose Ui is an arbitrary open
set in X . Then Pr−1i (Ui) is open in

Q
Xi. Since f is eg-continuous, we

have, f−1(Pr−1i (Ui)) = (Pri ◦ f)−1(Ui) eg-open in X. Therefore Pri ◦ f iseg-continuous.
4. eg-Homeomorphisms
In this section we introduce and study two new homeomorphisms namely eg-
homeomorphism and eg*-homeomorphism. We prove that gc-homeomorphism
and eg-homeomorphism are independent and eg*-homeomorphism is an equiv-
alence relation between topological spaces.
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Definition 15. A bijection f : (X, τ)→ (Y, σ) is called eg-homeomorphism
if f is both eg-continuous and eg-open.
Proposition 4.1. Every homeomorphism is a eg-homeomorphism but not
conversely.

Proof. It follows from definitions.

The converse of the above Proposition 4.1 need not be true as seen from
the following example.

Example 4.2. LetX = Y = {a, b, c}, τ = {∅,X, {a, b}} and σ = {∅, Y, {a}, {a, b}}.
The identity map f on X is eg-homeomorphism but not a homeomorphism,
because it is not continuous.

Thus, the class of eg-homeomorphisms properly contains the class of
homeomorphisms. Next we show that the class of g-homeomorphisms prop-
erly contains the class of eg-homeomorphisms.
Proposition 4.3. Every eg-homeomorphism is a g-homeomorphism (resp.bg-homeomorphism) but not conversely.

Proof. Since every eg-continuous map is g-continuous (resp. bg-continuous)
and every bg-open map is g-open (resp. bg-open), the proof follows.

The converses of the above Proposition 4.3 need not be true as seen
from the following examples.

Example 4.4. Let X = Y = {a, b, c}, τ = {∅,X, {a}} and σ = {∅, Y, {b}}.
Define a map f : (X, τ)→ (Y, σ) by f(a) = c, f(b) = a and f(c) = b. Then
f is a g-homeomorphism. However, f is not a eg-homeomorphism.
Example 4.5. Let X = Y = {a, b, c}, τ = {∅,X, {a}, {b, c}} and σ =
{∅, Y, {a}, {b}, {a, b}, {b, c}}. Let f : (X, τ) → (Y, σ) be the identity map.
Then f is bg-homeomorphism. However, f is not a eg-homeomorphism.
Proposition 4.6. Let f : (X, τ)→ (Y, σ) be a bijection bg-continuous map.
Then the following statements are equivalent:
(i) f is a eg-open map.
(ii) f is a eg-homeomorphism.
(iii) f is a eg-closed map.
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Proof. It follows from Proposition 3.17.

The composition of two eg-homeomorphism maps need not be aeg-homeomorphism as can be seen from the following example.

Example 4.7. Let X = Y = Z = {a, b, c}, τ = {∅,X, {a}, {b}, {a, b}},
σ = {∅, Y, {a, b}} and γ = {∅, Z, {a}, {a, b}}. Let f : (X, τ) → (Y, σ)
and g : (Y, σ) → (Z, γ) be identity maps. Then both f and g are eg-
homeomorphisms but their composition g ◦ f : (X, τ) → (Z, γ) is not a eg-
homeomorphism, because for the open set {b} in (X, τ), (g ◦f)({b}) = {b},
which is not a eg-open set in (Z, γ). Therefore g ◦ f is not a eg-open map
and so g ◦ f is not a eg-homeomorphism.

We next introduce a new class of maps called eg*-homeomorphisms which
forms a sub class of eg-homeomorphisms. This class of maps is closed under
composition of maps.

Definition 16. A bijection f : (X, τ)→ (Y, σ) is said to be eg*-homeomorphism
if both f and f−1 are eg-irresolute.

We denote the family of all eg-homeomorphisms (resp. eg*-homeomorphism
and homeomorphisms) of a topological space (X, τ) onto itself by eg-h(X, τ)
(resp. eg*-h(X, τ) and h(X, τ)).

Proposition 4.8. Every eg*-homeomorphism is a eg-homeomorphism but
not conversely. i.e., for any space (X, τ), eg*-h(X, τ) ⊂ g-h(X, τ).

Proof. It follows from Proposition 2.1 and the fact that every eg*-open
map is eg-open.

The function g in Example 4.7 is a eg-homeomorphism but not a eg*-
homeomorphism, since for the eg-closed set {a, c} in (Y, σ), (g−1)−1({a, c}) =
g({a, c}) = {a, c} which is not eg-closed in (Z, γ). Therefore, g−1 is not eg-
irresolute and so g is not a eg*-homeomorphism.
Proposition 4.9. Every eg*-homeomorphism is a g-homeomorphism but
not conversely.

Proof. Follows from Propositions 4.8 and 4.3.

The map f in Example 4.4 is a g-homeomorphism but not a eg*-homeomorphism.
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Remark 4.10. eg-homeomorphism and gc-homeomorphism are indepen-
dent as can be seen from the following examples.

Example 4.11. Let X = Y = {a, b, c}, τ = {∅,X, {a}, {a, b}} and σ =
{∅, Y, , {b}{b, c}}. Define f : (X, τ) → (Y, σ) by f(a) = c, f(b) = b and
f(c) = a. Then f is a gc-homeomorphism but not eg-homeomorphism, be-
cause f is not a eg-continuous map.

The map f in Example 4.4 is a eg-homeomorphism but not a gc-homeomorphism,
because f−1 is not a gc-irresolute map.

Proposition 4.12. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, γ) are eg*-
homeomorphisms, then their composition g ◦ f : (X, τ) → (Z, γ) is alsoeg*-homeomorphism.

Proof. Let U be a eg-open set in (Z, γ). Now, (g◦f)−1(U) = f−1(g−1(U)) =
f−1(V ), where V = g−1(U). By hypothesis, V is eg-open in (Y, σ) and
so again by hypothesis, f−1(V ) is eg-open in (X, τ). Therefore, g ◦ f iseg-irresolute. Also for a eg-open set G in (X, τ), we have (g ◦ f)(G) =
g(f(G)) = g(W ), whereW = f(G). By hypothesis f(G) is eg-open in (Y, σ)
and so again by hypothesis, g(f(G)) is eg-open in (Z, γ). i.e., (g ◦ f)(G) iseg-open in (Z, γ) and therefore (g ◦ f)−1 is eg-irresolute. Hence g ◦ f is aeg*-homeomorphism.
Theorem 4.13. The set eg*-h(X, τ) is a group under the composition of
maps.

Proof. Define a binary operation *: eg*-h(X, τ) × eg*-h(X, τ) → eg*-
h(X, τ) by f ∗g = g ◦f for all f, g ∈ eg*-h(X, τ) and ◦ is the usual operation
of composition of maps. Then by Proposition 4.12, g ◦ f ∈ eg*-h(X, τ).
We know that the composition of maps is associative and the identity map
I : (X, τ)→ (X, τ) belonging to eg*-h(X, τ) servers as the identity element.
If f ∈ eg*-h(X, τ), then f−1 ∈ eg*-h(X, τ) such that f◦f−1 = f−1◦f = I and
so inverse exists for each element of eg*-h(X, τ). Therefore, (eg*-h(X, τ), ◦)
is a group under the operation of composition of maps

Theorem 4.14. Let f : (X, τ) → (Y, σ) be a (eg*-homeomorphism. Then
f induces an isomorphism from the group eg*-h(X, τ) onto the group eg*-
h(Y, σ).
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Proof. Using the map f , we define a map θf : eg*-h(X, τ)→ eg*-h(Y, σ)
by θf (h) = f ◦ h ◦ f−1 for every h ∈ eg*-h(X, τ). Then θf is a bijection.
Further, for all h1, h2 ∈ eg*-h(X, τ), θf (h1◦h2) = f ◦(h1◦h2)◦f−1 = (f ◦h1◦
f−1) ◦ (f ◦ h2 ◦ f−1) = θf (h1) ◦ θf (h2). Therefore, θf is a homeomorphism
and so it is an isomorphism induced by f .

Theorem 4.15. eg*-homeomorphism is an equivalence relation in the col-
lection of all topological spaces.

Proof. Reflexivity and symmetry are immediate and transitivity follows
from Proposition 4.12.

Theorem 4.16. If f : (X, τ) → (Y, σ) is a eg*-homeomorphism, then eg-
cl(f−1(B)) = f−1(eg-cl(B)) for all B ⊂ Y .

Proof. Since f is a eg*-homeomorphism, f is eg-irresolute. Since eg-cl(f(B))
is a eg-closed set in (Y, σ), f−1(eg-cl(f(B))) is eg-closed in (X, τ). Now,
f−1(B) ⊂ f−1(eg-cl(B)) and so by Proposition 2.3, eg-cl(f−1(B)) ⊂ f−1(eg-cl(B)).
Again since f is a eg*-homeomorphism, f−1 is eg-irresolute. Since eg-cl(f−1(B))
is eg-closed in (X, τ), (f−1)−1(eg-cl(f−1(B))) = f(eg-cl(f−1(B))) is eg-closed
in (Y, σ). Now, B ⊂ (f−1)−1(f−1(B))) ⊂ (f−1)−1(eg-cl(f−1(B))) =
f(eg-cl(f−1(B))) and so eg-cl(B) ⊂ f(eg-cl(f−1(B))). Therefore,
f−1(eg-cl(B)) ⊂ f−1(f(eg-cl(f−1(B)))) ⊂ eg-cl(f−1(B)) and hence the equal-
ity holds.

Corollary 4.17. If f : (X, τ) → (Y, σ) is a eg*-homeomorphism, then eg-
cl(f(B)) = f(eg-cl(B)) for all B ⊂ X.

Proof. Since f : (X, τ)→ (Y, σ) is a eg*-homeomorphism, f−1 : (Y, σ)→
(X, τ) is also a eg*-homeomorphism. Therefore, by Theorem 4.16,eg-cl((f−1)−1(B)) = (f−1)−1(eg-cl(B)) for all B ⊂ X. i.e., eg-cl(f(B)) = f(eg-
cl(B)).

Corollary 4.18. If f : (X, τ)→ (Y, σ) is a eg*-homeomorphism, then f(eg-
int(B)) = eg-int(f(B)) for all B ⊂ X.

Proof. For any set B ⊂ X, eg-int(B) = (eg-cl(Bc))c. Thus, by utilizing
Corollary 4.17, we obtain f(eg-int(B)) = f((eg-cl(Bc))c) = (f(eg-cl(Bc)))c =
(eg-cl(f(Bc)))c = (eg-cl((f(B))c))c = eg-int(f(B)).
Corollary 4.19. If f : (X, τ) → (Y, σ) is a eg*-homeomorphism, then
f−1(eg-int(B)) = eg-int(f−1(B)) for all B ⊂ Y .



On eg-homeomorphisms in topological spaces 17

Proof. Since f−1 : (Y, σ) → (X, τ) is also a eg*-homeomorphism, the
proof follows from Corollary 4.18.

Theorem 4.20. Let f : (X, τ) → (Y, σ) is a eg-continuous function and
Gg(f) = {(x, y) ∈ X×Y : y = f(x)}, where X×Y is the product topology
and Gg(f) is called the eg-graph of f . Then the following properties are
satisfied:
(1) Gg(f), as a subspace of X × Y , is eg-homeomorphic to X.
(2) If Y is eg-Hausdorff space, then Gg(f) is eg-closed in X × Y .

Proof. (1). The function g : X → Gg(f) is defined by g(x) = (x, f(x))
for each x ∈ X is eg-continuous and g−1 is also eg-continuous. It is obvious
that g is an injective function. Suppose D (resp. E) is an arbitrary eg-
neighborhood of x ∈ X (resp. g(x) = (x, f(x)) in Gg(f)). So there exist eg-
open sets U and V in X and Y containing x and f(x) respectively for which
(U×V )∩Gg(f) ⊂ E and U ⊂ D and f(U) ⊂ V . LetM = (U×V )∩Gg(f).
Then (x, f(x)) ∈ M and x ∈ g−1(M) ⊂ U ⊂ D. It implies that g−1 is eg-
continuous. Moreover, g(U) ⊂ U × f(U) ⊂ U × V1 and g(U) ⊂ Gg(f).
Therefore, g(U) ⊂ (U × V ) ∩ Gg(f) ⊂ E. Hence g is eg-continuous which
means that g is a eg-homeomorphism.
(2). Suppose that (x, y) /∈ Gg(f). Then y1 = f(x) 6= y. By hypothesis,
there exist disjoint eg-open sets V1 and V in Y such that y1 ∈ V1, y ∈ V .
Since f is eg-continuous, there exists an open set U in X containing x such
that f(U) ⊂ V 1. Then g(U) ⊂ U × V1. It follows from this and the fact
that V1 ∩ V = ∅ that (U × V ) ∩Gg(f) = ∅.
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