Proyecciones Journal of Mathematics Vol. 28, N^o 2, pp. 133–139, August 2009. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172009000200003

SCHUR RING AND QUASI–SIMPLE MODULES

PEDRO DOMÍNGUEZ-WADE UNIVERSIDAD DE MATANZAS, CUBA Received : November 2008. Accepted : April 2009

Abstract

Let R be a ring of algebraic integers of an algebraic number field F and let $G \leq GL_n(R)$ be a finite group. In this paper we show that the R-span of G is just the matrix ring $M_n(R)$ of the $n \times n$ -matrices over R if and only if $G/O_{p_i}(G)$ is absolutely simple for all $p_i \in \pi$, where π is the set of the positive prime divisors of |G| and $O_{p_i}(G)$ is the largest normal p_i -subgroup.

Subjclass : Primary 20C20 ; Secondary 19A22.

Keywords : Schur ring, π -globally simple.

1. Introduction.

Let F be an algebraic number field with ring of algebraic integers R and let $\pi = \{p_1, ..., p_t\}$ be a set of positive prime numbers. Assume that the I_i are maximal ideals of R such that $p_i \in I_i (i = 1, ..., t)$. Set $L_{\pi} = \{\frac{a}{b} \mid a, b \in R, b \notin I_i, i = 1, ..., t\}$. Then R_{π} denotes a localization of R at L_{π} . Thus R_{π} is a principal ideal having quotient field of characteristic zero and containing a unique prime ideal I_i such that $p_i \in I_i, i = 1, ..., n$. We denote the Jacobson radical of R_{π} be $J(R_{\pi})$. Therefore the residue ring $K_m = R_{\pi}/J(R_{\pi})$ is a semi-simple ring of characteristic m. We may write

(1.1)
$$K_m = \bigoplus_{i=1}^t k_i$$

where the k_i are fields of characteristic $p_i(i = 1, ..., t)$.

If G is a finite group then we obtain

(1.2)
$$K_m G = \bigoplus_{i=1}^t k_i G.$$

by (1.1).

From (1.2) it follows that

$$(1.3) 1 = f_1 + \dots + f_t$$

where the f_i are orthogonal central idempotents in $K_m G$.

Therefore

$$\begin{split} \mathbf{K}_m G &= \bigoplus_{i=1}^t k_i G \\ &= \bigoplus_{i=1}^t K_m G f_i \text{ with } k_i G = K_m G f_i. \\ &\text{Now, } R_\pi \text{ is a Hausdorff space in its } J(R_\pi)\text{-topology, i. e., that} \end{split}$$

$$\bigcap_{j=1}^{\infty} J(R_{\pi})^j = (0).$$

Therefore the $J(R_{\pi})$ -adic completion R_{π} of R_{π} is a complete semi-local ring such that

$$K_m = R_\pi / J(R_\pi) = \hat{R}_\pi / J(\hat{R}_\pi)$$

and

(1.4)
$$\hat{R}_{\pi} = R_1 \oplus \dots \oplus R_t$$

where the R_i are complete local rings such that $R_i/J(R_i) \cong k_i$. Observe that R_i is isomorphic to $\hat{R}_{v_{p_i}}$, where $\hat{R}_{v_{p_i}}$ is a complete valuation ring corresponding to the discrete valuation v_{p_i} associated to the maximal ideal I_i of R. Thus, we may write

(1.5)
$$\hat{R}_{\pi} \cong \hat{R}_{v_{p_1}} \oplus \dots \oplus \hat{R}_{v_{p_t}}$$

by (1.4).

Therefore

(1.6)
$$R_{\pi}G \cong R_{v_{p_1}}G \oplus \cdots \oplus R_{v_{p_t}}G.$$

From (1.6) we obtain

$$(1.7) 1 = f_1 + \dots + f_n$$

where the \hat{f}_i are orthogonal central idempotents in $\hat{R}_{\pi}G$.

Let π_l be any set of positive prime numbers. Assume that R_{π_l} is the localization of R at L_{π_l} . Then we have

(1.8)
$$\bigcap_{l=1}^{\infty} R_{\pi_l} = R$$

In the study of the Schur ring $M_n(R)$ of a commutative ring R the main problem is to find a finite group $G \leq GL_n(R)$ such that the R-span of Gcoincides with the matrix ring $M_n(R)$ of the $n \times n$ -matrices on K. The more precise question, in general sense, which Azumaya algebras over Rare obtainable as an epimorphic image of the group-ring RG for some finite group G.

1.1. Notations and Definitions.

Throughout the paper F denote an algebraic number field and R denote the ring of algebraic integers of F. Moreover, K_m is semi-simple ring of characteristic m with maximal ideals K_i and residue fields $k_i = K_m/K_i$ of characteristic p_i . For an maximal ideal I of R we denote by ϕ the I-adic valuation on F. Here R_{v_p} denote the valuation ring of v_p and \hat{R}_{v_p} denote the complete valuation ring corresponding to the discrete valuation v_p . Let $M_n(R)$ stand for the ring of $(n \times n)$ -matrices over R. We write $GL_n(R)$ for the multiplicative group of the invertible elements of $M_n(R)$. For a finite subgroup G of $GL_n(R)$ we let $\langle G \rangle_R$ be the R-span of G in $M_n(R)$. Let π be a set of natural primes. We denote the fields of rational and complex numbers by \mathbf{Q} and \mathbf{C} , respectively.

2. Preliminary Results.

Let R be a commutative ring and let $G \leq GL_n(R)$ be a finite group. Then the matrix ring $M_n(R)$ is called Schur ring if $\langle G \rangle_R = M_n(R)$.

Lemma 2.0.1. Let k be a field of characteristic p and let $G \leq GL_n(k)$ be a finite group. Assume that V is the kG-module corresponding to G. Then G is absolutely simple if and only if $\langle G \rangle_k = M_n(k)$.

Proof. If G is absolutely simple then by Burnside's theorem the assertion follows. Conversely, let \dot{G} be a finite group with a representation $\varphi : \dot{G} \longrightarrow GL_n(k)$ such that $\varphi(\dot{G}) = G$. Consider the subjection of k-algebras $\psi : k\dot{G} \longrightarrow \langle G \rangle_k$, where $\psi(\dot{G}) = \varphi(\dot{G})$. Therefore $k\dot{G}/\ker\psi \cong M_n(k)$. Since $J(k\dot{G}) \subseteq \ker\psi$ if follows that the matrix algebra summand of $k\dot{G}/J(k\dot{G})$ corresponding to V is $M_n(k)$, so the result follows. \Box

Let K_m be a semi-simple ring of characteristic m and let $G \leq GL_n(K_m)$ be a finite group. Assume that V is the K_mG -module corresponding to G. Then G is called π -quasi-simple if each direct summand Vf_i is an absolutely simple k_iG -module.

Lemma 2.0.2. Let K_m be a semi-simple ring of characteristic m and let $G \leq GL_n(K_m)$ be a finite group. Assume that V is the K_mG -module corresponding to G. Then $\langle G \rangle_{K_m} = M_n(K_m)$ if and only if G is π -quasi-simple.

Proof. We have $\langle G \rangle_{K_m} = \langle G \rangle_{k_1} \oplus \cdots \oplus \langle G \rangle_{k_t}$ $= M_n(K_m)$ $= M_n(k_1) \oplus \cdots \oplus M_n(k_t)$

Therefore $\langle G \rangle_{k_i} = M_n(k_i)$. Thus applying the last lemma the result follows. Conversely, applying again the lemma (2.0.1) we deduce that

$$\langle G \rangle_{k_i} = M_n(k_i)$$

for all i. Thus we may write

So we are done.

Proposition 2.0.3. Let $G \leq GL_n(\mathbf{C})$ be a finite group. Assume that F is a finite extension of \mathbf{Q} such that $G \leq GL_n(F)$. If R is the ring of integers of F then $G \leq GL_n(R_\pi)$, being R_π a localization of R at L_π .

Proof. Let \hat{R}_{π} be the completion of R_{π} . It is well known that $G \leq GL_n(\hat{R}_{v_{p_l}})(l=1,\ldots,t)$, where $\hat{R}_{v_{p_l}}$ is a complete valuation ring. Let \hat{U}_i be the $\hat{R}_{v_{p_l}}G$ -module corresponding to G. From (1.5) we deduce that there is an $\hat{R}_{\pi}G$ -module minimal \hat{R}_{π} -free $\hat{U} = \hat{U}_1 \oplus \cdots \oplus \hat{U}_t$, so $G \leq GL_n(\hat{R}_{\pi})$. Since \hat{U} is a complete minimal \hat{R}_{π} - free module it follows that $\hat{U} = \hat{R}_{\pi}U$, being U an $R_{\pi}G$ -module, which is a Hausdorff space for its $J(R_{\pi})$ -topology. So we are done. \Box

From (1.8) and the last proposition one can deduce an "Hasse Principle" for $\langle G \rangle_R$ to coincide with $M_n(R)$: this is the case if and only if $\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$ for every set of positive prime numbers π .

Let $G \leq GL_n(\mathbf{C})$ be a finite group and let $U_{\mathcal{C}}$ be the $\mathbf{C}G$ -module corresponding to G. Then there exists a finite extension F of \mathbf{Q} with FGmodule U_F conjugate to $U_{\mathcal{C}}$. According to the proposition (2.0.3) there is an $R_{\pi}G$ -module U which is also conjugate to $U_{\mathcal{C}}$. Let \hat{R}_{π} be the $J(R_{\pi})$ -adic completion of R_{π} . We know that there exists an $\hat{R}_{\pi}G$ -module \hat{U} which is the completion of U. From (1.7) it follows that

$$\hat{U} = \hat{U}\hat{f}_1 \oplus \cdots \oplus \hat{U}\hat{f}_t$$

where the $\hat{U}\hat{f}_i$ are $R_{v_{p_i}}G$ -modules. The K_mG -module $\overline{U}_{K_m} = \hat{U}/J(R_\pi)\hat{U}$ = $\hat{U}\hat{f}_1/J(R_{v_{p_1}})\hat{U}\hat{f}_1 \oplus \cdots \oplus \hat{U}\hat{f}_t/J(R_{v_{p_t}})\hat{U}\hat{f}_t$

is called reduction of U modulo π .

The natural projection $GL_n(\hat{R}_{\pi}) \to GL_n(K_m)$ induces the homomorphism $\tau: G \to GL_n(K_m)$, where $\tau(G) = \overline{G}$. Furthermore the homomorphism $GL_n(\hat{R}_{v_{p_i}}) \to GL_n(k_i)$ induces the homomorphism $\tau_i: G \to GL_n(k_i)$ with $\tau_i(G) = \overline{G}_i$

Observe that if $\langle G \rangle_{R_{\pi_l}} = M_n(R_{\pi_l})$, where π_l is the set of the positive prime divisors of |G|, then $\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$ for every set π of positive prime numbers. We use Nakayama's lemma to show that that $\langle G \rangle_{R_{\pi_l}} = M_n(R_{\pi_l})$ is equivalent to $\langle \overline{G} \rangle_{K_m} = M_n(K_m)$.

3. Main Results.

Let R be a ring of algebraic integers and let $G \leq GL_n(R)$ be a finite group. Assume that π is the set of the positive prime divisors of |G| and that U is the $R_{\pi}G$ -module corresponding to G. If the reduction of U module π is a π -quasi-simple K_mG -module, then we say that G is a π -globally simple.

Lemma 3.0.4. Let R be a ring of algebraic integers with localization R_{π} and let $G \leq GL_n(R_{\pi})$ be a finite group. Assume that π is a set of the positive prime divisors of |G|. Then $\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$ if and only if G is π -globally simple.

Proof. From $\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$ we deduce that $\langle \overline{G} \rangle_{K_m} = M_n(K_m)$, being $K_m = R_{\pi}/J(R_{\pi})$ a semi-simple ring. The result follows by lemma (2.0.2). Conversely, applying again the lemma (2.0.2) we obtain $\langle \overline{G} \rangle_{K_m} = M_n(K_m)$, so the assertion follows. \Box

Theorem 3.0.5. Let R be a ring of algebraic integers and let $G \leq GL_n(R)$ be a finite group. Then $\langle G \rangle_R = M_n(R)$ if and only if G is π -globally simple.

Proof. From $\langle G \rangle_R = M_n(R)$ we deduce that $\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$. Hence we obtain $\langle \overline{G} \rangle_{K_m} = M_n(K_m)$. The result follows by lemma (2.0.2). Conversely, since

$$\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})$$

by lemma (3.0.4) we deduce that for any set of prime numbers π we obtain

$$\langle G \rangle_{R_{\pi}} = M_n(R_{\pi}).$$

So we are done. \Box

Theorem 3.0.6. Let $G \leq GL_n(\mathbf{C})$ be a finite group. Then G is π -globally simple if and only if $G/O_{p_i}(G)$ is absolutely simple.

Proof. Let F be a finite extension of \mathbf{Q} such that $G \leq GL_n(F)$, and let R be the ring of integers of F. Consider the homomorphism $h_i : G \to \overline{G}_i$. Since \overline{G}_i is absolutely simple it follows that ker $h_i = O_{p_i}(G)$. Conversely, since $G/O_{p_i}(G)$ is absolutely simple for all i, we deduce that G is π -quasi-simple, being π the set of positive prime divisors of the order of G. So we are done. \Box

References

- [1] P. HUU TIEP. Globally irreducible representations of the finite symplectic group Sp4(q), Comm. in Algebra 22, pp. 6439 6457, (1994).
- [2] P. HUU TIEP. Basic spin representations of 2Sn and 2An as globally irreducible representations, Archiv Math. 64, pp. 103 112, (1995).
- [3] P. HUU TIEP. Weil representations as globally irreducible representations, Math. Nachr. 184, pp. 313 - 327, (1997).
- [4] P. HUU TIEP. Globally irreducible representations of finite groups and integral lattices, Geomet. Dedicata 64, pp. 85 123, (1997).
- [5] P. SPIGA AND Q. WANG An answer to Hirasaka and Muzychuk : Every *p*-Schurring over C_p^3 p is Schurian, Discrete Mathematics 308, pp. 1760-1763, (2008).
- [6] A. E. ZALESSKII AND F.VAN OYSTAEYEN Finite Groups over Arithmetical Rings and Globally Irreducible Representations, J. Algebra 215, pp. 418-436, (1999).

Pedro Domínguez Wade

Department of Mathematics Matanzas University Carretera Matanzas Varadero Km. 3 Cuba e-mail : pedro.dominguez@umcc.cu