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Abstract

In this paper, it is investigated the existence of periodic solutions
to the nonlinear third order differential equation :

x000 + c2(t)x
00 + c1(t)x

0 + f(t, x) = p(t, x, x0, x00).

The Leray-Schauder principle is used to show the existence of pe-
riodic solutions of this equation.
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1. Introduction

With respect to our observations, up to now, the problem of existence of
periodic solutions for various nonlinear second and third order differential
equations have been studied in the literature by only a few authors, see, for
example, the papers of Mehri & Shadman [1], Shadman & Mehri [2] and
Tunç & Çinar [3].

Meanwhile, it is also worth mentioning that, in 1995, Shadman & Mehri
[2] discussed the existence of periodic solutions to nonlinear third order
differential equation of the form:

x000 + c2(t)x
00 + c1(t)x

0 + f(t, x) = e(t).

In [2], the authors used Leray-Schauder principle to show the existence
of periodic solutions of this equation.

In this paper, we discuss the same topic as in ([1], [2], [3]) to nonlinear
third order differential equation of the type:

x000 + c2(t)x
00 + c1(t)x

0 + f(t, x) = p(t, x, x0, x00),(1.1)

in which p(t, x, x0, x00), f(t, x), c1(t) and c2(t) are continuous functions in
their respective domains [0, ω) × R3, [0, ω) × R and [0, ω), respectively.
In addition, it is assumed that all initial value problems corresponding
to equation (1.1) can be extended to [0, ω). Clearly, our equation, (1.1),
includes the equation investigated by Shadman and Mehri [2].

2. Main Result

Our main result is the following theorem.

Theorem 2.1. In addition to the basic assumptions imposed on the func-
tions c1, c2, f and p that appearing in equation (1.1), we assume that the
following conditions hold:

i) |f(t, x)| ≤ γ|x|+ β, forallt∈ [0, ω] and |x| <∞,
where γ and β are some non-negative constants.

(ii) |p(t, x, x0, x00)| ≤ |e(t)|, for all t, x, x0 and x00, and |e(t)| is a
continuous function for all t ∈ [0, ω].

iii)

Ã
ω
π

!3
+ γ1

Ã
ω
π

!2
+ γ2

Ã
ω
π

!
< 1, γi = max |ci(t)|, (i=1,2) and t ∈

[0, ω].
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Then equation (1.1) possesses a solution satisfying the boundary con-
ditions,

x(i)(0) + x(i)(ω) = 0, (i = 0, 1, 2).(2.1)

Proof. First, we show an estimate on the magnitude of the solutions of
problem:

x000 + c2(t)x
00 + c1(t)x

0 = µ[p(t, x, x0, x00)− f(t, x)], µ ∈ [0, 1],

x(i)(0) + x(i)(ω) = 0, (i = 0, 1, 2).(2.2)

It is assumed that x(t) is a function of class Cn−1[0, ω] such that x(t+
ω) + x(t) = 0 for all t, and we also use Wirtinger’s inequalities in the
following from:

¯̄̄̄
¯
¯̄̄̄
¯x(i−1)(t)

¯̄̄̄
¯
¯̄̄̄
¯
2

≤
Ã
ω

π

!n−i+1 ¯̄̄̄
¯
¯̄̄̄
¯x(n)(t)

¯̄̄̄
¯
¯̄̄̄
¯
2

, (i = 1, 2, ..., n),(2.3)

where ¯̄̄¯̄̄
·
¯̄̄¯̄̄
2
=
h Z ω

0
| · |2dt

i 1
2 .

Now, we suppose that x(t) is a solution of the problem given by (2.2).
In the light of the assumptions of the theorem, we have from (2.2) that;

|x000(t)| ≤ |c2(t)||x00(t)|+ |c1(t)||x0(t)|+ µ
h
|p(t, x(t), x0(t), x00(t))|+ |f(t, x)|

i

≤ γ2|x00(t)|+ γ1|x0(t)|+ µ
h
|e(t)|+ γ|x(t)|+ β

i
.

Hence, by using the Minkowski’s inequality, we get

¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
≤ γ2

¯̄̄¯̄̄
x00(t)

¯̄̄¯̄̄
2
+ γ1

¯̄̄¯̄̄
x0(t)

¯̄̄¯̄̄
2
+ µ

(¯̄̄¯̄̄
e(t)

¯̄̄¯̄̄
2
+ γ

¯̄̄¯̄̄
x(t)

¯̄̄¯̄̄
2
+ β
√
ω

)
.

It can also be seen from Wirtinger’s inequality (2.3) that
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¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
≤
(
γ2

Ã
ω

π

!
+ γ1

Ã
ω

π

!2)¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2

+µ

(¯̄̄¯̄̄
e(t)

¯̄̄¯̄̄
2
+ γ

Ã
ω

π

!3 ¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
+ β
√
ω

)
.

Hence,

"
1− γ2

Ã
ω

π

!
− γ1

Ã
ω

π

!2
− γµ

Ã
ω

π

!3#¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
≤ µ

(¯̄̄¯̄̄
e(t)

¯̄̄¯̄̄
2
+ β
√
ω

)
.

On the other hand, since

0 < γµ

Ã
ω

π

!3
+ γ1

Ã
ω

π

!2
+ γ2

Ã
ω

π

!
< 1,

then, clearly, it follows

¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
≤

µ

(¯̄̄¯̄̄
e(t)

¯̄̄¯̄̄
2
+ β
√
ω

)
1− γ2

³
ω
π

´
− γ1

³
ω
π

´2
− γµ

³
ω
π

´3 .
Now, let

∆0 =

(¯̄̄¯̄̄
e(t)

¯̄̄¯̄̄
2
+ β
√
ω

)
1− γ2

³
ω
π

´
− γ1

³
ω
π

´2
− γµ

³
ω
π

´3 .(2.4)

Thus, ¯̄̄¯̄̄
x000(t)

¯̄̄¯̄̄
2
≤ µ∆0.

Next, we write

x(i−1)(t) = x(i−1)(0) +
Z t

0
x(i)(τ)dτ, (i = 1, 2, 3).

Let us take t = ω. Then, we have
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x(i−1)(ω) = x(i−1)(0) +
Z ω

0
x(i)(τ)dτ, (i = 1, 2, 3).(2.5)

In view of (2.5) and (2.1), it follows that

0 = 2x(i−1)(0) +
Z ω

0
x(i)(τ)dτ, (i = 1, 2, 3),

and we also get

x(i−1)(0) = −x(i−1)(ω) = −1
2

Z ω

0
x(i)(τ)dτ, (i = 1, 2, 3).

Hence,

x(i−1)(t) = −1
2

Z ω

0
x(i)(τ)dτ +

Z t

0
x(i)(τ)dτ =

1

2

Z t

0
x(i)(τ)dτ, (i = 1, 2, 3).

Clearly, the last equality yields that

|x(i−1)(t)| ≤ 1
2

Z ω

0
|x(i)(τ)|dτ, (i = 1, 2, 3).(2.6)

Now, obviously, it follows from (2.6) that

|x(i−1)(t)| ≤ 1
2

√
ω
¯̄̄¯̄̄
x(i)(t)

¯̄̄¯̄̄
2
, (i = 1, 2, 3).(2.7)

Combining the inequality (2.7) with Wirtinger’s inequality and (2.4),
we obtain

|x(i−1)(t)| ≤ µ

2

√
ω

Ã
ω

π

!4−i
∆0, 0 ≤ µ ≤ 1, (i = 1, 2, 3).(2.8)

For µ = 0, it is clear from (2.8) that

x(i−1)(t) = 0, t ∈ [0, ω], (i = 1, 2, 3).

That is, x(t) = 0, x0(t) = 0 and x00(t) = 0. In this case, it follows that
the homogenous equation
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x000 + c2(t)x
00 + c1(t)x

0 = 0

has no non-trivial solution which satisfies the boundary conditions (2.1),

x(i)(0) + x(i)(ω) = 0, (i = 0, 1, 2).

This guarantees the existence of a Greens function for the problem (2.2).
Clearly, the problem (2.2) is equivalent to the following:

x(t) = µ

Z ω

0
g(t, s)

"
p
³
s, x(s), x0(s), x00(s)

´
− f

³
s, x(s)

´#
ds.(2.9)

Now, we consider the space C3[0, ω] normed by¯̄̄¯̄̄
x
¯̄̄¯̄̄
C3
= max

¯̄̄
x(i−1)(t)

¯̄̄
, t ∈ [0, ω], (i = 1, 2, 3).

Let Bρ be the space

Bρ =

(
x(t) ∈ C3[a, b] :

¯̄̄¯̄̄
x
¯̄̄¯̄̄
C3
≤ ρ

)
,

where

ρ = max
i

(
1

2

√
ω

Ã
ω

π

!4−i
∆0

)
, (i = 1, 2, 3).

In view of the sphere

SR =

(
x(t) ∈ C3[a, b] :

¯̄̄¯̄̄
x
¯̄̄¯̄̄
C3
= R

)
,

it follows for arbitrary R > ρ that equation (2.9) has no solution on the
sphere SR. Now, by noting Leary-Schauder principle and the complete
continuity of the operator

(Lx)(t) = µ

Z ω

0
g(t, s)

"
p
³
s, x(s), x0(s), x00(s)

´
− f

³
s, x(s)

´#
ds,

one can conclude that equation (2.9) has at least a solution in the open ball

{x :
¯̄̄¯̄̄
x
¯̄̄¯̄̄
C3

< R}.
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As a result, there exists a solution of equation (2.9) in the closed ball
Bρ. Therefore, this fact implies that the problem (2.2) has, at the least, a
solution for µ = 1 . 2

Remark. When we take p(t, x, y, z) = e(t) in equation (1.1), then the
conditions of theorem reduce those of Shadman and Mehri [2, Theorem 1].
It is also clear that our result generalizes that of Shadman and Mehri [2,
Theorem 1].

Corollary. In addition to the assumptions of theorem, we assume that the
following conditions hold:

(iv) The functions c1(t) and c2(t) are ω-periodic, that is, c1(t + ω) ≡
c1(t) and c2(t+ ω) ≡ c2(t).

(v) The function p(t, x, y, z) is 2ω-periodic, that is, p(t+ω, x, y, z) ≡
p(t, x, y, z) and in addition p(t+ ω, x, y, z) ≡ −p(t, x, y, z).

(vi) The functions f(t, x) is ω-periodic, that is, f(t + ω, x) ≡ f(t, x)
and also f(t,−x) ≡ −f(t, x).

Then equation (1.1) has a 2ω-periodic solution with zero mean.

Proof : Let x̄(t) be a 2ω-periodic extension of solution x(t) defined as
follows:

x (t) =

(
x (t) , 0 ≤ t ≤ ω
−x (t+ ω) −ω ≤ t ≤ 0.

Clearly, x̄(t) ∈ C2[−ω,ω]. Next, in the light of the above assumptions
imposed on the functions c1(t), c2(t), f(t, x) and p(t, x, y, z), it can be
easily shown that x̄(t) is a solution of equation (1.1) which satisfies the
periodic boundary condition:

x̄(i)(ω) = x̄(i)(−ω), (i = 0, 1, 2).

Subject to the factZ 2ω

0
x̄(t)dt =

Z ω

0
x̄(t)dt+

Z 2ω

ω
x̄(t)dt,

it follows that Z 2ω

0
x̄(t)dt =

Z ω

0
x̄(t)dt+

Z ω

0
x̄(t+ ω)dt = 0.

This fact shows that the solution x̄(t) has a zero mean value. The proof
of corollary is now complete. 2
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