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Abstract

Let E be a vector valued sequence space with operator valued β-
dual EβY . If E satisfies certain gliding hump assumptions, we show
that pointwise bounded subsets of EβY are sequentially equicontinuous.
The result is established by considering uniform convergence of the
elements in EβY .
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There are two possibilities for the extension of the classical Uniform
Boundedness Principle from Banach spaces to topological vector spaces.
The classical Uniform Boundedness Principle for Banach spaces asserts that
any pointwise bounded family of continuous linear operators between Ba-
nach spaces is uniformly bounded on bounded subsets of the domain space
or, equivalently, is equicontinuous. This suggests two possible extensions
of the Uniform Boundedness Principle to topological vector spaces; either
find sufficient conditions for a pointwise bounded family of continuous lin-
ear operators between topological vector spaces to be uniformly bounded
on families of bounded sets of the domain space or sufficient conditions
for the family to be equicontinuous. Both of these possibilities have been
addressed in the literature; see [Sw1], Chapter 4, for results of the former
case and [Bo], III.6.2, [Ro], 2.2.1, [Wi],9.3.4, for results in the latter case.
Similar possibilities exist for subsets of β-duals of vector valued sequence
spaces. For example, the references [Sw1],12.5.7, [SS], Corollary 21, give
sufficient conditions for a pointwise bounded subset of a β-dual to be uni-
formly bounded on bounded subsets of the sequence space. In this paper
we address the second possibility above and consider sufficient conditions in
the form of gliding hump properties for a pointwise bounded subset of the
β-dual of a vector valued sequence space to be sequentially equicontinuous.

We begin by fixing the notation and terminology. LetX,Y be Hausdorff
topological vector spaces and let E be a vector space of X valued sequences
containing the space c00(X) of all X valued sequences which are eventually
0. If x is a sequence, we denote the jth coordinate of x by xj so x = {xj}
and if z ∈ X and j ∈ N , ej ⊗ z denotes the sequence with z in the jth

coordinate and 0 in the other coordinates. The β-dual of E with respect
to Y , EβY , is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞X
j=1

Tjxj converges for every x = {xj} ∈ E},

where L(X,Y ) is the space of continuous linear operators from X into Y.
If T = {Tj} ∈ EβY and x = {xj} ∈ E, we write T · x =P∞

j=1 Tjxj .
We now describe 2 gliding hump properties which will be used in the

sequel. These gliding hump properties are used in sequence spaces in place
of topological properties such as completeness and barrelledness in treat-
ing uniform boundedness or equicontinuity properties in topological vector
spaces. An interval in N is a set of the form [m,n] = {j ∈ N : m ≤ j ≤ n},
where m ≤ n, and a sequence of intervals, {Ij}, is increasing if max Ij <
min Ij+1. If I ⊂ N, χI will denote the characteristic function of I and
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if x = {xj} is any scalar or vector valued sequence, χIx will denote the
coordinatewise product of χI and x.

Definition 1. The space E has the infinite gliding hump property (∞-
GHP) if whenever x ∈ E and {Ij} is an increasing sequence of intervals,
there exist a subsequence {Nj} and aNj > 0, aNj →∞ such that every sub-
sequence of {Nj} has a further subsequence {pj} such that the coordinate
sum of the series

P∞
j=1 apjχIpjx belongs to E.

The∞−GHP was introduced in [Sw4] to treat Orlicz-Pettis Theorems
for multiplier convergent series with respect to the strong topology.

Examples of spaces with ∞-GHP are given in Appendices B and C of
[Sw6]. For example, if X is normed, then c0(X) and lp(X) (0 < p < ∞)
and any Banach AK-space have ∞-GHP.

A vector valued sequence space E is a K-space if E has a vector topology
such that the coordinate maps x = {xj}→ xj from E to X are continuous
for every j.

Definition 2. The K-space E has the zero gliding hump property (0-GHP)
if for every null sequence {xj} in E and every increasing sequence of inter-
vals {Ij}, there is a subsequence {nj} such that the coordinate sum of the
series

P∞
j=1 χInjx

nj ∈ E.

The notion of the 0-GHP was introduced by Lee Peng Yee in [LPY].
Examples of K-spaces with 0-GHP are given in Appendices B and C of

[Sw6]. For example, if X is normed, then c0(X) and lp(X) (0 < p ≤ ∞)
have 0-GHP.

Henceforth, we assume that E is a K-space.
We now proceed to consider pointwise bounded and equicontinuous sub-

sets of EβY . As in [Sw7], we do this by considering uniform convergence of
elements in EβY . We first require a lemma.

Lemma 3. Let A ⊂ EβY and xk → 0 in E. Assume that

(∗) for every x ∈ E, the series
∞X
j=1

Tjxj converge uniformly for T ∈ A.

If the series
P∞

j=1 Tjx
k
j do not converge uniformly for T ∈ A, k ∈ N, there

exist a symmetric neighborhood of 0, V , in Y , T k ∈ A, a subsequence {nk}
and an increasing sequence of intervals {Ik} such that

P
l∈Ik T

k
l x

nk
l /∈ V .
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Proof : If the conclusion fails, there exists a symmetric neighborhood U
of 0 in Y such that for every k there exist pk > k, T k ∈ A, xnk such
that

P∞
l=pk

T k
l x

nk
l /∈ U . Pick a symmetric neighborhood V of 0 in Y

such that V + V ⊂ U . For the condition above with k = 1, there exist
p1 > 1, T 1 ∈ A, n1 such that

P∞
l=p1 T

1
l x

n1
l /∈ U . Pick q1 > p1 such thatP∞

l=q1+1 T
1
l x

n1
l ∈ V so that

Pq1
l=p1

T 1l x
n1
l /∈ V . By (*) there exists N1 > p1

such that
Pq

l=p Tlx
r
l ∈ V for q > p > N1, T ∈ A, 1 ≤ r ≤ n1. As above

there exist q2 > p2 > N1, T
2 ∈ A, n2 such that

Pq2
l=p2

T 2l x
n2
l /∈ V . Note

that n2 > n1. Put I1 = [p1, q1], I2 = [p2, q2] and continue.

Remark 4. Lemma 3 is analogous to 2.15 of [Sw6] or Lemma 2 of [Sw5].
Condition (*) is used in order to construct the subsequence {nk} which is
not necessary in these results. By 2.32 of [SW6], (*) holds if A is pointwise
bounded and E has ∞-GHP.

To prove our result on the uniform convergence of pointwise bounded
subsets of β-duals we use the Antosik-Mikusinski Matrix Theorem. We
give a brief description of the version which will be used. Assume that
M = [mij ] is an infinite matrix with values in Y satisfying the following
two conditions:

(1) the columns of M converge and

(2) every increasing sequence of integers {nj} has a furthersubsequence
{mj} such that the series

P∞
j=1mimj converge and limi

P∞
j=1mimjexists.

Such a matrix is called a K-matrix. One conclusion of the Antosik-
Mikusinski Matrix Theorem asserts that the diagonal of M , mii, converges
to 0, and this is the version we use below. This version of the theorem and
more general versions can be found in [Sw1], Chapter 2 or [Sw6], Appendix
D.

Theorem 5. Assume that E has∞-GHP and 0-GHP. If A ⊂ EβY is point-
wise bounded on E and xk → 0 in E, then the series

P∞
l=1 Tlx

k
l converge

uniformly for T ∈ A and k ∈ N.

Proof : As noted in Remark 4 condition (*) is satisfied since E has∞-GHP.
Suppose the conclusion fails and let the notation be as in Lemma 3. By
0-GHP there exist a subsequence {rk} of {nk} and an increasing sequence
of intervals {Ik} such that

P∞
k=1

P
l∈Ik e

l ⊗ xrkl =
P∞

k=1 χIkx
rk = x ∈ E.

To avoid cumbersome notation later assume that rk = nk. Then

(#)
X
l∈Ik

T k
l x

nk
l =

X
l∈Ik

T k
l xl /∈ V
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as in Lemma 3. Let the notation be as in the definition of ∞-GHP (Defi-
nition 1). Define a matrix

M = [mij ] = [
X
l∈Ij
(
1

aNi

TNi
l )(aNjxl)].

We show that M is a K-matrix. First, the columns of M converge to
0 by the pointwise bounded assumption and the fact that aNi →∞ so (1)
above holds. Next, for condition (2), given any subsequence of {Nj} there
exists a further subsequence {sj} such that

∞X
j=1

asjχIsjx =
∞X
j=1

asj
X
l∈Isj

el ⊗ xl = y ∈ E.

So ∞X
j=1

misj =
∞X
j=1

X
l∈Isj

(
1

aNi

TNi
l )(asjxl) = (

1

aNi

TNi
l ) · (y)→ 0

by pointwise boundedness and aNi → ∞. By the Antosik-Mikusinski Ma-
trix Theorem the diagonal of M converges to 0 contradicting (#).

The pair (X,Y ) has the sequential uniform boundedness property (SUB)
if every pointwise bounded family B ⊂ L(X,Y ) is sequentially equicontin-
uous. For example, if X is a complete metric linear space or a metrizable
barrelled locally convex space , (X,Y ) has SUB (see [Ro]2.2.1 for the metric
linear case and [Bo] III.6.2 or [Wi] 9.3.4 for the barrelled case).

Theorem 6. Assume that A ⊂ EβY is pointwise bounded on E, xk → 0
in E and (X,Y ) has the SUB property. If the series

P∞
l=1 Tlx

k
l converge

uniformly for T ∈ A and k ∈ N, then limk T · xk = 0 uniformly for T ∈ A.

Proof : Let U be a neighborhood of 0 in Y and pick a neighborhood of
0 V such that V + V ⊂ U . There exists N such that

P∞
l=N+1 Tlx

k
l ∈ V

for T ∈ A, k ∈ N. For 1 ≤ l ≤ N , {Tl : T ∈ A} is pointwise bounded
on X since A is pointwise bounded and Tlz = T · (el ⊗ z) for z ∈ X.
Therefore, {Tl : T ∈ A} ⊂ L(X,Y ) is sequentially equicontinuous by the
SUB property. Since limk x

k
l = 0 for each l, there exists k0 such that k ≥ k0

implies
PN

l=1 Tlx
k
l ∈ V . Hence, if k ≥ k0,

T · xk =
NX
l=1

Tlx
k
l +

∞X
l=N+1

Tlx
k
l ∈ V + V ⊂ U.
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From Theorems 5 and 6, we have a sequential equicontinuity version of
the Uniform Boundedness Theorem.

Theorem 7. Assume that E has∞-GHP and 0-GHP and that (X,Y ) has
the SUB property. If A ⊂ EβY is pointwise bounded on E and xk → 0
in E, then T · xk → 0 uniformly for T ∈ A (that is, A is sequentially
equicontinuous).

Without gliding hump assumptions the conclusion of Theorem 7 may
fail.

Example 8. Let c00, the space of all scalar sequences which are eventually
0, have the sup-norm so (c00)

β = s, the space of all sequences. Let e be the
sequence with 1 in each coordinate and let ej be the sequence with 1 in the
jth coordinate and 0 in the other coordinates. The sequence {Pk

j=1 e
j/k}

converges to 0 in c00, but e · (
Pk

j=1 e
j/k) = 1 for each k. Therefore, {e} is

pointwise bounded on c00, but is not sequentially equicontinuous.

Concerning the SUB assumption in Theorem 7, we have

Remark 9. If the conclusion of Theorem 7 is to hold , it is necessary
that (X,Y ) has the SUB property. For suppose B ⊂ L(X,Y ) is pointwise
bounded and zj → 0 in X. Then A = {(T, 0, 0, ...) : T ∈ B} ⊂ EβY is
pointwise bounded on E so if the conclusion of Theorem 7 holds, limj Tzj =
limj(T, 0, 0, ...) · (e1 ⊗ zj) = 0 uniformly for T ∈ B.

Finally, note that sequential equicontinuity implies a strong uniform
boundedness result.

Proposition 10. If A ⊂ EβY is sequentially equicontinuous, then A is
uniformly bounded on bounded subsets of E.

Proof : Let B ⊂ E be bounded and tk → 0, {T k} ⊂ A, {xk} ⊂ B. Then
tkx

k → 0 in E so T k · (tkxk)→ 0 and A(B) is bounded.

The following example shows the converse of Proposition 10 is false
and that the equicontinuity result of Theorem 7 is stronger than the uni-
form boundedness results of [Sw7]. Of course, the results in [Sw7] involve
different gliding hump assumptions.
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Example 11. Consider l2 with the weak topology σ(l2, l2). The set {ej} ⊂
l2 = (l2)β is uniformly bounded on σ(l2, l2) (=k·k2) bounded subsets of l2
but is not sequentially equicontinuous (ej → 0 in σ(l2, l2) but ej · ej = 1
for all j).

From Theorem 7 we have a uniform boundedness result.

Corollary 12. If the hypothesis of Theorem 7 are satisfied and A ⊂ EβY

is pointwise bounded, then A is uniformly bounded on bounded subsets
B ⊂ E.

A stronger uniform boundedness result is given in Theorem 12.5.7 of
[Sw1].
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