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Abstract

In this paper, we continue the study of M-fuzzifying matroids. We
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1. Introduction

In [12, 13], when M is a complete lattice, Shi defined an M -fuzzifying
matroid to be the pair (E, I), where I is a map from 2E to M satisfying
three axioms. Thus each subset of E can be regarded as an independent
set to some degree. Moreover, Shi defined the M -fuzzifying rank of a set
A as an M -fuzzy natural number R(A) : N → M . M -fuzzifying matroids
and M -fuzzifying rank functions are one-to-one corresponding. This paper
treats the notion ofM -fuzzifying bases. In subsequent papers we will deals
withM -fuzzifying circuits and other fuzzy concepts related toM -fuzzifying
matroids.

2. Preliminaries

We will use the following notation in establishing the results of this paper.
If E is a finite set, A ⊆ 2E, define

Com(A) = {A ⊆ E : E −A ∈ A},

Low(A) = {A ⊆ E : ∃B ∈ A, A ⊆ B},

Max(A) = {A ∈ A : ∀B ∈ A, if A ⊆ B, then A = B}.

Throughout this paper, M always denotes a completely distributive
lattice and ME is the set of all M -fuzzy sets on E. The smallest element
and the largest element in M are denoted by ⊥ and >, respectively. We
often do not distinguish a crisp subset A of E and its characteristic function
χA.

An element a in M is called a prime element if a ≥ b ∧ c implies a ≥ b
or a ≥ c. a in M is called co-prime if a ≤ b ∨ c implies a ≤ b or a ≤ c [2].
The set of non-unit prime elements in M is denoted by P (M). The set of
non-zero co-prime elements in M is denoted by J(M).

The binary relation ≺ in M is defined as follows: for a, b ∈ M , a ≺ b
if and only if for every subset D ⊆ M , the relation b ≤ supD always
implies the existence of d ∈ D with a ≤ d [1]. {a ∈ M : a ≺ b} is called
the greatest minimal family of b in the sense of [14], denoted by β(b), and
β∗(b) = β(b) ∩ J(M). Moreover, for b ∈ M , we define α(b) = {a ∈ M :
a ≺op b} and α∗(b) = α(b)∩P (M). In a completely distributive lattice M ,
α is an

V
-
S
map, β is a union-preserving map, and there exist α(b) and

β(b) for each b ∈ M such that b =
W
β(b) =

V
α(b) (see [14]). Note that

β(⊥) = ∅ and α(>) = ∅.
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For any A ∈ME and any a ∈M , we define

A[a] = {x ∈ E : A(x) ≥ a}, A(a) = {x ∈ E : A(x) 6≤ a},
A(a) = {x ∈ E : a ∈ β(A(x))}, A[a] = {x ∈ E : a 6∈ α(A(x))}.

Some properties of these cut sets can be found in [4, 6, 8, 9, 10, 11].
In [5, 7, 15], a crisp matroid and a crisp base for a crisp matroid are

usually defined as follows:

Definition 2.1. Let E be a finite set. I ⊆ 2E is called a system of matroid
independent sets on E if it satisfies

(I1) ∅ ∈ I;
(I2) A ∈ I and B ⊆ A, then B ∈ I;
(I3) For any A,B ∈ I which satisfy |A| < |B|, there exists e ∈ B − A

such that A ∪ {e} ∈ I, where |A|, |B| denote the cardinality of A,B.
The set of all systems of matroid independent sets on E is denoted by I(E)
and (E, I) is called a crisp matroid.

Definition 2.2. Let E be a finite set. A subset B ⊆ 2E is called a crisp
base on E if it satisfies

(B1) B 6= ∅;
(B2) If B1, B2 ∈ B and x ∈ B1 − B2, then (B1 − {x}) ∪ {y} ∈ B for

some y ∈ B2 −B1.
The set of all crisp bases on E is denoted by B(E).

Theorem 2.3. Let E be a finite set. A subset ∅ 6= B ⊆ 2E is a crisp base
on E if and only if it satisfies

(B2)0 If B1, B2 ∈ B and x ∈ B1 − B2, then (B2 − {y}) ∪ {x} ∈ B for
some y ∈ B2 −B1.

Theorem 2.4. (1) If I ∈ I(E), then Max(I) ∈ B(E);
(2) If B ∈ B(E), then Low(B) ∈ I(E);
(3) Max ◦ Low(B) = B (∀B ∈ B(E)); Low ◦Max(I) = I (∀I ∈ I(E)).

Definition 2.5. Let (E, I) be a crisp matroid. Define (BI)∗ = Com(Max(I))
and I∗ = Low((BI)∗), then (BI)∗ is a crisp base on E and (E, I∗) is a crisp
matroid. (E, I∗) is called the dual matroid of (E, I).

Theorem 2.6. Let (E, I) be a crisp matroid, for every A ⊆ E, then
(1) RI∗(A) = |A|−RI(E) +RI(E −A);
(2) RI(A) +RI(E −A)−RI(E) = RI(A) +RI∗(A)− |A| = RI∗(A) +

RI∗(E −A)−RI∗(E).
Where RI and RI∗ denote the rank functions for (E,I) and (E, I∗).
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In [12, 13], Shi defined an M -fuzzifying matroid as follows:

Definition 2.7. Let E be a finite set. If a map I : 2E → M satisfies the
following conditions:

(FI1) I(∅) = >;
(FI2) For any A,B ∈ 2E, A ⊆ B ⇒ I(A) ≥ I(B);
(FI3) If A,B ∈ 2E and |A| < |B|, then W

e∈B−A
I(A∪{e}) ≥ I(A)∧I(B).

Then the pair (E, I) is called an M -fuzzifying matroid. I is called a fuzzy
family of independent sets on E. For A ∈ 2E , I(A) can be regarded as the
degree of the set A to be an independent set. A [0, 1]-fuzzifying matroid is
also called a fuzzifying matroid for short.

Theorem 2.8. Let E be a finite set and I : 2E → M be a map. Then
(E, I) is anM -fuzzifying matroid if and only if for each a ∈ J(M), (E, I[a])
is a crisp matroid.

Definition 2.9. Let N denote the set of all natural numbers. AnM -fuzzy
natural number is an antitone map λ : N→M satisfying

λ(0) = >,
^
n∈N

λ(n) = ⊥.

The set of all M -fuzzy natural numbers is denoted by N(M).

Definition 2.10. For any m ∈ N, define m ∈N(M) such that

m =

(
>, if t ≤ m,
⊥, if t ≥ m+ 1.

Definition 2.11. For any λ, µ ∈ N(M), define the addition λ+µ of λ and
µ as follows: for any n ∈ N,

(λ+ µ)(n) =
_

k+l=n

(λ(k) ∧ µ(l)).

Theorem 2.12. For any λ, µ ∈ N(M) and any a ∈ J(M), it follows that

(λ+ µ)[a] = λ[a] + µ[a].

Definition 2.13. Let (E, I) be an M -fuzzifying matroid. The map RI :
2E →N(M) defined by

RI(A)(n) =
_
{I(B) : B ⊆ A, |B| ≥ n}

is called the M -fuzzifying rank function for (E,I). If A ∈ 2E, then RI(A)
is called the M -fuzzifying rank of A.
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Theorem 2.14. Let (E,I) be anM -fuzzifying matroid and RI be theM -
fuzzifying rank function for (E, I). For each a ∈ J(M), let RI[a] denote the

rank function for (E,I[a]). Then RI[a](A) = RI(A)[a] for each A ∈ 2E.

3. M-fuzzifying bases

The obvious M -fuzzifying analog of a crisp base is the following:

Definition 3.1. Let E be a finite set. A map B : 2E → M is called an
M -fuzzifying base on E if it satisfies

(FB1)
W

B∈2E
B(B) = >;

(FB2) ∀B1, B2 ∈ 2E,
V

x∈B1−B2

W
y∈B2−B1

B((B1 − {x}) ∪ {y}) ≥ B(B1) ∧

B(B2).
A [0, 1]-fuzzifying base is also called a fuzzifying base for short.

Example 3.2. Let E = {x, y}. Define B : 2E → [0, 1] by

B(A) =

⎧⎪⎨⎪⎩
0, A ∈ {∅, {x, y}};
1, A = {x};
1
2 , A = {y}.

Obviously, B is a fuzzifying base on E.

Theorem 3.3. Let E be a finite set and B : 2E →M be a map. Then the
following conditions are equivalent:

(1) B is an M -fuzzifying base on E;
(2) For each a ∈ J(M),B[a] is a crisp base on E;

(3) For each a ∈ P (M),B(a) is a crisp base on E.

Proof. (1) ⇒ (2). For each a ∈ J(M). By (FB1),
W

B∈2E
B(B) = > ≥ a,

thus B(B) ≥ a for some B ∈ 2E , hence B[a] 6= ∅, i.e B[a] satisfies (B1).
Let B1, B2 ∈ B[a] and x ∈ B1 − B2, then

W
y∈B2−B1

B((B1 − {x}) ∪ {y}) ≥

B(B1) ∧ B(B2) ≥ a by (FB2). As a ∈ J(M), (B1 − {x}) ∪ {y} ∈ B[a] for
some y ∈ B2 −B1. This means that B[a] satisfies (B2).

(2)⇒ (1). By (2), for each a ∈ J(M), B(B) ≥ a for some B ∈ 2E, thusW
B∈2E

B(B) ≥ a, hence
W

B∈2E
B(B) = >, i.e. (FB1) holds. Let B1, B2 ∈ 2E,

x ∈ B1 −B2, and B(B1) ∧ B(B2) 6= ⊥. For every a ∈ J(M) and
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a ≤ B(B1) ∧ B(B2), then B1, B2 ∈ B[a], thus there exists y ∈ B2 − B1
such that (B1 − {x}) ∪ {y} ∈ B[a], hence

W
y∈B2−B1

B((B1 − {x}) ∪ {y}) ≥ a.

Therefore,
V

x∈B1−B2

W
y∈B2−B1

B((B1 − {x}) ∪ {y}) ≥ B(B1) ∧ B(B2).

(1) ⇒ (3). For each a ∈ P (M). By (FB1),
W

B∈2E
B(B) = > 6≤ a,

thus B(B) 6≤ a for some B ∈ 2E, hence B(a) 6= ∅, i.e B(a) satisfies (B1).
Let B1, B2 ∈ B(a) and x ∈ B1 − B2, by (FB2) and a ∈ P (M), we haveW
y∈B2−B1

B((B1−{x})∪{y}) ≥ B(B1)∧B(B2) 6≤ a, hence (B1−{x})∪{y} ∈

B(a) for some y ∈ B2 −B1. This means that B(a) satisfies (B2).
(3) ⇒ (1). By (3), for each a ∈ P (M), B ∈ B(a) for some B ∈ 2E, i.e.

B(B) 6≤ a for some B ∈ 2E , thus W
B∈2E

B(B) 6≤ a, hence
W

B∈2E
B(B) = >.

Let B1, B2 ∈ 2E, x ∈ B1−B2, and B(B1)∧B(B2) 6= ⊥. For every a ∈ P (M)
and B(B1)∧B(B2) 6≤ a, then B(B1) 6≤ a and B(B2) 6≤ a, i.e. B1, B2 ∈ B(a),
thus there exists y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} ∈ B(a), henceW
y∈B2−B1

B((B1−{x})∪{y}) 6≤ a. Therefore,
V

x∈B1−B2

W
y∈B2−B1

B((B1−{x})∪

{y}) ≥ B(B1) ∧ B(B2). 2
By Theorem 2.3 and Theorem 3.3, we can obtain the following theorem.

Theorem 3.4. Let E be a finite set and B : 2E →M be a map. Then B is
anM -fuzzifying base on E if and only if it satisfies the following conditions:

(FB1)
W

B∈2E
B(B) = >;

(FB2)0 ∀B1, B2 ∈ 2E,
V

x∈B1−B2

W
y∈B2−B1

B((B2 − {y}) ∪ {x}) ≥ B(B1) ∧

B(B2).

Theorem 3.5. Let E be a finite set and B : 2E → M be a map. If
α(a ∨ b) = α(a) ∩ α(b) for any a, b ∈ M , then the following conditions are
equivalent:

(1) B is an M -fuzzifying base on E;
(2) For each a ∈M\{>},B[a] is a crisp base on E;
(3) For each a ∈ P (M),B[a] is a crisp base on E.

Proof. (1) ⇒ (2). For each a ∈ M\{>}. By (FB1), W
B∈2E

B(B) = >,

hence a 6∈ α(>) = α

Ã W
B∈2E

B(B)
!
=

T
B∈2E

α(B(B)), thus a 6∈ α(B(B)) for

some B ∈ 2E, i. e. B ∈ B[a]. This implies B[a] satisfies (B1). Let
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B1, B2 ∈ B[a] and x ∈ B1−B2, then a 6∈ α(B(B1))∪α(B(B2)) = α(B(B1)∧
B(B1)) and

W
y∈B2−B1

B((B1− {x})∪ {y}) ≥ B(B1)∧B(B2) by (FB2), hence

a 6∈ α

Ã W
y∈B2−B1

B((B1 − {x}) ∪ {y})
!
=

T
y∈B2−B1

α(B((B1 − {x}) ∪ {y})),

thus a 6∈ α((B(B1−{x})∪{y})) for some y ∈ B2−B1, i.e. (B1−{x})∪{y} ∈
B[a] for some y ∈ B2 −B1. This means that B[a] satisfies (B2).

(2) ⇒ (1). For each a ∈ M\{>}, by B[a] satisfies (B1), then a 6∈

α(B(B)) for some B ∈ 2E, thus a 6∈ T
B∈2E

α(B(B)) = α

Ã W
B∈2E

B(B)
!
, hence

W
B∈2E

B(B) = V
α

Ã W
B∈2E

B(B)
!
= >, i.e. (FB1) holds. Let B1, B2 ∈ 2E,

x ∈ B1 − B2, and B(B1) ∧ B(B2) 6= ⊥. For every a ∈ M\{>} and
a 6∈ α(B(B1) ∧ B(B2)) = α(B(B1)) ∪ α(B(B2)), then a 6∈ α(B(B1)) and
a 6∈ α(B(B2)), i.e. B1, B2 ∈ B[a], thus there exists y ∈ B2 − B1 such
that (B1 − {x}) ∪ {y} ∈ B[a], hence a 6∈ α(B((B1 − {x}) ∪ {y})), a 6∈

α

Ã W
y∈B2−B1

B((B1 − {x}) ∪ {y})
!
. Therefore,

V
x∈B1−B2

W
y∈B2−B1

B((B1−{x})∪

{y}) ≥ B(B1) ∧ B(B2).
Analogously, we can obtain (1)⇔ (3). 2

Theorem 3.6. Let E be a finite set and B : 2E → M be a map. If
β(a ∧ b) = β(a) ∩ β(b) for any a, b ∈ M , then the following conditions are
equivalent:

(1) B is an M -fuzzifying base on E;

(2) For each a ∈ β(>),B(a) is a crisp base on E.

Proof. (1)⇒ (2). Suppose that B is an M -fuzzifying base on E. Then

for any a ∈ β(>), a ∈ β

Ã W
B∈2E

B(B)
!
=

S
B∈2E

β(B(B)) by (FB1), thus a ∈

β(B(B)) for some B ∈ 2E, hence B ∈ B(a), which means that B(a) satisfies
(B1). Let B1, B2 ∈ B(a) and x ∈ B1−B2, then a ∈ β(B(B1))∩β(B(B1)) =
β(B(B1) ∧ B(B2)), and

W
y∈B2−B1

B((B1 − {x}) ∪ {y}) ≥ B(B1) ∧ B(B2) by

(FB2), hence a ∈ β(B((B1 − {x}) ∪ {y})) for some y ∈ B2 − B1, i.e.
(B1 − {x}) ∪ {y} ∈ B(a) for some y ∈ B2 − B1. This means that B(a)
satisfies (B2).
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(2)⇒ (1). By (B1), for each a ∈ β(>), B ∈ B(a) for some B ∈ 2E, thus

a ∈ β(B(B)) ⊆ β

Ã W
B∈2E

B(B)
!
, hence

W
B∈2E

B(B) = W
β

Ã W
B∈2E

B(B)
!
≥W

a∈β(>)
a = >, i.e (FB1) holds. Let B1, B2 ∈ 2E, B(B1) ∧ B(B2) 6= ⊥,

x ∈ B1 − B2, and a ∈ β(B(B1) ∧ B(B2)). Then a ∈ β(B(B1)) and a ∈
β(B(B2)), i.e. B1, B2 ∈ B(a). Hence there exists y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} ∈ B(a) by B(a) is a crisp base on E. This shows that

a ∈ β(B((B1−{x})∪{y})) ⊆ β

Ã W
y∈B2−B1

B((B1 − {x}) ∪ {y})
!
. Therefore,W

y∈B2−B1
B((B1−{x})∪{y}) ≥ B(B1)∧B(B2). This means that (FB2) holds.

2

Theorem 3.7. Let E be a finite set, Then the following conditions are
equivalent:

(1) B is a fuzzifying base on E;

(2) For each a ∈ (0, 1],B[a] is a crisp base on E;

(3) For each a ∈ [0, 1),B(a) is a crisp base on E.

4. The relation between M-fuzzifying bases and M-fuzzifying
matroids

Definition 4.1. Let (E, I) be anM -fuzzifying matroid on E, if it satisfies
Max(I[b]) ⊆Max(I[a]) for every a, b ∈ J(M) and a ≤ b, then it is called a
basic M -fuzzifying matroid.

Remark 4.2. SomeM -fuzzifying matroids are not basicM -fuzzifying ma-
troids. For example, let E = {x, y, z} and M = [0, 1]. Define I : 2E → M
by

I(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, A ∈ {∅, {x}, {y}};
1
2 , A ∈ {{x, y}};
1
3 , A ∈ {{z}, {x, z}};
0, A ∈ {{y, z}, E}.

Then

I[r] =

⎧⎪⎨⎪⎩
{∅, {x}, {y}, {z}, {x, y}, {x, z}}, r ∈ (0, 13 ];
{∅, {x}, {y}, {x, y}}, r ∈ (13 ,

1
2 ];

{∅, {x}, {y}}, r ∈ (12 , 1].
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Hence (E, I) is anM -fuzzifying matroid, but it is not a basic M -fuzzifying
matroid since Max(I[1]) 6⊆Max(I[ 1

2
]).

Theorem 4.3. Let B be an M -fuzzifying base on E. Define a map IB :
2E →M by

IB(A) =
_
A⊆B

B(B).

Then IB is a basic M -fuzzifying matroid on E.

Proof. For every a ∈ J(M), A ∈ (IB)[a] ⇔
W

A⊆B
B(B) ≥ a⇔ A ⊆ B and

B(B) ≥ a for some B ∈ 2E ⇔ A ⊆ B and B ∈ B[a] for some B ∈ 2E ⇔ A ∈
Low(B[a]). Therefore, (IB)[a] = Low(B[a]) and Max((IB)[a]) = B[a]. By
Theorem 3.3, (E, (IB)[a]) is a crisp matroid for every a ∈ J(M). Therefore,
IB is a basic M -fuzzifying matroid on E. 2

When M is a boolean algebra, we have Theorems 4.4-4.6.

Theorem 4.4. Let (E, I) be an M -fuzzifying matroid. Define a map BI :
2E →M by

BI(B) =
^
B⊂A

(I(A))0 ∧ I(B).

Then BI is an M -fuzzifying base.

Proof. ∀a ∈ J(M), B ∈ (BI)[a] ⇔ (BI)(B) ≥ a ⇔ (I(A))0 ∧ I(B) ≥ a
for every A ⊃ B ⇔ I(B) ≥ a and (I(A))0 ≥ a for every A ⊃ B ⇔
I(B) ≥ a and I(A) 6≥ a for every A ⊃ B ⇔ B ∈ I[a] and A 6∈ I[a] for
every A ⊃ B ⇔ B ∈ Max(I[a]). Hence (BI)[a] = Max(I[a]) (∀a ∈ J(M)),
and BI(B) =

W{a ∈ J(M) : B ∈ Max(I[a])}. By Theorem 3.3, BI is an
M -fuzzifying base. 2

Theorem 4.5. (1) For an M -fuzzifying matroid (E, I), it follows that
IBI = I;

(2) For an M -fuzzifying base B, it follows that BIB = B.

Proof. (1) For every a ∈ J(M), by Theorem 4.3 and Theorem 4.4,
(IBI )[a] = Low((BI)[a]) = Low(Max(I[a])) = I[a].

(2) For every a ∈ J(M), by Theorem 4.3 and Theorem 4.4, (BIB)[a] =
Max((IB)[a]) =Max(Low(B[a])) = B[a]. 2

By Theorems 4.3-4.5, we can obtain the following two results:
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Theorem 4.6. There is a one-to-one correspondence betweenM -fuzzifying
matroids and M -fuzzifying bases. That is, anM -fuzzifying matroid can be
completely characterized by an M -fuzzifying base.

Remark 4.7. When M is a boolean algebra, an M -fuzzifying matroid is
equivalent to a basic M -fuzzifying matroid.

When M = [0, 1], we have Theorems 4.8-4.10.

Theorem 4.8. Let (E, I) be a basic fuzzifying matroid. Define a map
BI : 2E → [0, 1] by

BI(B) =
_
{a ∈ (0, 1] : B ∈Max(I[a])}.

Then BI is a fuzzifying base on E.

Proof. For each a ∈ (0, 1], obviously, Max(I[a]) ⊆ (BI)[a]. B ∈
(BI)[a] ⇔

W{a ∈ (0, 1] : B ∈ Max(I[a])} ≥ a ⇔ a ≤ b for some b ∈
(0, 1] and B ∈ Max(I[b]). As (E, I) is a basic fuzzifying matroid, B ∈
Max(I[b]) ⊆ Max(I[a]). This means that (BI)[a] ⊆ Max(I[a]). Therefore,
(BI)[a] =Max(I[a]). By Theorem 3.3, BI is a fuzzifying base on E. 2

Theorem 4.9. (1) For a basic fuzzifying matroid (E, I), it follows that
IBI = I;

(2) For a fuzzifying base B, it follows that BIB = B.

Proof. (1) For every a ∈ (0, 1], by Theorem 4.3 and Theorem 4.8,
(IBI )[a] = Low((BI)[a]) = Low(Max(I[a])) = I[a].

(2) For every a ∈ (0, 1], by Theorem 4.3 and Theorem 4.8, (BIB)[a] =
Max((IB)[a]) =Max(Low(B[a])) = I[a]. 2

By Theorem 4.3, Theorem 4.8 and Theorem 4.9, we can obtain the
following result:

Theorem 4.10. There is a one-to-one correspondence between basic fuzzi-
fying matroids and fuzzifying bases. That is, a basic fuzzifying matroid can
be completely characterized by a fuzzifying base.
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5. The dual matroids of basic M-fuzzifying matroids

In this section, M is a boolean algebra or M = [0, 1].

Definition 5.1. Let (E, I) be a basicM -fuzzifying matroid. Define a map
(BI)∗ : 2E →M by (BI)∗(B) = BI(E−B) and let I∗ = I(BI)∗ , then (BI)∗
is an M -fuzzifying base on E and (E,I∗) is a basic M -fuzzifying matroid.
(E, I∗) is called the dual matroid of (E, I).

Proof. By the definition of (BI)∗, (BI)∗[a] = Com((BI)[a]) for every
a ∈ J(M). Therefore, for every a ∈ J(M), (BI)∗[a] is a crisp base on E. By

Theorem 3.3, (BI)∗ is anM -fuzzifying base on E. By Theorem 4.3, (E, I∗)
is a basic M -fuzzifying matroid. 2

Theorem 5.2. Let (E, I) be a basic M -fuzzifying matroid, then
(1) (I∗)∗ = I;
(2) Com((BI)[a]) = (BI∗)[a] for every a ∈ J(M);

(3) I∗[a] = (I[a])∗ for every a ∈ J(M).

Proof. (1) By the definition of I∗, Theorem 4.5 and Theorem 4.9,
(I∗)∗ = (I(BI)∗)∗ = I(BI(BI)∗ )

∗ = I((BI)∗)∗ = IBI = I.
(2) By Theorem 4.5, Theorem 4.9 and the definition of (BI)∗, for every

a ∈ J(M), (BI∗)[a] = (BI)∗[a] = Com((BI)[a]).
(3) For every a ∈ J(M), A ∈ I∗[a] ⇔ A ∈ Low((BI)∗[a]) ⇔ A ∈

Low(Com((BI)[a])) ⇔ A ∈ Low(Com(Max(I[a]))⇔ A ∈ (I[a])∗. 2

Theorem 5.3. Let (E,I) be a basic M -fuzzifying matroid, for every A ⊆
E, then

(1) RI∗(A) +RI(E) = |A|+RI(E −A);

(2) RI(A) +RI∗(E) = |A|+RI∗(E −A).

Proof. (1) ∀a ∈ J(M), (RI∗(A)+RI(E))[a] = (RI∗(A))[a]+(RI(E))[a] =
RI∗

[a]
(A) + RI[a](E) = R(I[a])∗(A) + RI[a](E) = |A| + RI[a](E − A) =

(|A|)[a] +RI(E −A))[a] = (|A|+RI(E −A))[a].

(2) By (1) and Theorem 5.2(1), RI(A)+RI∗(E) = R(I∗)∗(A)+RI∗(E) =
|A|+RI∗(E −A). 2
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