Proyecciones Journal of Mathematics
Vol. 28, $\mathrm{N}^{o} 3$, pp. 271-283, December 2009.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172009000300007

M-FUZZIFYING BASES *

XIU XIN
and
FU-GUI SHI
BEIJING INSTITUTE OF TECHNOLOGY, CHINA
Received: October 2009. Accepted : October 2009

Abstract

In this paper, we continue the study of M-fuzzifying matroids. We define the notion of an M-fuzzifying base and discuss some properties of the dual matroids of basic M-fuzzifying matroids.

Keywords : M-fuzzifying bases; M-fuzzifying matroids; Dual matroids

Mathematics Subject Classification (2000) : 05B35, 52B40

[^0]
1. Introduction

In [12, 13], when M is a complete lattice, Shi defined an M-fuzzifying matroid to be the pair (E, \mathcal{I}), where \mathcal{I} is a map from 2^{E} to M satisfying three axioms. Thus each subset of E can be regarded as an independent set to some degree. Moreover, Shi defined the M-fuzzifying rank of a set A as an M-fuzzy natural number $R(A): \mathbf{N} \rightarrow M . M$-fuzzifying matroids and M-fuzzifying rank functions are one-to-one corresponding. This paper treats the notion of M-fuzzifying bases. In subsequent papers we will deals with M-fuzzifying circuits and other fuzzy concepts related to M-fuzzifying matroids.

2. Preliminaries

We will use the following notation in establishing the results of this paper. If E is a finite set, $\mathcal{A} \subseteq 2^{E}$, define

$$
\begin{gathered}
\operatorname{Com}(\mathcal{A})=\{A \subseteq E: E-A \in \mathcal{A}\}, \\
\operatorname{Low}(\mathcal{A})=\{A \subseteq E: \exists B \in \mathcal{A}, A \subseteq B\}, \\
\operatorname{Max}(\mathcal{A})=\{A \in \mathcal{A}: \forall B \in \mathcal{A}, \text { if } A \subseteq B, \text { then } A=B\} .
\end{gathered}
$$

Throughout this paper, M always denotes a completely distributive lattice and M^{E} is the set of all M-fuzzy sets on E. The smallest element and the largest element in M are denoted by \perp and \top, respectively. We often do not distinguish a crisp subset A of E and its characteristic function χ_{A}.

An element a in M is called a prime element if $a \geq b \wedge c$ implies $a \geq b$ or $a \geq c . a$ in M is called co-prime if $a \leq b \vee c$ implies $a \leq b$ or $a \leq c$ [2]. The set of non-unit prime elements in M is denoted by $P(M)$. The set of non-zero co-prime elements in M is denoted by $J(M)$.

The binary relation \prec in M is defined as follows: for $a, b \in M, a \prec b$ if and only if for every subset $D \subseteq M$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d[1] .\{a \in M: a \prec b\}$ is called the greatest minimal family of b in the sense of [14], denoted by $\beta(b)$, and $\beta^{*}(b)=\beta(b) \cap J(M)$. Moreover, for $b \in M$, we define $\alpha(b)=\{a \in M$: $\left.a \prec^{o p} b\right\}$ and $\alpha^{*}(b)=\alpha(b) \cap P(M)$. In a completely distributive lattice M, α is an $\Lambda-\cup$ map, β is a union-preserving map, and there exist $\alpha(b)$ and $\beta(b)$ for each $b \in M$ such that $b=\bigvee \beta(b)=\Lambda \alpha(b)$ (see [14]). Note that $\beta(\perp)=\emptyset$ and $\alpha(T)=\emptyset$.

For any $A \in M^{E}$ and any $a \in M$, we define

$$
\begin{aligned}
& A_{[a]}=\{x \in E: A(x) \geq a\}, \quad A^{(a)}=\{x \in E: A(x) \not x a\}, \\
& A_{(a)}=\{x \in E: a \in \beta(A(x))\}, \quad A^{[a]}=\{x \in E: a \notin \alpha(A(x))\} .
\end{aligned}
$$

Some properties of these cut sets can be found in $[4,6,8,9,10,11]$.
In $[5,7,15]$, a crisp matroid and a crisp base for a crisp matroid are usually defined as follows:
Definition 2.1. Let E be a finite set. $\mathcal{I} \subseteq 2^{E}$ is called a system of matroid independent sets on E if it satisfies
(I1) $\emptyset \in \mathcal{I}$;
(I2) $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$;
(I3) For any $A, B \in \mathcal{I}$ which satisfy $|A|<|B|$, there exists $e \in B-A$ such that $A \cup\{e\} \in \mathcal{I}$, where $|A|,|B|$ denote the cardinality of A, B.
The set of all systems of matroid independent sets on E is denoted by $\mathbf{I}(E)$ and (E, \mathcal{I}) is called a crisp matroid.

Definition 2.2. Let E be a finite set. A subset $\mathcal{B} \subseteq 2^{E}$ is called a crisp base on E if it satisfies
(B1) $\mathcal{B} \neq \emptyset$;
(B2) If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1}-B_{2}$, then $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}$ for some $y \in B_{2}-B_{1}$.
The set of all crisp bases on E is denoted by $\mathbf{B}(E)$.
Theorem 2.3. Let E be a finite set. A subset $\emptyset \neq \mathcal{B} \subseteq 2^{E}$ is a crisp base on E if and only if it satisfies
(B2)' If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1}-B_{2}$, then $\left(B_{2}-\{y\}\right) \cup\{x\} \in \mathcal{B}$ for some $y \in B_{2}-B_{1}$.

Theorem 2.4. (1) If $\mathcal{I} \in \mathbf{I}(E)$, then $\operatorname{Max}(\mathcal{I}) \in \mathbf{B}(E)$;
(2) If $\mathcal{B} \in \mathbf{B}(E)$, then $\operatorname{Low}(\mathcal{B}) \in \mathbf{I}(E)$;
(3) $\operatorname{Max} \circ \operatorname{Low}(\mathcal{B})=\mathcal{B}(\forall \mathcal{B} \in \mathbf{B}(E)) ; \operatorname{Low} \circ \operatorname{Max}(\mathcal{I})=\mathcal{I}(\forall \mathcal{I} \in \mathbf{I}(E))$.

Definition 2.5. Let (E, \mathcal{I}) be a crisp matroid. Define $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}=\operatorname{Com}(\operatorname{Max}(\mathcal{I}))$ and $\mathcal{I}^{*}=\operatorname{Low}\left(\left(\mathcal{B}_{\mathcal{I}}\right)^{*}\right)$, then $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}$ is a crisp base on E and $\left(E, \mathcal{I}^{*}\right)$ is a crisp matroid. $\left(E, \mathcal{I}^{*}\right)$ is called the dual matroid of (E, \mathcal{I}).

Theorem 2.6. Let (E, \mathcal{I}) be a crisp matroid, for every $A \subseteq E$, then
(1) $R_{\mathcal{I}^{*}}(A)=|A|-R_{\mathcal{I}}(E)+R_{\mathcal{I}}(E-A)$;
(2) $R_{\mathcal{I}}(A)+R_{\mathcal{I}}(E-A)-R_{\mathcal{I}}(E)=R_{\mathcal{I}}(A)+R_{\mathcal{I}^{*}}(A)-|A|=R_{\mathcal{I}^{*}}(A)+$ $R_{\mathcal{I}^{*}}(E-A)-R_{\mathcal{I}^{*}}(E)$.
Where $R_{\mathcal{I}}$ and $R_{\mathcal{I}^{*}}$ denote the rank functions for (E, \mathcal{I}) and $\left(E, \mathcal{I}^{*}\right)$.

In $[12,13]$, Shi defined an M-fuzzifying matroid as follows:
Definition 2.7. Let E be a finite set. If a map $\mathcal{I}: 2^{E} \rightarrow M$ satisfies the following conditions:
(FI1) $\mathcal{I}(\emptyset)=\mathrm{T}$;
(FI2) For any $A, B \in 2^{E}, A \subseteq B \Rightarrow \mathcal{I}(A) \geq \mathcal{I}(B)$;
(FI3) If $A, B \in 2^{E}$ and $|A|<|B|$, then $\underset{e \in B-A}{\bigvee} \mathcal{I}(A \cup\{e\}) \geq \mathcal{I}(A) \wedge \mathcal{I}(B)$.
Then the pair (E, \mathcal{I}) is called an M-fuzzifying matroid. \mathcal{I} is called a fuzzy family of independent sets on E. For $A \in 2^{E}, \mathcal{I}(A)$ can be regarded as the degree of the set A to be an independent set. $A[0,1]$-fuzzifying matroid is also called a fuzzifying matroid for short.

Theorem 2.8. Let E be a finite set and $\mathcal{I}: 2^{E} \rightarrow M$ be a map. Then (E, \mathcal{I}) is an M-fuzzifying matroid if and only if for each $a \in J(M),\left(E, \mathcal{I}_{[a]}\right)$ is a crisp matroid.

Definition 2.9. Let \mathbf{N} denote the set of all natural numbers. An M-fuzzy natural number is an antitone map $\lambda: \mathbf{N} \rightarrow M$ satisfying

$$
\lambda(0)=\top, \bigwedge_{n \in \mathbf{N}} \lambda(n)=\perp
$$

The set of all M-fuzzy natural numbers is denoted by $\mathbf{N}(M)$.
Definition 2.10. For any $m \in \mathbf{N}$, define $\underline{m} \in \mathbf{N}(M)$ such that

$$
\underline{m}= \begin{cases}\top, & \text { if } \quad t \leq m, \\ \perp, & \text { if } \quad t \geq m+1 .\end{cases}
$$

Definition 2.11. For any $\lambda, \mu \in \mathbf{N}(M)$, define the addition $\lambda+\mu$ of λ and μ as follows: for any $n \in \mathbf{N}$,

$$
(\lambda+\mu)(n)=\bigvee_{k+l=n}(\lambda(k) \wedge \mu(l))
$$

Theorem 2.12. For any $\lambda, \mu \in \mathbf{N}(M)$ and any $a \in J(M)$, it follows that

$$
(\lambda+\mu)_{[a]}=\lambda_{[a]}+\mu_{[a]} .
$$

Definition 2.13. Let (E, \mathcal{I}) be an M-fuzzifying matroid. The map $R_{\mathcal{I}}$: $2^{E} \rightarrow \mathbf{N}(M)$ defined by

$$
R_{\mathcal{I}}(A)(n)=\bigvee\{\mathcal{I}(B): B \subseteq A,|B| \geq n\}
$$

is called the M-fuzzifying rank function for (E, \mathcal{I}). If $A \in 2^{E}$, then $R_{\mathcal{I}}(A)$ is called the M-fuzzifying rank of A.

Theorem 2.14. Let (E, \mathcal{I}) be an M-fuzzifying matroid and $R_{\mathcal{I}}$ be the M fuzzifying rank function for (E, \mathcal{I}). For each $a \in J(M)$, let $R_{\mathcal{I}_{[a]}}$ denote the rank function for $\left(E, \mathcal{I}_{[a]}\right)$. Then $R_{\mathcal{I}_{[a]}}(A)=R_{\mathcal{I}}(A)_{[a]}$ for each $A \in 2^{E}$.

3. M-fuzzifying bases

The obvious M-fuzzifying analog of a crisp base is the following:
Definition 3.1. Let E be a finite set. $A \operatorname{map} \mathcal{B}: 2^{E} \rightarrow M$ is called an M-fuzzifying base on E if it satisfies
(FB1) $\underset{B \in 2^{E}}{\vee} \mathcal{B}(B)=\mathrm{T}$;
(FB2) $\forall B_{1}, B_{2} \in 2^{E}, \bigwedge_{x \in B_{1}-B_{2}} \underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge$
$\mathcal{B}\left(B_{2}\right)$.
A [0, 1]-fuzzifying base is also called a fuzzifying base for short.
Example 3.2. Let $E=\{x, y\}$. Define $\mathcal{B}: 2^{E} \rightarrow[0,1]$ by

$$
\mathcal{B}(A)= \begin{cases}0, & A \in\{\emptyset,\{x, y\}\} \\ 1, & A=\{x\} \\ \frac{1}{2}, & A=\{y\}\end{cases}
$$

Obviously, \mathcal{B} is a fuzzifying base on E.
Theorem 3.3. Let E be a finite set and $\mathcal{B}: 2^{E} \rightarrow M$ be a map. Then the following conditions are equivalent:
(1) \mathcal{B} is an M-fuzzifying base on E;
(2) For each $a \in J(M), \mathcal{B}_{[a]}$ is a crisp base on E;
(3) For each $a \in P(M), \mathcal{B}^{(a)}$ is a crisp base on E.

Proof. (1) \Rightarrow (2). For each $a \in J(M)$. By (FB1), $\underset{B \in 2^{E}}{\bigvee \mathcal{B}}(B)=\top \geq a$, thus $\mathcal{B}(B) \geq a$ for some $B \in 2^{E}$, hence $\mathcal{B}_{[a]} \neq \emptyset$, i.e $\mathcal{B}_{[a]}$ satisfies (B1). Let $B_{1}, B_{2} \in \mathcal{B}_{[a]}$ and $x \in B_{1}-B_{2}$, then $\underset{y \in B_{2}-B_{1}}{\bigvee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq$ $\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \geq a$ by (FB2). As $a \in J(M),\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}_{[a]}$ for some $y \in B_{2}-B_{1}$. This means that $\mathcal{B}_{[a]}$ satisfies (B2).
$(2) \Rightarrow(1)$. By (2), for each $a \in J(M), \mathcal{B}(B) \geq a$ for some $B \in 2^{E}$, thus $\bigvee_{B \in 2^{E}} \mathcal{B}(B) \geq a$, hence $\underset{B \in 2^{E}}{ } \mathcal{B}(B)=\mathrm{T}$, i.e. (FB1) holds. Let $B_{1}, B_{2} \in 2^{E}$, $x \in B_{1}-B_{2}$, and $\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \neq \perp$. For every $a \in J(M)$ and
$a \leq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$, then $B_{1}, B_{2} \in \mathcal{B}_{[a]}$, thus there exists $y \in B_{2}-B_{1}$ such that $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}_{[a]}$, hence $\underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq a$. Therefore, $\wedge_{x \in B_{1}-B_{2}} \underset{y \in B_{2}-B_{1}}{\bigvee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$.
$(1) \Rightarrow$ (3). For each $a \in P(M)$. By (FB1), $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)=\top \not \leq a$, thus $\mathcal{B}(B) \not \leq a$ for some $B \in 2^{E}$, hence $\mathcal{B}^{(a)} \neq \emptyset$, i.e $\mathcal{B}^{(a)}$ satisfies (B1). Let $B_{1}, B_{2} \in \mathcal{B}^{(a)}$ and $x \in B_{1}-B_{2}$, by (FB2) and $a \in P(M)$, we have
 $\mathcal{B}^{(a)}$ for some $y \in B_{2}-B_{1}$. This means that $\mathcal{B}^{(a)}$ satisfies (B2).
(3) \Rightarrow (1). By (3), for each $a \in P(M), B \in \mathcal{B}^{(a)}$ for some $B \in 2^{E}$, i.e. $\mathcal{B}(B) \not \leq a$ for some $B \in 2^{E}$, thus $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B) \not 又 a$, hence $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)=T$. Let $B_{1}, B_{2} \in 2^{E}, x \in B_{1}-B_{2}$, and $\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \neq \perp$. For every $a \in P(M)$ and $\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \not \leq a$, then $\mathcal{B}\left(B_{1}\right) \not \leq a$ and $\mathcal{B}\left(B_{2}\right) \not \leq a$, i.e. $B_{1}, B_{2} \in \mathcal{B}^{(a)}$, thus there exists $y \in B_{2}-B_{1}$ such that $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}^{(a)}$, hence $\underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \not \leq a$. Therefore, $\bigwedge_{x \in B_{1}-B_{2}} \bigvee_{y \in B_{2}-B_{1}} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\right.$ $\{y\}) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$.

By Theorem 2.3 and Theorem 3.3, we can obtain the following theorem.
Theorem 3.4. Let E be a finite set and $\mathcal{B}: 2^{E} \rightarrow M$ be a map. Then \mathcal{B} is an M-fuzzifying base on E if and only if it satisfies the following conditions:
(FB1) $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)=\mathrm{T}$;
$(\mathrm{FB} 2)^{\prime} \forall B_{1}, B_{2} \in 2^{E}, \wedge_{x \in B_{1}-B_{2}} \underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{2}-\{y\}\right) \cup\{x\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge$ $\mathcal{B}\left(B_{2}\right)$.

Theorem 3.5. Let E be a finite set and $\mathcal{B}: 2^{E} \rightarrow M$ be a map. If $\alpha(a \vee b)=\alpha(a) \cap \alpha(b)$ for any $a, b \in M$, then the following conditions are equivalent:
(1) \mathcal{B} is an M-fuzzifying base on E;
(2) For each $a \in M \backslash\{\top\}, \mathcal{B}^{[a]}$ is a crisp base on E;
(3) For each $a \in P(M), \mathcal{B}^{[a]}$ is a crisp base on E.

Proof. $\quad(1) \Rightarrow(2)$. For each $a \in M \backslash\{T\}$. By (FB1), $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)=T$, hence $a \notin \alpha(\mathrm{~T})=\alpha\left(\underset{B \in 2^{E}}{ } \mathcal{B}(B)\right)=\bigcap_{B \in 2^{E}} \alpha(\mathcal{B}(B))$, thus $a \notin \alpha(\mathcal{B}(B))$ for some $B \in 2^{E}$, i. e. $B \in \mathcal{B}^{[a]}$. This implies $\mathcal{B}^{[a]}$ satisfies (B1). Let
$B_{1}, B_{2} \in \mathcal{B}^{[a]}$ and $x \in B_{1}-B_{2}$, then $a \notin \alpha\left(\mathcal{B}\left(B_{1}\right)\right) \cup \alpha\left(\mathcal{B}\left(B_{2}\right)\right)=\alpha\left(\mathcal{B}\left(B_{1}\right) \wedge\right.$ $\left.\mathcal{B}\left(B_{1}\right)\right)$ and $\underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$ by (FB2), hence $a \notin \alpha\left(\underset{y \in B_{2}-B_{1}}{\bigvee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)=\bigcap_{y \in B_{2}-B_{1}} \alpha\left(\mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)$, thus $a \notin \alpha\left(\left(\mathcal{B}\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)$ for some $y \in B_{2}-B_{1}$, i.e. $\left(B_{1}-\{x\}\right) \cup\{y\} \in$ $\mathcal{B}^{[a]}$ for some $y \in B_{2}-B_{1}$. This means that $\mathcal{B}^{[a]}$ satisfies (B2).
(2) \Rightarrow (1). For each $a \in M \backslash\{\top\}$, by $\mathcal{B}^{[a]}$ satisfies (B1), then $a \notin$ $\alpha(\mathcal{B}(B))$ for some $B \in 2^{E}$, thus $a \notin \bigcap_{B \in 2^{E}} \alpha(\mathcal{B}(B))=\alpha\left(\underset{B \in 2^{E}}{\bigvee^{\mathcal{B}}(B)}\right)$, hence $\bigvee_{B \in 2^{E}} \mathcal{B}(B)=\wedge \alpha\left(\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)\right)=$ T, i.e. (FB1) holds. Let $B_{1}, B_{2} \in 2^{E}$, $x \in B_{1}-B_{2}$, and $\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \neq \perp$. For every $a \in M \backslash\{\top\}$ and $a \notin \alpha\left(\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)\right)=\alpha\left(\mathcal{B}\left(B_{1}\right)\right) \cup \alpha\left(\mathcal{B}\left(B_{2}\right)\right)$, then $a \notin \alpha\left(\mathcal{B}\left(B_{1}\right)\right)$ and $a \notin \alpha\left(\mathcal{B}\left(B_{2}\right)\right)$, i.e. $B_{1}, B_{2} \in \mathcal{B}^{[a]}$, thus there exists $y \in B_{2}-B_{1}$ such that $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}^{[a]}$, hence $a \notin \alpha\left(\mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)$, $a \notin$
 $\{y\}) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$.

Analogously, we can obtain (1) $\Leftrightarrow(3)$.

Theorem 3.6. Let E be a finite set and $\mathcal{B}: 2^{E} \rightarrow M$ be a map. If $\beta(a \wedge b)=\beta(a) \cap \beta(b)$ for any $a, b \in M$, then the following conditions are equivalent:
(1) \mathcal{B} is an M-fuzzifying base on E;
(2) For each $a \in \beta(T), \mathcal{B}_{(a)}$ is a crisp base on E.

Proof. $\quad(1) \Rightarrow(2)$. Suppose that \mathcal{B} is an M-fuzzifying base on E. Then for any $a \in \beta(\mathrm{~T}), a \in \beta\left(\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)\right)=\bigcup_{B \in 2^{E}} \beta(\mathcal{B}(B))$ by (FB1), thus $a \in$ $\beta(\mathcal{B}(B))$ for some $B \in 2^{E}$, hence $B \in \mathcal{B}_{(a)}$, which means that $\mathcal{B}_{(a)}$ satisfies (B1). Let $B_{1}, B_{2} \in \mathcal{B}_{(a)}$ and $x \in B_{1}-B_{2}$, then $a \in \beta\left(\mathcal{B}\left(B_{1}\right)\right) \cap \beta\left(\mathcal{B}\left(B_{1}\right)\right)=$ $\beta\left(\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)\right)$, and $\underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$ by (FB2), hence $a \in \beta\left(\mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)$ for some $y \in B_{2}-B_{1}$, i.e. $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}_{(a)}$ for some $y \in B_{2}-B_{1}$. This means that $\mathcal{B}_{(a)}$ satisfies (B2).
$(2) \Rightarrow(1)$. By (B1), for each $a \in \beta(\mathrm{~T}), B \in \mathcal{B}_{(a)}$ for some $B \in 2^{E}$, thus $a \in \beta(\mathcal{B}(B)) \subseteq \beta\left(\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)\right)$, hence $\underset{B \in 2^{E}}{\bigvee} \mathcal{B}(B)=\bigvee \beta\left(\bigvee_{B \in 2^{E}} \mathcal{B}(B)\right) \geq$ $\underset{a \in \mathcal{B}(\mathrm{~T})}{\bigvee} a=\mathrm{T}$, i.e (FB1) holds. Let $B_{1}, B_{2} \in 2^{E}, \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right) \neq \perp$, $x \in B_{1}-B_{2}$, and $a \in \beta\left(\mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)\right)$. Then $a \in \beta\left(\mathcal{B}\left(B_{1}\right)\right)$ and $a \in$ $\beta\left(\mathcal{B}\left(B_{2}\right)\right)$, i.e. $B_{1}, B_{2} \in \mathcal{B}_{(a)}$. Hence there exists $y \in B_{2}-B_{1}$ such that $\left(B_{1}-\{x\}\right) \cup\{y\} \in \mathcal{B}_{(a)}$ by $\mathcal{B}_{(a)}$ is a crisp base on E. This shows that $a \in \beta\left(\mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right) \subseteq \beta\left(\underset{y \in B_{2}-B_{1}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right)\right)$. Therefore, $\underset{\substack{y \in B_{2}-B_{1}}}{\vee} \mathcal{B}\left(\left(B_{1}-\{x\}\right) \cup\{y\}\right) \geq \mathcal{B}\left(B_{1}\right) \wedge \mathcal{B}\left(B_{2}\right)$. This means that (FB2) holds.

Theorem 3.7. Let E be a finite set, Then the following conditions are equivalent:
(1) \mathcal{B} is a fuzzifying base on E;
(2) For each $a \in(0,1], \mathcal{B}_{[a]}$ is a crisp base on E;
(3) For each $a \in[0,1), \mathcal{B}_{(a)}$ is a crisp base on E.

4. The relation between M-fuzzifying bases and M-fuzzifying matroids

Definition 4.1. Let (E, \mathcal{I}) be an M-fuzzifying matroid on E, if it satisfies $\operatorname{Max}\left(\mathcal{I}_{[b]}\right) \subseteq \operatorname{Max}\left(\mathcal{I}_{[a]}\right)$ for every $a, b \in J(M)$ and $a \leq b$, then it is called a basic M-fuzzifying matroid.

Remark 4.2. Some M-fuzzifying matroids are not basic M-fuzzifying matroids. For example, let $E=\{x, y, z\}$ and $M=[0,1]$. Define $\mathcal{I}: 2^{E} \rightarrow M$ by

$$
\mathcal{I}(A)= \begin{cases}1, & A \in\{\emptyset,\{x\},\{y\}\} ; \\ \frac{1}{2}, & A \in\{\{x, y\}\} ; \\ \frac{1}{3}, & A \in\{\{z\},\{x, z\}\} ; \\ 0, & A \in\{\{y, z\}, E\} .\end{cases}
$$

Then

$$
\mathcal{I}_{[r]}= \begin{cases}\{\emptyset,\{x\},\{y\},\{z\},\{x, y\},\{x, z\}\}, & r \in\left(0, \frac{1}{3}\right] \\ \{\emptyset,\{x\},\{y\},\{x, y\}\}, & r \in\left(\frac{1}{3}, \frac{1}{2}\right] ; \\ \{\emptyset,\{x\},\{y\}\}, & r \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Hence (E, \mathcal{I}) is an M-fuzzifying matroid, but it is not a basic M-fuzzifying matroid since $\operatorname{Max}\left(\mathcal{I}_{[1]}\right) \nsubseteq \operatorname{Max}\left(\mathcal{I}_{\left[\frac{1}{2}\right]}\right)$.

Theorem 4.3. Let \mathcal{B} be an M-fuzzifying base on E. Define a map $\mathcal{I}_{\mathcal{B}}$: $2^{E} \rightarrow M$ by

$$
\mathcal{I}_{\mathcal{B}}(A)=\bigvee_{A \subseteq B} \mathcal{B}(B)
$$

Then $\mathcal{I}_{\mathcal{B}}$ is a basic M-fuzzifying matroid on E.
Proof. For every $a \in J(M), A \in\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]} \Leftrightarrow \bigvee_{A \subseteq B} \mathcal{B}(B) \geq a \Leftrightarrow A \subseteq B$ and $\mathcal{B}(B) \geq a$ for some $B \in 2^{E} \Leftrightarrow A \subseteq B$ and $B \in \mathcal{B}_{[a]}$ for some $B \in 2^{E} \Leftrightarrow A \in$ $\operatorname{Low}\left(\mathcal{B}_{[a]}\right)$. Therefore, $\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]}=\operatorname{Low}\left(\mathcal{B}_{[a]}\right)$ and $\operatorname{Max}\left(\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]}\right)=\mathcal{B}_{[a]}$. By Theorem 3.3, $\left(E,\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]}\right)$ is a crisp matroid for every $a \in J(M)$. Therefore, $\mathcal{I}_{\mathcal{B}}$ is a basic M-fuzzifying matroid on E.

When M is a boolean algebra, we have Theorems 4.4-4.6.
Theorem 4.4. Let (E, \mathcal{I}) be an M-fuzzifying matroid. Define a map $\mathcal{B}_{\mathcal{I}}$: $2^{E} \rightarrow M$ by

$$
\mathcal{B}_{\mathcal{I}}(B)=\bigwedge_{B \subset A}(\mathcal{I}(A))^{\prime} \wedge \mathcal{I}(B) .
$$

Then $\mathcal{B}_{\mathcal{I}}$ is an M-fuzzifying base.
Proof. $\quad \forall a \in J(M), B \in\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]} \Leftrightarrow\left(\mathcal{B}_{\mathcal{I}}\right)(B) \geq a \Leftrightarrow(\mathcal{I}(A))^{\prime} \wedge \mathcal{I}(B) \geq a$ for every $A \supset B \Leftrightarrow \mathcal{I}(B) \geq a$ and $(\mathcal{I}(A))^{\prime} \geq a$ for every $A \supset B \Leftrightarrow$ $\mathcal{I}(B) \geq a$ and $\mathcal{I}(A) \nsupseteq a$ for every $A \supset B \Leftrightarrow B \in \mathcal{I}_{[a]}$ and $A \notin \mathcal{I}_{[a]}$ for every $A \supset B \Leftrightarrow B \in \operatorname{Max}\left(\mathcal{I}_{[a]}\right)$. Hence $\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}=\operatorname{Max}\left(\mathcal{I}_{[a]}\right)(\forall a \in J(M))$, and $\mathcal{B}_{\mathcal{I}}(B)=\bigvee\left\{a \in J(M): B \in \operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right\}$. By Theorem 3.3, $\mathcal{B}_{\mathcal{I}}$ is an M-fuzzifying base.

Theorem 4.5. (1) For an M-fuzzifying matroid (E, \mathcal{I}), it follows that $\mathcal{I}_{\mathcal{B}_{\mathcal{I}}}=\mathcal{I}$;
(2) For an M-fuzzifying base \mathcal{B}, it follows that $\mathcal{B}_{\mathcal{I}_{\mathcal{B}}}=\mathcal{B}$.

Proof. (1) For every $a \in J(M)$, by Theorem 4.3 and Theorem 4.4, $\left(\mathcal{I}_{\mathcal{B}_{\mathcal{I}}}\right)_{[a]}=\operatorname{Low}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)=\operatorname{Low}\left(\operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right)=\mathcal{I}_{[a]}$.
(2) For every $a \in J(M)$, by Theorem 4.3 and Theorem 4.4, $\left(\mathcal{B}_{\mathcal{I}_{\mathcal{B}}}\right)_{[a]}=$ $\operatorname{Max}\left(\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]}\right)=\operatorname{Max}\left(\operatorname{Low}\left(\mathcal{B}_{[a]}\right)\right)=\mathcal{B}_{[a]}$.

By Theorems 4.3-4.5, we can obtain the following two results:

Theorem 4.6. There is a one-to-one correspondence between M-fuzzifying matroids and M-fuzzifying bases. That is, an M-fuzzifying matroid can be completely characterized by an M-fuzzifying base.

Remark 4.7. When M is a boolean algebra, an M-fuzzifying matroid is equivalent to a basic M-fuzzifying matroid.

When $M=[0,1]$, we have Theorems 4.8-4.10.

Theorem 4.8. Let (E, \mathcal{I}) be a basic fuzzifying matroid. Define a map $\mathcal{B}_{\mathcal{I}}: 2^{E} \rightarrow[0,1]$ by

$$
\mathcal{B}_{\mathcal{I}}(B)=\bigvee\left\{a \in(0,1]: B \in \operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right\}
$$

Then $\mathcal{B}_{\mathcal{I}}$ is a fuzzifying base on E.

Proof. For each $a \in(0,1]$, obviously, $\operatorname{Max}\left(\mathcal{I}_{[a]}\right) \subseteq\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]} . \quad B \in$ $\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]} \Leftrightarrow \bigvee\left\{a \in(0,1]: B \in \operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right\} \geq a \Leftrightarrow a \leq b$ for some $b \in$ $(0,1]$ and $B \in \operatorname{Max}\left(\mathcal{I}_{[b]}\right)$. As (E, \mathcal{I}) is a basic fuzzifying matroid, $B \in$ $\operatorname{Max}\left(\mathcal{I}_{[b]}\right) \subseteq \operatorname{Max}\left(\mathcal{I}_{[a]}\right)$. This means that $\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]} \subseteq \operatorname{Max}\left(\mathcal{I}_{[a]}\right)$. Therefore, $\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}=\operatorname{Max}\left(\mathcal{I}_{[a]}\right)$. By Theorem 3.3, $\mathcal{B}_{\mathcal{I}}$ is a fuzzifying base on E.

Theorem 4.9. (1) For a basic fuzzifying matroid (E, \mathcal{I}), it follows that $\mathcal{I}_{\mathcal{B}_{\mathcal{I}}}=\mathcal{I}$;
(2) For a fuzzifying base \mathcal{B}, it follows that $\mathcal{B}_{\mathcal{I}_{\mathcal{B}}}=\mathcal{B}$.

Proof. (1) For every $a \in(0,1]$, by Theorem 4.3 and Theorem 4.8, $\left(\mathcal{I}_{\mathcal{B}_{\mathcal{I}}}\right)_{[a]}=\operatorname{Low}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)=\operatorname{Low}\left(\operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right)=\mathcal{I}_{[a]}$.
(2) For every $a \in(0,1]$, by Theorem 4.3 and Theorem 4.8, $\left(\mathcal{B}_{\mathcal{I}_{\mathcal{B}}}\right)_{[a]}=$ $\operatorname{Max}\left(\left(\mathcal{I}_{\mathcal{B}}\right)_{[a]}\right)=\operatorname{Max}\left(\operatorname{Low}\left(\mathcal{B}_{[a]}\right)\right)=\mathcal{I}_{[a]}$.

By Theorem 4.3, Theorem 4.8 and Theorem 4.9, we can obtain the following result:

Theorem 4.10. There is a one-to-one correspondence between basic fuzzifying matroids and fuzzifying bases. That is, a basic fuzzifying matroid can be completely characterized by a fuzzifying base.

5. The dual matroids of basic M-fuzzifying matroids

In this section, M is a boolean algebra or $M=[0,1]$.
Definition 5.1. Let (E, \mathcal{I}) be a basic M-fuzzifying matroid. Define a map $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}: 2^{E} \rightarrow M$ by $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}(B)=\mathcal{B}_{\mathcal{I}}(E-B)$ and let $\mathcal{I}^{*}=\mathcal{I}_{\left(\mathcal{B}_{\mathcal{I}}\right)^{*}}$, then $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}$ is an M-fuzzifying base on E and $\left(E, \mathcal{I}^{*}\right)$ is a basic M-fuzzifying matroid. $\left(E, \mathcal{I}^{*}\right)$ is called the dual matroid of (E, \mathcal{I}).

Proof. By the definition of $\left(\mathcal{B}_{\mathcal{I}}\right)^{*},\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}^{*}=\operatorname{Com}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)$ for every $a \in J(M)$. Therefore, for every $a \in J(M),\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}^{*}$ is a crisp base on E. By Theorem 3.3, $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}$ is an M-fuzzifying base on E. By Theorem 4.3, $\left(E, \mathcal{I}^{*}\right)$ is a basic M-fuzzifying matroid.

Theorem 5.2. Let (E, \mathcal{I}) be a basic M-fuzzifying matroid, then
(1) $\left(\mathcal{I}^{*}\right)^{*}=\mathcal{I}$;
(2) $\operatorname{Com}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)=\left(\mathcal{B}_{\mathcal{I}^{*}}\right)_{[a]}$ for every $a \in J(M)$;
(3) $\mathcal{I}_{[a]}^{*}=\left(\mathcal{I}_{[a]}\right)^{*}$ for every $a \in J(M)$.

Proof. (1) By the definition of \mathcal{I}^{*}, Theorem 4.5 and Theorem 4.9, $\left(\mathcal{I}^{*}\right)^{*}=\left(\mathcal{I}_{\left.\left(\mathcal{B}_{\mathcal{I}}\right)^{*}\right)^{*}}=\mathcal{I}_{\left(\mathcal{B}_{\left(\mathcal{B}_{\mathcal{I}}\right)^{*}}\right)^{*}}=\mathcal{I}_{\left(\left(\mathcal{B}_{\mathcal{I}}\right)^{*}\right)^{*}}=\mathcal{I}_{\mathcal{B}_{\mathcal{I}}}=\mathcal{I}\right.$.
(2) By Theorem 4.5, Theorem 4.9 and the definition of $\left(\mathcal{B}_{\mathcal{I}}\right)^{*}$, for every $a \in J(M),\left(\mathcal{B}_{\mathcal{I}^{*}}\right)_{[a]}=\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}^{*}=\operatorname{Com}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)$.
(3) For every $a \in J(M), A \in \mathcal{I}_{[a]}^{*} \Leftrightarrow A \in \operatorname{Low}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}^{*}\right) \Leftrightarrow A \in$ $\operatorname{Low}\left(\operatorname{Com}\left(\left(\mathcal{B}_{\mathcal{I}}\right)_{[a]}\right)\right) \Leftrightarrow A \in \operatorname{Low}\left(\operatorname{Com}\left(\operatorname{Max}\left(\mathcal{I}_{[a]}\right)\right) \Leftrightarrow A \in\left(\mathcal{I}_{[a]}\right)^{*}\right.$.

Theorem 5.3. Let (E, \mathcal{I}) be a basic M-fuzzifying matroid, for every $A \subseteq$ E, then
(1) $R_{\mathcal{I}^{*}}(A)+R_{\mathcal{I}}(E)=|A|+R_{\mathcal{I}}(E-A)$;
(2) $R_{\mathcal{I}}(A)+R_{\mathcal{I}^{*}}(E)=\underline{|A|}+R_{\mathcal{I}^{*}}(E-A)$.

Proof. (1) $\forall a \in J(M),\left(R_{\mathcal{I}^{*}}(A)+R_{\mathcal{I}}(E)\right)_{[a]}=\left(R_{\mathcal{I}^{*}}(A)\right)_{[a]}+\left(R_{\mathcal{I}}(E)\right)_{[a]}=$ $R_{\mathcal{I}_{[a]}^{*}}(A)+R_{\mathcal{I}_{[a]}}(E)=R_{\left(\mathcal{I}_{[a]}\right)^{*}}(A)+R_{\mathcal{I}_{[a]}}(E)=|A|+R_{\mathcal{I}_{[a]}}(E-A)=$ $\left.(\underline{|A|})_{[a]}+R_{\mathcal{I}}(E-A)\right)_{[a]}=\left(|A|+R_{\mathcal{I}}(E-A)\right)_{[a]}$.
(2) By (1) and Theorem 5.2(1), $R_{\mathcal{I}}(A)+R_{\mathcal{I}^{*}}(E)=R_{\left(\mathcal{I}^{*}\right)^{*}}(A)+R_{\mathcal{I}^{*}}(E)=$ $\underline{|A|}+R_{\mathcal{I}^{*}}(E-A)$.

References

[1] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings) 85, pp. 403-414, (1982).
[2] G. Gierz, et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, (2003).
[3] R. Goetschel, W. Voxman, Bases of fuzzy matroids, Fuzzy Sets and Systems 31, pp. 253-261, (1989).
[4] H.-L. Huang, F.-G. Shi, M-fuzzy numbers and their properties, Information Sciences 178, pp. 1141-1151, (2008).
[5] H.-J. Lai, Matroid Theory, Higher Education Press, Beijing (in Chinese), (2002).
[6] C. V. Negoita, D. A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Interdisciplinary Systems Research Series, vol. 11, Birkhaeuser, Basel, Stuttgart and Halsted Press, New York, (1975).
[7] J. G. Oxley, Matroid Theory, Oxford University Press, New York, (1992).
[8] F.-G. Shi, Theory of L_{β}-nested sets and L_{α}-nested sets and its applications, Fuzzy Systems and Mathematics 4, pp. 65-72 (in Chinese), (1995).
[9] F.-G. Shi, M-fuzzy sets and prime element nested sets, J. Mathematical Research and Exposition 16, pp. 398-402 (in Chinese), (1996).
[10] F.-G. Shi, Theory of molecular nested sets and its applications, J. Yantai Teachers University (Natural Science) 1, pp. 33-36 (in Chinese), (1996).
[11] F.-G. Shi, M-fuzzy relation and M-fuzzy subgroup, J. Fuzzy Mathematics 8, pp. 491-499, (2000).
[12] F.-G. Shi, A new approach to the fuzzification of matroids, Fuzzy Sets and Systems 160, pp. 696-705, (2009).
[13] F.-G. Shi, (L, M)-fuzzy matroids, Fuzzy Sets and Systems 160, pp. 2387-2400, (2009).
[14] G.-J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems 47, pp. 351-376, (1992).
[15] D. J. A. Welsh, Matroid Theory, Oxford University Press, New York, (1976).

Xiu Xin

Department of Mathematics
Beijing Institute of Technology
Beijing, 100081,
P. R. China
e-mail : xinxiu518@163.com;
and

Fu-Gui Shi

Department of Mathematics
Beijing Institute of Technology
Beijing, 100081,
P. R. China
e-mail : fuguishi@bit.edu.cn

[^0]: *The project is supported by the National Natural Science Foundation of China (10971242)

