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1. Introduction

In [12, 13], when M is a complete lattice, Shi defined an M-fuzzifying
matroid to be the pair (F,Z), where Z is a map from 2F to M satisfying
three axioms. Thus each subset of F can be regarded as an independent
set to some degree. Moreover, Shi defined the M-fuzzifying rank of a set
A as an M-fuzzy natural number R(A) : N — M. M-fuzzifying matroids
and M-fuzzifying rank functions are one-to-one corresponding. This paper
treats the notion of M-fuzzifying bases. In subsequent papers we will deals
with M-fuzzifying circuits and other fuzzy concepts related to M-fuzzifying
matroids.

2. Preliminaries

We will use the following notation in establishing the results of this paper.
If E is a finite set, A C 2F, define

Com(A)={ACE:E—-Ac A},

Low(A)={ACFE:3Bec A, AC B},
Maz(A)={Aec A:VB e A,if AC B,then A = B}.

Throughout this paper, M always denotes a completely distributive
lattice and MF is the set of all M-fuzzy sets on E. The smallest element
and the largest element in M are denoted by L and T, respectively. We
often do not distinguish a crisp subset A of F¥ and its characteristic function
XA-

An element a in M is called a prime element if a > b A ¢ implies a > b
ora>c. ain M is called co-prime if a < bV ¢ implies a < b or a < ¢ [2].
The set of non-unit prime elements in M is denoted by P(M). The set of
non-zero co-prime elements in M is denoted by J(M).

The binary relation < in M is defined as follows: for a,b € M, a < b
if and only if for every subset D C M, the relation b < sup D always
implies the existence of d € D with a < d [1]. {a € M : a < b} is called
the greatest minimal family of b in the sense of [14], denoted by 3(b), and
pg*(b) = B(b) N J(M). Moreover, for b € M, we define a(b) = {a € M :
a <° b} and a*(b) = a(b) N P(M). In a completely distributive lattice M,
a is an A-|J map, 8 is a union-preserving map, and there exist a(b) and
B(b) for each b € M such that b = \/B(b) = A a(b) (see [14]). Note that
B(L)=0and a(T)=0.
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For any A € M¥ and any a € M, we define

Ag={z€E:A@x)>a}, AW ={zeE:A)Lal,
Ay ={r€E:aeB(Ax)}, Ad={zeE:a¢alAlx))}

Some properties of these cut sets can be found in [4, 6, 8, 9, 10, 11].
In [5, 7, 15], a crisp matroid and a crisp base for a crisp matroid are
usually defined as follows:

Definition 2.1. Let E be a finite set. T C 2F is called a system of matroid
independent sets on E if it satisfies

(I1) 0 e 7,

(I2) A€Z and B C A, then B € T,

(I3) For any A, B € T which satisfy |A| < |B|, there existse € B — A
such that AU {e} € Z, where |A|,|B| denote the cardinality of A, B.
The set of all systems of matroid independent sets on E is denoted by I(E)
and (E,7) is called a crisp matroid.

Definition 2.2. Let E be a finite set. A subset B C 2F is called a crisp
base on FE' if it satisfies

(B1) B # 0;

(B2) If B1,By € B and x € By — By, then (By — {z}) U{y} € B for
some y € By — Bj.
The set of all crisp bases on E is denoted by B(E).

Theorem 2.3. Let E be a finite set. A subset ) # B C 2F is a crisp base
on F if and only if it satisfies

(B2) If B1,B2 € B and © € By — Bs, then (By — {y}) U{z} € B for
some y € By — Bj.

Theorem 2.4. (1) If Z € I(E), then Maz(Z) € B(E);
(2) If B € B(E), then Low(B) € I(E);
(3) Max o Low(B) =B (VB € B(E)); Lowo Max(Z) =1 (VI € I(E)).

Definition 2.5. Let (E,Z) be a crisp matroid. Define (Bz)* = Com(Max(T))
and T* = Low((Bz)*), then (Bz)* is a crisp base on E and (E,T*) is a crisp
matroid. (E,Z*) is called the dual matroid of (E,T).

Theorem 2.6. Let (E,Z) be a crisp matroid, for every A C E, then

(1) Rz-(A) = |A] = Rz(E) + Rz(E — A);

(2) Rz(A) + Rz(E — A) — Rz(E) = Rz(A) + R+ (A) — |A| = R+ (A) +
Where Rr and Rz« denote the rank functions for (E,Z) and (E,T%).
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In [12, 13], Shi defined an M-fuzzifying matroid as follows:

Definition 2.7. Let E be a finite set. If a map T : 2¥ — M satisfies the
following conditions:

(FI1) Z(0) = T;

(FI2) For any A, B € 2¥, A C B = I(A) > Z(B);

(FI3) If A, B € 2¥ and |A| < |B|, then 'V AI(AU{@}) > Z(A)AZ(B).

e€B—

Then the pair (E,Z) is called an M-fuzzifying matroid. Z is called a fuzzy
family of independent sets on E. For A € 2F T(A) can be regarded as the
degree of the set A to be an independent set. A [0, 1]-fuzzifying matroid is
also called a fuzzifying matroid for short.

Theorem 2.8. Let E be a finite set and Z : 2¥ — M be a map. Then
(E,T) is an M-fuzzifying matroid if and only if for each a € J(M), (E,Zq))
is a crisp matroid.

Definition 2.9. Let N denote the set of all natural numbers. An M-fuzzy
natural number is an antitone map A : N — M satisfying

AM0)=T, A\ A(n) = L.
neN
The set of all M-fuzzy natural numbers is denoted by N(M).

Definition 2.10. For any m € N, define m € N(M) such that

T, if t<m,
M= L, if t>m+ L

Definition 2.11. For any A\, u € N(M), define the addition A+ p of A and
w as follows: for any n € N,

A+ =\ k) Ap):

k+l=n
Theorem 2.12. For any A, u € N(M) and any a € J(M), it follows that
(A + 10)fa] = Ala] + Hia)-

Definition 2.13. Let (F,Z) be an M-fuzzifying matroid. The map Ry :
2F — N(M) defined by

Rz(A)(n) = \/{Z(B) : BC A,|B| > n}

is called the M-fuzzifying rank function for (E,T). If A € 2F, then Rz(A)
is called the M -fuzzifying rank of A.
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Theorem 2.14. Let (E,T) be an M-fuzzifying matroid and Rz be the M-
fuzzifying rank function for (E,I). For each a € J(M), let Rz, denote the

rank function for (E,Zj,). Then Rg (A) = Rz(A)y for each A € 2F,

3. M-fuzzifying bases
The obvious M-fuzzifying analog of a crisp base is the following:

Definition 3.1. Let E be a finite set. A map B : 28 — M is called an
M-fuzzifying base on F if it satisfies
(FB1) V B(B)=T;
Be2F
(FB2) VB, By € 27, A V. B((B1 —{z}) U{y}) = B(B1) A
reB1—DBs yEBngl
B(B3).

A [0, 1)-fuzzifying base is also called a fuzzifying base for short.

Example 3.2. Let F = {x,y}. Define B :2F — [0,1] by

0, Ae{0,{z,yt}h
B(A) =< 1, A ={z};

Obviously, B is a fuzzifying base on F.

Theorem 3.3. Let E be a finite set and B : 2 — M be a map. Then the
following conditions are equivalent:

(1) B is an M-fuzzifying base on F;

(2) For each a € J(M), By, is a crisp base on E;

(3) For each a € P(M), B\ is a crisp base on E.

Proof. (1) = (2). For each a € J(M). By (FB1), V B(B)=T>a
Be2F
thus B(B) > a for some B € 2%, hence By, # 0, i.e By, satisfies (BL).
Let B1,By € B[a] and x € By — Bs, then V  B((B1—{z})U{y}) >
yeB>—B;
B(B1) A B(B2) > a by (FB2). As a € J(M), (B1 —{z}) U{y} € B for
some y € By — By. This means that By, satisfies (B2).
(2) = (1). By (2), for each a € J(M), B(B) > a for some B € 2| thus

\V B(B) >a, hence \/ B(B)=T,ie. (FB1) holds. Let By, By € 2,
Be2F Be2FB
x € By — By, and B(B1)AB(B2) # L. For every ae€ J(M) and



276 Xiu Xin and Fu—Gui Shi

a < B(B1) A B(Bs), then By, By € By, thus there exists y € B — By
such that (B1 — {z}) U{y} € Bly, hence V  B((B1 —{z})U{y}) > a.

yEB2—B1
Therefore, A V  B((B1—{z})U{y}) > B(B1) A B(Bz2).
r€EB1—Bs yEBngl

(1) = (3). For each a € P(M). By (FB1), V B(B) =T £ q,
Be2F

thus B(B) £ a for some B € 27, hence B # (), i.e B satisfies (B1).

Let By, By € B and 2 € By — By, by (FB2) and a € P(M), we have

yGBY_BlB((Bl—{fB})U{y}) > B(B1) AB(Bg) £ a, hence (B1—{z})U{y} €

B for some y € By — By. This means that B satisfies (B2).
(3) = (1). By (3), for each a € P(M), B € B for some B € 27 i..
B(B) £ a for some B € 2F thus \/ B(B) £ a, hence \/ B(B) = T.

Be2Fb Be2F
Let By, By € 28, 2 € By— By, and B(B1)AB(Bs) # L. For every a € P(M)
and B(B1) AB(By) £ a, then B(B) £ a and B(Bs) £ a, i.e. By, By € B®),
thus there exists y € By — By such that (B; — {z}) U {y} € B, hence
V  B((Bi—{z})U{y}) £ a. Therefore, A V  B({(Bi1—{z}H)U

yeB2— 5 2€B1—By yeBa— By
{y}) > B(B1) AB(Bp). O

By Theorem 2.3 and Theorem 3.3, we can obtain the following theorem.

Theorem 3.4. Let E be a finite set and B : 2 — M be a map. Then B is
an M-fuzzifying base on F if and only if it satisfies the following conditions:
(FB1) V B(B)=T;
Be2k
(FB2)' VB, By € 2%, A V.  B((B2—{y}) U{z}) = B(B1) A
r€B1—Bas yEBngl
B(B3).

Theorem 3.5. Let E be a finite set and B : 2 — M be a map. If
a(aVb) = a(a) Na(b) for any a,b € M, then the following conditions are
equivalent:

(1) B is an M-fuzzifying base on E;

(2) For each a € M\{T},B!% is a crisp base on E;

(3) For each a € P(M), Bl is a crisp base on E.

Proof. (1) = (2). For each a € M\{T}. By (FB1), V B(B) =T,
Be2Fk

hence a € o(T) = « ( V B(B)) = N «a(B(B)), thus a & a«(B(B)) for

Be2F Be2F
some Be2” i e BeBY This implies Bl satisfies (B1). Let
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By, By € Bl and z € By — By, then a € a(B(B1))Ua(B(Bs)) = a(B(B1) A
B(By))and V  B((Bi—{z})U{y}) = B(B1) AB(B2) by (FB2), hence

yEB2—B1

ad o (yer—B B((B1 —{z})U {y})> = yeBﬂ_B a(B((B1 = {z}) U {y})),
thus a & a((B(B1—{z})U{y})) for some y € Bo— By, i.e. (Bi—{z})U{y} €
Ble for some y € By — B;. This means that Bl% satisfies (B2).

(2) = (1). For each a € M\{T}, by Bl satisfies (B1), then a ¢

a(B(B)) for some B € 2% thusa ¢ (| a(B(B)) =« ( \V B(B) |, hence
Be2F Be2F
V B(B)=Aa| V B(B)| =T,ie (FB1) holds. Let By, By € 2%,

Be2FE Be2E
x € By — Bg, and B(B1) A B(Bz) # L. For every a € M\{T} and

a & a(B(B1) A B(Bz2)) = a(B(B1)) U a(B(Bz)), then a ¢ a(B(B1)) and
a ¢ a(B(B2)), i.e. Bi,By € Blel, thus there exists y € By — B; such
that (B — {z}) U {y} € B, hence a ¢ a(B((B; — {z}) U{y})), a &

al V B(Bi—{z})U {y})) Therefore, A vV  B((Bi—{z})U

yeEB2—B1 rEB1—B2 yeBa—B1
{y}) = B(B1) A B(Ba).

Analogously, we can obtain (1) < (3). O

Theorem 3.6. Let E be a finite set and B : 2 — M be a map. If
B(a Ab) = B(a) N B(b) for any a,b € M, then the following conditions are
equivalent:

(1) B is an M-fuzzifying base on F;

(2) For each a € 3(T), B is a crisp base on E.

Proof. (1) = (2). Suppose that B is an M-fuzzifying base on E. Then

for any a € 5(T), a € ( V B(B)) = U p(B(B)) by (FB1), thus a €
Be2F Be2F

B(B(B)) for some B € 2, hence B € B(,), which means that B, satisfies

(Bl). Let By, Bs € B(a) and z € B; — By, then a € 6(8(31)) ﬂ,B(B(Bl)) =

B(B(B1) A B(Bz)), and BV . B((B1 — {z}) U{y}) = B(B1) A B(B2) by
yeba—b1

(FB2), hence a € B(B((B1 — {z}) U {y})) for some y € By — By, i.e.
(B1 — {z}) U{y} € By for some y € By — B;. This means that B,
satisfies (B2).
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(2) = (1). By (B1), for each a € 5(T), B € By, for some B € 2¥, thus

a € BB(B)) B( v B<B>>, hence \/ B(B) = wa( v B(B)) >

Be2F Be2kE Be2F
V a = T, ie (FB1) holds. Let By,Bs € 2E B(By) A B(B2) # 1,
a€B(T)
x € By — Bg, and a € 5(B(B1) A B(Bz)). Then a € B(B(B1)) and a €
B(B(B2)), i.e. B1,By € B(,). Hence there exists y € B — By such that
(Br — {z}) U{y} € B by B, is a crisp base on E. This shows that

B
a€ BB(B1—{z})U{y})) C yeB\/_B B((B1 — {z})U{y}) |. Therefore,
V  B((Bi—{z})U{y}) > B(B1)AB(B2). This means that (FB2) holds.
yEBz—B1

Theorem 3.7. Let ¥ be a finite set, Then the following conditions are
equivalent:

(1) B is a fuzzifying base on E;

(2) For each a € (0,1}, Bl is a crisp base on E;

(3) For each a € [0,1), B, is a crisp base on E.

4. The relation between M-fuzzifying bases and M-fuzzifying
matroids

Definition 4.1. Let (E,Z) be an M-fuzzifying matroid on E, if it satisfies
Max(Zy) € Max(Zjy) for every a,b € J(M) and a < b, then it is called a
basic M -fuzzifying matroid.

Remark 4.2. Some M -fuzzifying matroids are not basic M -fuzzifying ma-
troids. For example, let E = {z,y,z} and M = [0,1]. Define T : 2F — M

by

Lo e g} {x?} ()}
i 5 S ,Yg g,
TH=0 1T Ac(i) (o))

0, Ae {{y,z}, E}.

Then

{@,{x},{y},{z},{x,y},{az,z}}, e (0 %
I[T‘} = {mv{x}a{y}v{xvy}}a re (%,%]7
{@,{.f},{y}}, e (§ 1
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Hence (E,7) is an M-fuzzifying matroid, but it is not a basic M -fuzzifying
matroid since Max(Zj)) € Max(I[%]).
Theorem 4.3. Let B be an M-fuzzifying base on E. Define a map Ip :
28 — M by
I5(A) = \/ B(B).
ACB

Then Ip is a basic M-fuzzifying matroid on E.

Proof. Foreverya € J(M), A€ (Ip)q < V B(B)>a+ AC Band
ACB

B(B) ZaforsomeBEZE@AgBandBEB[a] for some B € 2 < A €
Low(By,)). Therefore, (Ig), = Low(B)) and Max((Zp)q) = Blg- By
Theorem 3.3, (E, (Zp)[q)) is a crisp matroid for every a € J(M). Therefore,
1Ip is a basic M-fuzzifying matroid on £. O

When M is a boolean algebra, we have Theorems 4.4-4.6.

Theorem 4.4. Let (E,Z) be an M-fuzzifying matroid. Define a map Br :
28— M by
Br(B) =\ (Z(4)) AI(B).
BCA
Then Bz is an M-fuzzifying base.

Proof. VYac€ J(M), B € (Bz)[a] < (Br)(B) > a< (Z(A) ANZ(B) > a
for every A D B < Z(B) > a and (Z(A)) > a for every A D B &
I(B) > a and Z(A) # a for every A D B & B € I, and A ¢ I, for
every A D B < B € Max(Zjy)). Hence (Bz) = Max(Zj) (Va € J(M)),
and Bz(B) = V{a € J(M) : B € Maz(Zg))}. By Theorem 3.3, Br is an
M-fuzzifying base. O

Theorem 4.5. (1) For an M-fuzzifying matroid (F,ZT), it follows that

I, =1,
(2) For an M-fuzzifying base B, it follows that Bz, = B.

7

Proof. (1) For every a € J(M), by Theorem 4.3 and Theorem 4.4,
(ZB;)1a) = Low((Bz)jq) = Low(Max(Ig))) = Zja)-

(2) For every a € J(M), by Theorem 4.3 and Theorem 4.4, (Bz,)[, =
MCL:U((IB)M) = Ma:L‘(LOlU(B[a])) =Bjy. O

By Theorems 4.3-4.5, we can obtain the following two results:
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Theorem 4.6. There is a one-to-one correspondence between M -fuzzifying
matroids and M -fuzzifying bases. That is, an M -fuzzifying matroid can be
completely characterized by an M-fuzzifying base.

Remark 4.7. When M is a boolean algebra, an M-fuzzifying matroid is
equivalent to a basic M-fuzzifying matroid.

When M = [0, 1], we have Theorems 4.8-4.10.

Theorem 4.8. Let (E,7) be a basic fuzzifying matroid. Define a map
Br: 2% —[0,1] by

Bz(B) =\/{a € (0,1] : B € Max(Ijy)}

Then Bz is a fuzzifying base on F.

Proof. For each a € (0,1], obviously, Maz(Z,) € (Br)- B €
(Br)j) & Vi{a € (0,1] : B € Max(Z,)} > a < a < b for some b €
(0,1] and B € Maz(Zp). As (E,I) is a basic fuzzifying matroid, B €
Max(Zy) € Max(Zj)). This means that (Br)jq € Maz(Z,). Therefore,
(Bz)jq) = Max(Zy,). By Theorem 3.3, Br is a fuzzifying base on E. O

Theorem 4.9. (1) For a basic fuzzifying matroid (E,Z), it follows that
I, =1;
(2) For a fuzzifying base B, it follows that Bz, = B.

Proof. (1) For every a € (0,1], by Theorem 4.3 and Theorem 4.8,
(IBI)[OL] == LOZU((BI)M) == Low(Max(I[a})) == I[a]'

(2) For every a € (0,1], by Theorem 4.3 and Theorem 4.8, (Bzy)(q =
MCLJJ((IB)[CL}) = Max(Low(B[a])) = I[a]. |

By Theorem 4.3, Theorem 4.8 and Theorem 4.9, we can obtain the
following result:

Theorem 4.10. There is a one-to-one correspondence between basic fuzzi-
fying matroids and fuzzifying bases. That is, a basic fuzzifying matroid can
be completely characterized by a fuzzifying base.
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5. The dual matroids of basic M-fuzzifying matroids

In this section, M is a boolean algebra or M = [0, 1].

Definition 5.1. Let (F,Z) be a basic M-fuzzifying matroid. Define a map
(Br)* : 28 — M by (Bz)*(B) = Br(E — B) and let T* = I,+, then (Br)*
is an M-fuzzifying base on E and (E,TI*) is a basic M-fuzzifying matroid.
(E,T*) is called the dual matroid of (E,T).

Proof. By the definition of (Bz)*, (Bz)j,; = Com((Bz)y)) for every
a € J(M). Therefore, for every a € J(M), (BI)’["G] is a crisp base on E. By
Theorem 3.3, (B7)* is an M-fuzzifying base on E. By Theorem 4.3, (E,Z%)

is a basic M-fuzzifying matroid. O

Theorem 5.2. Let (E,Z) be a basic M-fuzzifying matroid, then
(1) (T =T
(2) Com((Bz)q)) = (Bz+)|q for every a € J(M);
(3) Iy = (Ziq))* for every a € J(M).

Proof. (1) By the definition of Z*, Theorem 4.5 and Theorem 4.9,
(T = Ly )" = Lipry, ) = Lisryy =18, = T

(2) By Theorem 4.5, Theorem 4.9 and the definition of (Bz)*, for every
a € J(M), (Bz+)jq) = (Bz)j = Com((Br)(q))-

(3) For every a € J(M), A € Iy < A€ Low((BI)E‘a]) s A€
Low(Com((Bz)q)) < A € Low(Com(Maz(Zy))) & A€ (Zjg)*. O

Theorem 5.3. Let (E,Z) be a basic M-fuzzifying matroid, for every A C
E, then

(1) Ry« (A) + R;'[(E) = ﬂ + RI(E — A);

(2) Rz(A) + Rz=(E) = |[A[ + Rz-(E — A).

Proof. (1) Va € J(M), (Rz+(A)+Rz(E)){q = (Rz*(A)) g +(Rz(E))[q =
RI[*Q] (A) + RI[a] (E) = R(I[a])*(A) + RI[Q] (E) = ’A’ + RI[Q] (E - A) =
(|AD + Bz(E — A))1q) = (JA][ + Rz(E — A))(q-

(2) By (1) and Theorem 5.2(1), Rz(A)+Rz+(E) = R(z+)«(A)+Rz=(E) =
H—FRI*(E—A). O
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