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Abstract

In this paper we introduce the concept of Para-Lindelof spaces in
L-topological spaces by means of locally countable families of L-fuzzy
sets. Further some characterizations of fuzzy para-Lindelofness and
flintily para-Lindelofness in the weakly induced L-topological spaces
are also obtained. More over the behavior of fuzzy para-Lindelof spaces
under various types of maps such as fuzzy closed maps, fuzzy perfect
maps are also investigated.
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1. Introduction

As a generalization of a set, the concept of fuzzy set was introduced by
Zadeh [18]. Fuzzy topology comes as the generalization of general topology
using the concept of a fuzzy set. In 1968 Chang [6] introduced the concept
of fuzzy topology and Lowen [12] introduced a more natural definition of
fuzzy topology.

Compactness and metrizability are the heart and soul of general topol-
ogy. In 1944 J. Dieudonne [7] defined paracompactness as a natural gen-
eralization of compactness. Later several other covering properties such
as meta-compactness, sub para-compactness, sub meta-compactness, para-
Lindelofness etc. have naturally evolved from para compactness. The con-
cept of para-Lindelof spaces was introduced by J. Greever [9] in 1968 and
further studies were conducted by Burke ([4, 5]), Fleissner-Reed [8].

The concept of paracompactness in fuzzy topology was introduced by
Luo [13]. Authors have introduced the concept and studied some properties
regarding metacompactness, subparacompactness, and submetacompact-
ness in L-topological spaces in [14], [3], [2] respectively. In this paper we
define locally countable families and introduce the concept of para-Lindelof
spaces in L-topological spaces. Besides getting some characterization for
para-Lindelof and flintily para-Lindelof in the weakly induced L-topological
spaces, it is also seen that these properties are closed hereditary. Further
the invariance of these properties under perfect maps is also proved.

Let L be a complete lattice. Its universal bounds are denoted by L
and T. We presume that L is consistent. i.e., L is distinct from T. Thus
1 <a < Tforall «a € L. We note V¢ = 1 and A¢p = T. The two
point lattice {L, T} is denoted by 2. A unary operation ’ on L is a quasi-
complementation. It is an involution (ie., o/’ = « for all a € L) that inverts
the ordering. (ie., « < (8 implies ' < /). In (L,) the DeMorgan laws
hold: (VA) = A{c/ : a« € A} and (AA) = V{d/ : a € A} for every A C L.
Moreover, in particular, 1’ =T and T’ = L.

A molecule or co-prime element in a lattice L is a join irreducible el-
ement in L and the set of all non zero co-prime elements of L is denoted
by M (L) and prime elements by pr(L). A complete lattice L is completely
distributive if it satisfies either of the logically equivalent CD1 or CD2 be-

low: CD1: Ajer (Vjes; aij) = Veeniel (Nel ai,d)(i))
CD2: Vier (Njeg, @ij) = Ngellicl (\/iel ai,(;ﬁ(i))
for all {{a;; : j € J;} :i € I} C P(L)\{¢},
If L is a complete lattice, then for a set X, LX is the complete lattice of
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all maps from X into L, called L-sets or L-subsets of X. Under point-wise
ordering, a < b in LX if and only if a(x) < b(z) in L for all z € X. If
A C X, 14 € 2X ¢ L¥ is the characteristic function of A. The constant
member of L¥X with value « is denoted by « itself. Usually we will not
distinguish between a crisp set and its characteristic function. Wang [15]
proved that a complete lattice is completely distributive if and only if for
each a € L, there exists B C L such that (i) @ = VA and (i) if A C L
and a < VB, then for each b € B, there exists ¢ € A such that b < c¢. B is
called the minimal set of a and $(a) denote the union of all minimal sets
of a. Again $*(a) = f(a) N M(L). Clearly f(a) and 8*(a) are minimal sets
of a.

For a € L and A € L¥, we use the following notations.

A ={r € X : A(z) > a};
Al =1{r e X : A(z) < al;
A ={z e X: Alx) # a};
Ay ={z € X : A(x) £ a}.

Clearly L* has a quasi complementation ’ defined point-wisely o/ (x) =
a(z) for all & € L and = € X. Thus the DeMorgan laws are inherited by
(LX),

Let (L,) be a complete lattice equipped with an order reversing in-
volution and X be any non empty set. A subfamily 7 C L% which is
closed under the formation of sups and finite infs (both formed in LX) is
called an L-topology on X and its members are called open L-sets. The
pair (X, 7) is called an L-topological space (L-ts). The category of all
L-topological spaces, together with L-continuous mappings and the com-
position and identities of set is denoted by L-Top. Quasi complements of
open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely
distributive lattice is V-generating. Moreover for a continuous lattice L
and a topological space (X,T), T' = irwr(T) is not true in general. By
proposition 3.5 in Kubiak [11] we know that one sufficient condition for
T =irwr(T) is that L is completely distributive.

In [16] Wang extended the Lowen functor w for completely distributive
lattices as follows: For a topological space (X,T), (X,w(T)) is called the
induced space of (X,T) where w(T) = {A € LX :Ya € M(L), A®) ¢ T}.
In 1992 Kubiak also extended the Lowen functor wy, for a complete lattice
L. In fact when L is completely distributive, w; = w.

An L-topological space (X, 7) is called weakly induced space if Yo €
M(L), YA € 7 it is true that A(®) € [r] where [r] is the set of all crisp
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open sets in 7.

Based on these facts, in this paper we use a complete, completely dis-
tributive lattice L in LX. For a standardized basic fixed-basis terminology,
we follow Hohle and Rodabaugh [10].

2. Preliminaries and Basic Definitions

2.1. Definition

[17] Let (X, 7) be an L-ts. A fuzzy point z,, is quasi coincident with D € LX
(and write zo < D) if 4 £ D'. Also D quasi coincides with E at = (D ¢
E at z) if D(z) £ E'(x). We say D quasi coincident with E and write D
q Fif D g E at x for some x € X. Further D-¢ FE means D not quasi
coincides with . We say U € 7 is quasi coincident nbd of z, (Q- nbd) if
2o < U. The family of all Q- nbds of z,, is denoted by Q-(zs) or Q(z4).

2.2. Definition

[17] Let (X,7) be an L-ts, A € L*. ® C L¥ is called a Q-cover of A if for
every z € Supp(A), there exist U € ® such that x4,y < U. ® is a Q-cover
of (X,7) if ® is a Qcover of T. If @ € M(L), then C € 7 is an a-Q-nbd
of Aif C € Q(zq) for every z, < A. @ is called an a-Q-cover of A, if for
each z, < A, there exists U € ® such that x, < U. ® is called an open
a-Q-cover of A if ® C 7 and ® is an a-Q-cover of A. ¢y C L¥ is called a
sub a-Q-cover of A if &g C ¢ and g is also an a-@Q-cover of A. P is called

an o~ -Q cover of A, if there exists v € 8*(a) such that ® is y-Q-cover of
A.

2.3. Definition

[17] Let (X,7) be an L-ts, D € LX. D is called N-compact if for every
a € M(L), every open a-Q cover of D has a finite sub family which is an
a~-Q cover of D. (X, 7) is called N-compact if T is N-compact.

2.4. Definition

[?] Let (X,7) be an L-ts, A = {A; : t € T} C LX, z\ € M(L¥). A
is called locally finite at x), if there exist U € Q(z)) and a finite subset
To of T such that t € T\ Ty = A;—q U. And A is called *-locally
finite at xz if there exist U € Q(z)) and a finite subset Ty of T" such that
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t € To = X(4y),, "q U. Ais called locally finite (*-locally finite) for short,
if A is locally finite(*-locally finite) at every molecule z) € M (L¥).

2.5. Definition

[14] Let (X,7) be an L-ts. A = {A; :t € T} C LX, z) € M(LX). A is
called point finite at x) if z) < A; for at most finitely many t € T. And A
is *-point finite at ) if there exists at most finitely many ¢ € T such that
Th = X(Ag) (1) A is called point finite (resp. *-point finite) for short, if A

is point finite (resp. *-point finite) at every molecule z of L.

2.6. Definition

Let (X,7) be an L-ts, A = {A; : t € T} C LY, z\, € M(L¥X). A is called
locally countable at x), if there exist U € Q(z)) and a countable subset Ty
of T such that t € T'\ Tp = A1 —q U. And A is called *-locally countable
at x) if there exist U € Q(z)) and a countable subset Ty of T' such that
t € To= Xy ) 4 U. A is called locally countable (*-locally countable)
for short, if A is locally countable (*-locally countable) at every molecule
TN EM (LX)

The previous notions “locally countable family” is defined for L-ts.
They can be also defined for L-subsets:

2.7. Definition

Let (X,7) bean L-ts. A€ LX, A={A,:t€T}C LY, xy€ M(LY). A
is called locally countable in A, if A is locally countable at every molecule
Ty € M(l A).

2.8. Definition

Let (X,7) be an L-ts. A ={A;:t€T} C LX, Be L.

A is called o-locally countable in B if A is the countable union of sub
families which are locally countable in B. A is called o-locally countable
for short, if A is o-locally countable in T.

2.9. Definition

[17] Let (X,7) be an L-ts. Then by [r] we denote the family of support
sets of all crisp subsets in 7. (X, [7]) is a topology and it is the background
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space. (X, 7) is weakly induced if U € 7 is a lower semi continuous function
from the background space (X, [7]) to L.

2.10. Definition

[17] Let (X,7) be an L-ts. (X, ) is called weakly a-induced if U, € [7]
for every U € 7.

2.11. Proposition

[17] Let (X, 7) be an L-ts. Then the following conditions are equivalent.
(i) (X, 1) is weakly induced.

(ii) (X, ) is weakly y-induced for every v € pr(L).

(iii) (X, ) is weakly a-induced for every a € L.

2.12. Definition

[17] For a property P of ordinary topological space, a property P* of L-ts
is called a good L-extension of P, if for every ordinary topological space
(X,T), (X, T) has the property P if and only if (X, wy (7)) has property P*.
In particular when L = [0, 1] we say P* is a good extension of P. Where
wr,(T) is the family of all lower semi continuous function from (X,7’) to L.
2.13. Definition

[17] A collection A refines a collection B(A < B) if for every A € A, there
exists B € B such that A < B.

2.14. Definition

[17] Let (X, 7) be an L-ts. A = {A4;:t € T} C L is a closure preserving
collection if for every subfamily Ag of A, cl[VAg] = V]clAy].

2.15. Proposition

[17] Let (X,7) be an L-ts. A C L is closure preserving. Then for every
sub family Ag = {A; :t € T} C A, Vier cl A is a closed subset.

2.16. Theorem

Every locally countable family of subsets is closure preserving.
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Proof. Let A C L¥ is locally countable, Ag = {A; : t € T} C A, then
Ay is locally countable. Since V(clAp) < cl(VAy) is clear it is sufficient
to prove that cl(VAp) < V(clAg). Suppose z, € M(| cl(VAy)). Since
Ay is locally countable, there exist U € Q(z4) such that = Ay —q U for
every t € T\ Ty where Tp is a countable subset of 7. This implies that
Ay <U' forevery t € T\ Tp. If o, £ V(clAyp), then x4 £ cl Ay for every
t € Tp and hence there exist U, € Q(z,) such that A, < Uj. Since Ty
is countable, V. = U A (VieryUz) € Q(z4) and Ay < V' for every t € T.
So Vier Ay < V' and hence z, < cl(VAg) = cl(VierAr) < (V') = V.
That is x4 is not quasi coincidence with V', which is a contradiction that
V € Q(xq). Therefore z, € V(clAg) and thus cl(VAg) = V(clAp). O

2.17. Definition

[14] A collection U of fuzzy subsets of an L-topological space (X, 7) is said
to be well monotone if the subset relation ‘<’ is a well order on U.

2.18. Definition

[14] A collection U of fuzzy subsets of an L-topological space (X, 7) is said
to be directed if U, V' € U implies there exists W € U such that UVV < W,

2.19. Definition

Let (X,7) be an L-ts, A € LX, B ¢ LX. Then st(A,B) = V{B ¢
B : B q A} is defined as the star of B about A. If zy € M(LX), then
st({zx},B) is denoted by st(zy,B).

2.20. Definition
Let (X,7) be an L-ts. A = {A; : t € T} C L is a interior preserving

collection if for every subfamily Ag of A, int[AAg] = AlintAyg].

3. Para-Lindelof Spaces

3.1. Definition

[17] Let (X,7) be an L-ts, A € LX, a € M(L). A is called a-Lindelof
if every open a-@Q-cover of A has a countable subfamily which is also an
a-Q-cover of A. A is Lindelof if A is o~ Lindelof for every oo € M(L). And
(X, 7) is Lindelof if T is Lindelof.
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3.2. Definition

Let (X,7) be an L-ts, A € LX, @ € M(L). A is called a-para-Lindelof
(a*-para-Lindelof) if for every open a-Q-cover ® of A, there exist an open
refinement ¥ of ® which is locally countable (*-locally countable) in A
and W is also an a-Q-cover of A. A is para-Lindelof (*-para-Lindelof) if
A is a-para-Lindelof (o*-para-Lindelof) for every a € M(L). (X,7) is
para-Lindelof (*-para-Lindelof) if T is para-Lindelof (*-para-Lindelof).

3.3. Definition

Let (X,7) be an L-ts, « € M(L). (X, ) is called o-para-Lindelof if for
every open a-Q-cover ® of X, there exist an open refinement ¥ of ® which
is o-locally countable in X and also an a-Q-cover of X.

3.4. Proposition

Let (X,7) be an L-ts, A € L*, a € M(L). Then
(i) A is a*-para-Lindelof = A is a-para-Lindelof.
(ii) A is *-para-Lindelof = A is para-Lindelof.
Para-Lindelof and *-Para-Lindelof are hereditary with respect to closed
subsets.

3.5. Theorem

Let (X,7) be an L-ts, A€ LX, a € M(L), B € 7. Then
(i) A is a-para-Lindelof = A A B is a-para-Lindelof.
(ii) A is para-Lindelof = A A B is para-Lindelof.

Proof. We need to prove only (i). Suppose that U is an open a-Q-
cover of AN B. Take V = UU{B’}. Now clearly V is an open a-Q-
cover of A. Since A is a-para-Lindelof, V has an open refinement W such
that W is locally countable in A and is also an «a-Q-cover of A. Take
Wo={WeW:3Ue€UW <U}. Now we show that Wy is the
required locally countable refinement of V which is also an a-Q-cover of
AN B. Clearly Wy is a locally countable refinement. Let z, < AANB < A,
since W is an a-Q-cover of A, there exist W € W such that z, < W. Since
To < B, BL B ie. W £ B'. Since W is a refinement of V.=U U {B’},
34U € U such that W < U. Thus W € Wy and hence z, < W € Wy. O

A similar theorem holds for a*-para-Lindelof and *-para-Lindelof spaces
also.
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3.6. Theorem

Let (X,7) be an L-ts, A € L*, a € M(L), B € 7. Then
(i) A is a*-para-Lindelof = A A B is a*-para-Lindelof.
(ii) A is *-para-Lindelof = A A B is *-para-Lindelof.

3.7. Theorem

Let (X,7) be a weakly induced L-ts. Then the following conditions are
equivalent

(i) (X, 1) is para-Lindelof;

(ii) There exist o € M (L) such that (X, 7) is a-para-Lindelof;

(iii) (X, [r]) is para-Lindelof.

Proof. (i) = (ii) is obvious.

(ii) = (iii): Let U C [7] be an open cover of X. Now U* = {xy : U € U} is
an open a-@Q-cover of T and it has a locally countable refinement V which
is also an a-@Q-cover of T.

Let W = {V(4) : V € V}. Clearly W is both a refinement of U and a
cover of X. Since (X,7) is weakly induced, we have W C [r]. Now we
want to prove that W is locally countable. Let x € X. Since (X,7) is
a-para-Lindelof, there exist B € Q(z,) such that B only quasi coincides
with a countable number of members Vg, V1, Va, -+ of V. Let O = B(y).
By the weakly induced property of (X,7), O € [r]. For every V € V,
if O NV # ¢, then there exist an ordinary point y € O N V{4, and
hence B(y) £ L, V(y) £ o. Therefore V(y) < « and it follows that
B(y) £ V(y)' and thus B ¢ V. So V € {Vb, Vi, Va,---} and O intersects
only a countable number of members Vjory, Vi(ar), Vo(ary, -+ of W. Hence
(X, [7]) is para-Lindelof.

(iii) = (i): Suppose that a € M (L) and U C 7 be an open a-Q-cover
of T. Since (X,7) is weakly induced U* = {Uy) : U € U} is an open
cover of (X, [r]). Since (X, [r]) is para-Lindelof, there exist a refinement
V of U* which is also a locally countable cover of X. For every V € V,
let Uy € U such that V' C Uy(yy. Let W = {xy AUy : V € V}. Now
clearly W is both a refinement of U and an a-Q-cover of T. Now we
will prove that W is locally countable. Let x, € M(LX). Then since
V is locally countable, there exist a neighbourhood B of z such that B
intersects with V; for countably many V; € V. Now we have xp € Q(z4).
We will show that xp ¢ xv; A Uy, for at most countably many 7. For if
possible xp ¢ xv AUy for uncountably many V € V. Then x5 q xv or x5
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q Uy for uncountably many V € V. In both cases B intersects with V for
uncountably many V € V, which is a contradiction and hence W is locally
countable. Therefore (X, 7) is a-para-Lindelof. This completes the proof.
O

3.8. Theorem

Let (X,7) be a weakly induced L-ts. Then the following conditions are
equivalent

(i) (X, 1) is *-para-Lindelof;

(ii) There exist o € M(L) such that (X, 7) is a*-para-Lindelof;

(iii) (X, [r]) is para-Lindelof.

Proof. (i) = (ii) is obvious.
(ii) = (iii): Let U C [7] be an open cover of X. Now U* = {xy : U € U} is
an open a-@Q-cover of T and it has a locally countable refinement V which
is also an a-@-cover of T.
Take W = {V(oy : V € V} then W is both a refinement of U and a
cover of X. Since (X,7) is weakly induced, we have W C [r]. Now we
want to prove that W is locally countable. Let z € X. Since (X,7)
is a*-para-Lindelof, there exist B € Q(z,) such that xp) only quasi
coincides with a countable number of members Vy, Vi, Vo, -+ of V. Then
r € B(y). By the weakly induced property of (X,7), By € [7], so By)
is a neighbourhood of z. For every V' € V, if B(1) N V(4 # ¢, then there
exist an ordinary point y € By N V4, V(y) £, V(y) > L, V(y)' < L.
So xpy(w) =T £ V(@' xpuyq V, V e {V,V,Va,---}. Therefore
the neighbourhood B is of x intersects a countable number of members
Vo(arys Vi(ar)s Va(ary, - of W, thus W is locally countable in X. Hence
(X, [7]) is para-Lindelof.

(iii) = (i): Suppose that o € M (L) and U C 7 be an open a-Q-cover of
T. Since (X,7) is weakly induced U* = {U(y : U € U} is an open cover
of (X,[r]). Since (X, |[r]) is para-Lindelof, there exist a locally countable
and open refinement V of U* which is also a cover of X. For every V € V,
let Uy € U such that V' C Uy (yy. Let W = {xy AUy : V € V}. Then
W C 7 is clearly a refinement of U and an a-Q-cover of T. Now we will
prove that W is *-locally countable. Let xz, € M (LX) and B € Q(z,).
If possible let x(xv A Uy)) ¢ B for uncountably many V' € V. That
is Xxv A xuv() ¢ B for uncountably many V' € V. And hence xv ¢ B
or xyv(L) ¢ B for uncountably many V' € V. In both cases V intersects
with the neighbourhood of z for uncountably many V' € V which is a
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contradiction that V is locally countable. Hence W is *-locally countable
and this completes the proof. O

3.9. Theorem

Let (X, 7) be an L-ts. Then the following are equivalent

(i) (X, 7) is para-Lindelof;

(ii) For every open a-Q-cover A of (X,7), there is a locally countable
refinement B such that if z, € M (LX) then z, € int(st(zq, B)).

Proof. (i) = (ii) is obvious.

(ii) = (i): Suppose A = {A; : t € T} is an open a-Q-cover of T. Let
B = {B; : t € T} be a locally countable refinement as given in (ii). Let
C be an open a-Q-cover of T such that every element of C intersects at
most countably many elements of B. Then for every x, € M (LX), there is
a locally countable refinement D of C such that z, € int(st(zq, D)).

For each B € B, take Agp € A such that B < Ap and let Gg =
int(st(B,D)) A Ap. Then clearly G = {Gp : B € B} is an a-Q-cover of T
and hence is an open refinement of A. To show G is locally countable, let
To € M(LX) and W € Q(z,) such that W intersects only countably many
elements of D. Now since each D € D intersects only countably many
elements of B, it follows that W intersects only countably many elements
of {st(B,D) : B € B}. Hence G is locally countable and the theorem is
proved. O

Similar to Theorem 3.9 we can prove the following result:

3.10. Theorem

Let (X, 7) be an L-ts. Then the following are equivalent

(i) (X, 1) is o-para-Lindelof;

(ii) For any open a-Q-cover A of (X,7), there is a o-locally countable
refinement B = UB; such that if z, € M(L¥) then z, € int(st(zq, By))
for some k£ € N.

4. Flintily Para-Lindelof Spaces

4.1. Definition

Let (X,7) bean L-ts. A€ LX, A ={A,:t €T} CLX xy€ M(LX). A
is called flintily locally countable at x) if there exist U € Q(xy) N crs(7)
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and a countable subset Ty of T" such that t € T\ Tp = A;—q U. And
A is called flintily locally countable in A, if A is flintily locally countable
at every molecule x) € M(| A). A is called flintily locally countable for
short, if A is flintily locally countable in T.

4.2. Theorem

In L-ts the following implications hold
Flintily local countable = *-local countable = local countable

4.3. Proposition

Let (X,7) be an L-ts, {A;: t € T} C LX, x\ € M(L¥). Then

(i) {A¢ : t € T'} is *-locally countable at xx = {x(4,),, : t € T'} is *-locally
countable at x.

(ii) {A¢ : t € T} is flintily locally countable at zx = {X(4,),, : t € T} is
flintily locally countable at x).

(L

4.4. Theorem

Let (X,7) be an L-ts, A € LX, A = {A; : t € T} C L. If A is flintily
locally countable in A, then clA is flintily locally countable in A.

4.5. Remark

Clearly flintily local countability is strictly stronger than *-local countabil-
ity. But in weakly L-induced L-ts they are coincident with each other.

4.6. Theorem

Let (X,7) be a weakly L-induced L-ts, A € LX, A = {4, : t € T} C
LX. Then A is flintily locally countable in A, if and only if A is *-locally
countable in A.

Proof. By Theorem 4.2, it is enough to prove that *-local countability
implies flinty local countability. Suppose A is *-local countable in A. Let
xzx € M(] A). Then there exist U € Q(z)) and a countable subset T of T
such thatt € T'\ Tp = X(A4,), 7 ¢ U is satisfied. Since (X, 1) is weakly |-
induced, U,y € [7]. Let t € T'\ Ty, y € Ay(1), then U'(y) > X(At)(J_)(y) =
T. Soy € U[/T] = X \ U and hence (XU(L))/(Z/) =T = X(At)u)(y).
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That is to say X(4,),, < (xu,)"s X(a) ., ™ 4(Xxug,,). Since Xy, € T,
XU, € Q(@r) Ners(r). Hence A is flintily locally countable. O

4.7. Definition

Let (X,7) be an L-ts, A € LX, a € M(L). A is called flintily a-para-

Lindelof if for every open a-Q-cover ® of A, there exist an open refinement

¥ of ® which is flintily locally countable in A and W is also an a-Q-cover of

A. A is called flintily para-Lindelof if A is flintily a-para-Lindelof for every

a € M(L). And (X, 7) is flintily para-Lindelof if T is flintily para-Lindelof.
By Theorem 4.2, the following implications hold:

4.8. Theorem

Let (X,7) be an L-ts, A € LX, o € M (L), then

(i) A is flintily a-para-Lindelof = A is a*-para-Lindelof = is a-para-

Lindelof.

(ii) A is flintily para-Lindelof = A is *-para-Lindelof = A is para-Lindelof.
Similar to Theorem 3.5 we can prove that flintily para-Lindelofness is

hereditary with respect to closed subsets.

4.9. Theorem

Let (X,7) be an L-ts, A € LX, o€ M(L), B € 7. Then
(i) A is flintily a-para-Lindelof = A A B is flintily a-para-Lindelof.
(ii) A is flintily para-Lindelof = A A B is flintily para-Lindelof.

4.10. Theorem

In a weakly induced L-ts (X, 7), the following are equivalent

(i) (X, 7) is flintily para-Lindelof.

(ii) There exist a € M (L) such that (X, 7) is flintily a-para-Lindelof;
(iii) (X, [r]) is para-Lindelof.

Proof. (i) = (ii) is obvious.

(ii) = (iii): Let U be an open cover of (X, [r]). Then ® = {xy : U € U}
is an open a-Q-cover of T and by (ii) it has an open and flintily locally
countable refinement ¥ = {A4; : t € T'} such that ¥ is an a-Q-cover of T.
For every t € T, take V; = Ayy and V = {V; : t € T'}. Then by the
weakly induced property of (X, 7), V is an open cover of (X, [7]). Now we
will prove V is a locally countable refinement of U. Let V; € V. Since
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is ¥ a refinement of ®, there exist U € U such that A; < yy. Suppose
x € Vi, then Ay(x) £ o/, so xu(x) # L, x € U, V; C U. Therefore V is a
refinement of U.

Let x € X. Since ¥ is flintily locally countable, there exist B € Q(xq)N
crs(T) such that A; ¢ B for only a countable number of members A;s in 1.
Since B € Q(z4) is crisp, B() is the neighbourhood of z. For every t € T
if Ay—q B, then V; N By = ®. So B( ) intersects with only a countable
members of V, thus V is locally countable. Hence (X, [r]) is paraLindelof.
(iii) = (i) suppose o € M (L), A = {A; : t € T'} is an open a-Q-cover of
T. For every t € T take Uy = Ayy and U = {U; : ¢t € T'}. Since A is
an open a-@Q-cover of T and (X, 7) is weakly induced, U is an open cover
of (X, [r]). Therefore by (iii), there exists an open and locally countable
refinement V = {V; : s € S} of U which is also a cover of (X, [r]). For
every s € S take t(s) € T such that Vs C Uy, let Wy = Ay A X7s
then Ws is an open L-set and Ws < Ay, for every s € S. Therefore
W = {Ws: s € S} is an open refinement of A. Now we will show that
W is an open a-Q-cover of T. Let z, € M(LYX) take s € S such that
x € Vs and hence x € Uyy). So Ay (2) £ o/, a £ Ay (x)'. Since x € Vg,
xvs € Q(za), we have Ws = A;5) A xvs € Q(z4). Hence W is an open
a-Q-cover of T.

Suppose z, € M(LX), then since V being locally countable in (X, [7]),
there exist a neighbourhood B of = in (X, [r]) such that B intersects with
only countably many members of V say Vi, Vs, Vs,,---. Then for every
s € S\ {so,81,82...}, VsNnB = ®, B C Vs and thus xpg < xvi, <
A;(S) V xvh, = Ws'. That is xg— ¢ Ws. Hence W is flintily locally
countable. This completes the proof. O

5. Invariant Theorems

In this section we study the behaviour of para-Lindelof spaces under various
types of fuzzy mappings.

5.1. Definition

[17] Let (X,7), (Y, ) be L-topological spaces, f : X — Y be an ordinary
mapping. Based on this we define the L-fuzzy mapping f~ : LX — LY
and its L-fuzzy reverse mapping f< : LY — LX by

7L =LY, 7 (A)(y) =V{A(x) iz € X, f(z) =y}VA € LX Wy € Y.
=LY - L%, f=(B)(z) = B(f(x)),VB € LY ,Vx € X.
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5.2. Definition

[17] Let (X, 7), (Y, 1) be L-topological spaces,

f~ : LX — LY an L-fuzzy mapping. We say f~ is an L-fuzzy continuous
mapping from (X, 7) to (Y, p) if its L-fuzzy reverse mapping <~ : LY — LX
maps every open subset in (Y, ) as an open one in (X, 7). ie., YV € pu,

fe(V)yer.

5.3. Definition

[17] Let (X, 7), (Y, 1) be L-topological spaces,
f~ : LX — LY an L-fuzzy mapping. We say f~ is open if it maps every
open subset in (X, 7) as an open one in (Y, u). i.e., YU € 7, f7(U) € p.

5.4. Definition

[17] Let (X, 7), (Y, 1) be L-topological spaces,
f~ : LX — LY an L-fuzzy mapping. We say f— is closed if it maps every
closed subset in (X, 7) as an closed one in (Y, p). i.e., VE € 7/, f7(F) € .

5.5. Definition

[1] Let (X,7), (Y, ) be L-ts’s, f~ : LX — LY an L-fuzzy mapping. Then
f7 is perfect if it is continuous, closed and f“ (y) is N-compact for every
yevy.

5.6. Result

[17] If (X, 7), (Y, p) are two weakly induced L-topological spaces, then

(i) If the map f— : LX — LY is L-fuzzy continuous, then f : (X, [7]) —
(Y, [u]) is continuous;

(ii) If the map f— : LX — LY is L-fuzzy closed, then f : (X, [7]) — (Y, 1))
is closed;

(iii) If the map f~ : LX — LY is L-fuzzy open, then f : (X, [r]) — (Y, [u])

is open.

5.7. Theorem

Let (X,7), (Y,n) are two weakly induced L-topological spaces. Then if
[~ LY — LY is perfect, then so is f : (X, [r]) — (Y, [u]).
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Proof.  Let y, € M(LY). Since f~ : LX — LY is perfect, f~(ya) is
N-compact. Now to prove f : (X, [r]) — (Y, [u]) is perfect, it is enough to
prove that f (ya) is compact for every y € Y. Now let U € [7] be an open
cover of f~1(y). Consider Ux = {xy : U € U}. This is an open a-Q-cover
of f7(ya). For, let zo < f7(Ya)- 1€, [T (Ya)(@) = ya(f(z)) > a. Now let
U € U be such that z € U. This is possible since U is a cover of f~1(y).
Then xp(z) > Yo > a. ie., xu(x) > aor x4 < xy. Hence clearly z, ¢ xv.
Hence {xy : U € U} is an open a-Q-cover of [ (yq).

Again f“ (y,) being N-compact, there exists a finite sub collection U? of
U* which is also an a™-Q cover of f (y,). Let U% = {xv1, xu2, XUk}
Then clearly {Uy,Us,---,U} will be a finite sub cover of f~!(y). This
completes the proof. O

5.8. Theorem

(X, 1), (Y,u) are two weakly induced L-tss. If (X, 7) is para-Lindelof and
f~ : LX — LY be a closed map with f~(y,) Lindelof for each y, € M(LY),
then (Y, ) is para-Lindelof.

Proof. Let U be an open a-Q-cover of Y and let W = {W, :t € T'} be
a locally countable open a-Q-cover refinement of {f(U) : U € U}. Now
for any y, € M(LY), f~(ya) is Lindelof so there is an open set Gya in Lx
such that f(yo) < Gyo and Gyo < Wi for countably many ¢ € 7. Take
Vya as the saturated part of Gyo. Then f7 (Vo) is an open set about y,.
Consider H = {f~(W;) : W, € W}. Now f~ (V) meeting only countably
many elements of H. Hence H is locally countable and it is clear that
Yo € int(st(ya, H)) for every y, € LY. Since H is a refinement of U, it
follows from Theorem 3.9 that (Y, u) is para-Lindelof. O
Now by Theorem 5.7 we readily have

5.9. Theorem

(X,7), (Y, ) are two weakly induced L-tss and f~ : LX — LY be a perfect
map. Then (X, u) is para-Lindelof if and only if (Y, u) is para-Lindelof.
A similar result we can obtain for flintily para-Lindelof space also:

5.10. Theorem

(X,7), (Y,u) are two weakly induced L-tss and f~ : LX — LY be a
perfect map. Then (X, p) is flintily para-Lindelof if and only if (Y, u) is
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flintily para-Lindelof.
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