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Abstract
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L-topological spaces by means of locally countable families of L-fuzzy
sets. Further some characterizations of fuzzy para-Lindelofness and
flintily para-Lindelofness in the weakly induced L-topological spaces
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under various types of maps such as fuzzy closed maps, fuzzy perfect
maps are also investigated.
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1. Introduction

As a generalization of a set, the concept of fuzzy set was introduced by
Zadeh [18]. Fuzzy topology comes as the generalization of general topology
using the concept of a fuzzy set. In 1968 Chang [6] introduced the concept
of fuzzy topology and Lowen [12] introduced a more natural definition of
fuzzy topology.

Compactness and metrizability are the heart and soul of general topol-
ogy. In 1944 J. Dieudonne [7] defined paracompactness as a natural gen-
eralization of compactness. Later several other covering properties such
as meta-compactness, sub para-compactness, sub meta-compactness, para-
Lindelofness etc. have naturally evolved from para compactness. The con-
cept of para-Lindelof spaces was introduced by J. Greever [9] in 1968 and
further studies were conducted by Burke ([4, 5]), Fleissner-Reed [8].

The concept of paracompactness in fuzzy topology was introduced by
Luo [13]. Authors have introduced the concept and studied some properties
regarding metacompactness, subparacompactness, and submetacompact-
ness in L-topological spaces in [14], [3], [2] respectively. In this paper we
define locally countable families and introduce the concept of para-Lindelof
spaces in L-topological spaces. Besides getting some characterization for
para-Lindelof and flintily para-Lindelof in the weakly induced L-topological
spaces, it is also seen that these properties are closed hereditary. Further
the invariance of these properties under perfect maps is also proved.

Let L be a complete lattice. Its universal bounds are denoted by ⊥
and >. We presume that L is consistent. i.e., ⊥ is distinct from >. Thus
⊥ ≤ α ≤ > for all α ∈ L. We note ∨φ = ⊥ and ∧φ = >. The two
point lattice {⊥,>} is denoted by 2. A unary operation 0 on L is a quasi-
complementation. It is an involution (ie., α00 = α for all α ∈ L) that inverts
the ordering. (ie., α ≤ β implies β0 ≤ α0). In (L,0 ) the DeMorgan laws
hold: (∨A)0 = ∧{α0 : α ∈ A} and (∧A)0 = ∨{α0 : α ∈ A} for every A ⊂ L.
Moreover, in particular, ⊥0 = > and >0 = ⊥.

A molecule or co-prime element in a lattice L is a join irreducible el-
ement in L and the set of all non zero co-prime elements of L is denoted
by M(L) and prime elements by pr(L). A complete lattice L is completely
distributive if it satisfies either of the logically equivalent CD1 or CD2 be-

low: CD1: ∧i∈I (∨j∈Ji ai,j) = ∨φ∈ΠJii∈I
³
∧i∈I ai,φ(i)

´
CD2: ∨i∈I (∧j∈Ji ai,j) = ∧φ∈ΠJii∈I

³
∨i∈I ai,φ(i)

´
for all {{aij : j ∈ Ji} : i ∈ I} ⊂ P (L)\{φ},

If L is a complete lattice, then for a set X,LX is the complete lattice of
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all maps from X into L, called L-sets or L-subsets of X. Under point-wise
ordering, a ≤ b in LX if and only if a(x) ≤ b(x) in L for all x ∈ X. If
A ⊂ X, 1A ∈ 2X ⊂ LX is the characteristic function of A. The constant
member of LX with value α is denoted by α itself. Usually we will not
distinguish between a crisp set and its characteristic function. Wang [15]
proved that a complete lattice is completely distributive if and only if for
each α ∈ L, there exists B ⊆ L such that (i) a = ∨A and (ii) if A ⊆ L
and a ≤ ∨B, then for each b ∈ B, there exists c ∈ A such that b ≤ c. B is
called the minimal set of a and β(a) denote the union of all minimal sets
of a. Again β∗(a) = β(a)∩M(L). Clearly β(a) and β∗(a) are minimal sets
of a.

For α ∈ L and A ∈ LX , we use the following notations.

A[α] = {x ∈ X : A(x) ≥ α};
A[α] = {x ∈ X : A(x) ≤ α};
A(α) = {x ∈ X : A(x) 6≥ α};
A(α) = {x ∈ X : A(x) 6≤ α}.

Clearly LX has a quasi complementation 0 defined point-wisely α0(x) =
α(x)0 for all α ∈ L and x ∈ X. Thus the DeMorgan laws are inherited by
(LX ,0 ).

Let (L,0 ) be a complete lattice equipped with an order reversing in-
volution and X be any non empty set. A subfamily τ ⊂ LX which is
closed under the formation of sups and finite infs (both formed in LX) is
called an L-topology on X and its members are called open L-sets. The
pair (X, τ) is called an L-topological space (L-ts). The category of all
L-topological spaces, together with L-continuous mappings and the com-
position and identities of set is denoted by L-Top. Quasi complements of
open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely
distributive lattice is ∨-generating. Moreover for a continuous lattice L
and a topological space (X,T ), T = iLωL(T ) is not true in general. By
proposition 3.5 in Kubiak [11] we know that one sufficient condition for
T = iLωL(T ) is that L is completely distributive.

In [16] Wang extended the Lowen functor ω for completely distributive
lattices as follows: For a topological space (X,T ), (X,ω(T )) is called the
induced space of (X,T ) where ω(T ) = {A ∈ LX : ∀α ∈M(L), A(α

0) ∈ T}.
In 1992 Kubiak also extended the Lowen functor ωL for a complete lattice
L. In fact when L is completely distributive, ωL = ω.

An L-topological space (X, τ) is called weakly induced space if ∀α ∈
M(L), ∀A ∈ τ it is true that A(α

0) ∈ [τ ] where [τ ] is the set of all crisp
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open sets in τ .

Based on these facts, in this paper we use a complete, completely dis-
tributive lattice L in LX . For a standardized basic fixed-basis terminology,
we follow Hohle and Rodabaugh [10].

2. Preliminaries and Basic Definitions

2.1. Definition

[17] Let (X, τ) be an L-ts. A fuzzy point xα is quasi coincident withD ∈ LX

(and write xα ≺ D) if xα 6≤ D0. Also D quasi coincides with E at x (D q
E at x) if D(x) 6≤ E0(x). We say D quasi coincident with E and write D
q E if D q E at x for some x ∈ X. Further D¬ q E means D not quasi
coincides with E. We say U ∈ τ is quasi coincident nbd of xα (Q- nbd) if
xα ≺ U . The family of all Q- nbds of xα is denoted by Qτ (xα) or Q(xα).

2.2. Definition

[17] Let (X, τ) be an L-ts, A ∈ LX . Φ ⊂ LX is called a Q-cover of A if for
every x ∈ Supp(A), there exist U ∈ Φ such that xA(x) ≺ U . Φ is a Q-cover
of (X, τ) if Φ is a Qcover of >. If α ∈ M(L), then C ∈ τ is an α-Q-nbd
of A if C ∈ Q(xα) for every xα ≤ A. Φ is called an α-Q-cover of A, if for
each xα ≤ A, there exists U ∈ Φ such that xα ≺ U . Φ is called an open
α-Q-cover of A if Φ ⊂ τ and Φ is an α-Q-cover of A. Φ0 ⊂ LX is called a
sub α-Q-cover of A if Φ0 ⊂ Φ and Φ0 is also an α-Q-cover of A. Φ is called
an α−-Q cover of A, if there exists γ ∈ β∗(α) such that Φ is γ-Q-cover of
A.

2.3. Definition

[17] Let (X, τ) be an L-ts, D ∈ LX . D is called N -compact if for every
α ∈ M(L), every open α-Q cover of D has a finite sub family which is an
α−-Q cover of D. (X, τ) is called N -compact if > is N -compact.

2.4. Definition

[?] Let (X, τ) be an L-ts, A = {At : t ∈ T} ⊆ LX , xλ ∈ M(LX). A
is called locally finite at xλ, if there exist U ∈ Q(xλ) and a finite subset
T0 of T such that t ∈ T \ T0 ⇒ At ¬ q U . And A is called *-locally
finite at xλ if there exist U ∈ Q(xλ) and a finite subset T0 of T such that
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t ∈ T0 ⇒ χ(At)(⊥) ¬ q U . A is called locally finite (*-locally finite) for short,

if A is locally finite(*-locally finite) at every molecule xλ ∈M(LX).

2.5. Definition

[14] Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊂ LX , xλ ∈ M(LX). A is
called point finite at xλ if xλ ≺ At for at most finitely many t ∈ T . And A
is *-point finite at xλ if there exists at most finitely many t ∈ T such that
xλ ≺ χ(At)(⊥) . A is called point finite (resp. *-point finite) for short, if A

is point finite (resp. *-point finite) at every molecule xλ of L
X .

2.6. Definition

Let (X, τ) be an L-ts, A = {At : t ∈ T} ⊆ LX , xλ ∈ M(LX). A is called
locally countable at xλ, if there exist U ∈ Q(xλ) and a countable subset T0
of T such that t ∈ T \ T0 ⇒ At ¬ q U . And A is called *-locally countable
at xλ if there exist U ∈ Q(xλ) and a countable subset T0 of T such that
t ∈ T0 ⇒ χ(At)(⊥) ¬ q U . A is called locally countable (*-locally countable)

for short, if A is locally countable (*-locally countable) at every molecule
xλ ∈M(LX).

The previous notions “locally countable family” is defined for L-ts.
They can be also defined for L-subsets:

2.7. Definition

Let (X, τ) be an L-ts. A ∈ LX , A = {At : t ∈ T} ⊂ LX , xλ ∈ M(LX). A
is called locally countable in A, if A is locally countable at every molecule
xλ ∈M(↓ A).

2.8. Definition

Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX , B ∈ LX .

A is called σ-locally countable in B if A is the countable union of sub
families which are locally countable in B. A is called σ-locally countable
for short, if A is σ-locally countable in >.

2.9. Definition

[17] Let (X, τ) be an L-ts. Then by [τ ] we denote the family of support
sets of all crisp subsets in τ . (X, [τ ]) is a topology and it is the background
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space. (X, τ) is weakly induced if U ∈ τ is a lower semi continuous function
from the background space (X, [τ ]) to L.

2.10. Definition

[17] Let (X, τ) be an L-ts. (X, τ) is called weakly α-induced if U(α) ∈ [τ ]
for every U ∈ τ .

2.11. Proposition

[17] Let (X, τ) be an L-ts. Then the following conditions are equivalent.
(i) (X, τ) is weakly induced.
(ii) (X, τ) is weakly γ-induced for every γ ∈ pr(L).
(iii) (X, τ) is weakly α-induced for every α ∈ L.

2.12. Definition

[17] For a property P of ordinary topological space, a property P ∗ of L-ts
is called a good L-extension of P , if for every ordinary topological space
(X,T ), (X,T ) has the property P if and only if (X,ωL(T )) has property P

∗.
In particular when L = [0, 1] we say P ∗ is a good extension of P . Where
ωL(T ) is the family of all lower semi continuous function from (X,T ) to L.

2.13. Definition

[17] A collection A refines a collection B(A < B) if for every A ∈ A, there
exists B ∈ B such that A ≤ B.

2.14. Definition

[17] Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX is a closure preserving
collection if for every subfamily A0 of A, cl[∨A0] = ∨[clA0].

2.15. Proposition

[17] Let (X, τ) be an L-ts. A ⊂ LX is closure preserving. Then for every
sub family A0 = {At : t ∈ T} ⊂ A, ∨t∈T cl At is a closed subset.

2.16. Theorem

Every locally countable family of subsets is closure preserving.



Fuzzy Para-Lindelof Spaces 259

Proof. Let A ⊂ LX is locally countable, A0 = {At : t ∈ T} ⊂ A, then
A0 is locally countable. Since ∨(clA0) ≤ cl(∨A0) is clear it is sufficient
to prove that cl(∨A0) ≤ ∨(clA0). Suppose xα ∈ M(↓ cl(∨A0)). Since
A0 is locally countable, there exist U ∈ Q(xα) such that ⇒ At ¬ q U for
every t ∈ T \ T0 where T0 is a countable subset of T . This implies that
At ≤ U 0 for every t ∈ T \ T0. If xα 6≤ ∨(clA0), then xα 6≤ clAt for every
t ∈ T0 and hence there exist Ut ∈ Q(xα) such that At ≤ U 0t. Since T0
is countable, V = U ∧ (∨t∈T0Ut) ∈ Q(xα) and At ≤ V 0 for every t ∈ T .
So ∨t∈TAt ≤ V 0 and hence xα ≤ cl(∨A0) = cl(∨t∈TAt) ≤ cl(V 0) = V 0.
That is xα is not quasi coincidence with V , which is a contradiction that
V ∈ Q(xα). Therefore xα ∈ ∨(clA0) and thus cl(∨A0) = ∨(clA0). 2

2.17. Definition

[14] A collection U of fuzzy subsets of an L-topological space (X, τ) is said
to be well monotone if the subset relation ‘<’ is a well order on U.

2.18. Definition

[14] A collection U of fuzzy subsets of an L-topological space (X, τ) is said
to be directed if U, V ∈ U implies there existsW ∈ U such that U∨V < W .

2.19. Definition

Let (X, τ) be an L-ts, A ∈ LX , B ⊂ LX . Then st(A,B) = ∨{B ∈
B : B q A} is defined as the star of B about A. If xλ ∈ M(LX), then
st({xλ},B) is denoted by st(xλ,B).

2.20. Definition

Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX is a interior preserving
collection if for every subfamily A0 of A, int[∧A0] = ∧[intA0].

3. Para-Lindelof Spaces

3.1. Definition

[17] Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). A is called α-Lindelof
if every open α-Q-cover of A has a countable subfamily which is also an
α-Q-cover of A. A is Lindelof if A is α- Lindelof for every α ∈M(L). And
(X, τ) is Lindelof if > is Lindelof.
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3.2. Definition

Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). A is called α-para-Lindelof
(α∗-para-Lindelof) if for every open α-Q-cover Φ of A, there exist an open
refinement Ψ of Φ which is locally countable (*-locally countable) in A
and Ψ is also an α-Q-cover of A. A is para-Lindelof (*-para-Lindelof) if
A is α-para-Lindelof (α∗-para-Lindelof) for every α ∈ M(L). (X, τ) is
para-Lindelof (*-para-Lindelof) if > is para-Lindelof (*-para-Lindelof).

3.3. Definition

Let (X, τ) be an L-ts, α ∈ M(L). (X, τ) is called σ-para-Lindelof if for
every open α-Q-cover Φ of X, there exist an open refinement Ψ of Φ which
is σ-locally countable in X and also an α-Q-cover of X.

3.4. Proposition

Let (X, τ) be an L-ts, A ∈ LX , α ∈M(L). Then
(i) A is α∗-para-Lindelof ⇒ A is α-para-Lindelof.
(ii) A is ∗-para-Lindelof ⇒ A is para-Lindelof.

Para-Lindelof and ∗-Para-Lindelof are hereditary with respect to closed
subsets.

3.5. Theorem

Let (X, τ) be an L-ts, A ∈ LX , α ∈M(L), B ∈ τ 0. Then
(i) A is α-para-Lindelof ⇒ A ∧B is α-para-Lindelof.
(ii) A is para-Lindelof ⇒ A ∧B is para-Lindelof.

Proof. We need to prove only (i). Suppose that U is an open α-Q-
cover of A ∧ B. Take V = U ∪ {B0}. Now clearly V is an open α-Q-
cover of A. Since A is α-para-Lindelof, V has an open refinementW such
that W is locally countable in A and is also an α-Q-cover of A. Take
W0 = {W ∈ W : ∃ U ∈ U,W ≤ U}. Now we show that W0 is the
required locally countable refinement of V which is also an α-Q-cover of
A∧B. ClearlyW0 is a locally countable refinement. Let xα ≤ A∧B ≤ A,
sinceW is an α-Q-cover of A, there existW ∈W such that xα ≺W . Since
xα ≤ B, B 6≤ B0, i.e. W 6≤ B0. SinceW is a refinement of V = U ∪ {B0},
∃ U ∈ U such that W ≤ U . Thus W ∈W0 and hence xα ≺W ∈W0. 2

A similar theorem holds for α∗-para-Lindelof and ∗-para-Lindelof spaces
also.
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3.6. Theorem

Let (X, τ) be an L-ts, A ∈ LX , α ∈M(L), B ∈ τ 0. Then
(i) A is α∗-para-Lindelof ⇒ A ∧B is α∗-para-Lindelof.
(ii) A is ∗-para-Lindelof ⇒ A ∧B is ∗-para-Lindelof.

3.7. Theorem

Let (X, τ) be a weakly induced L-ts. Then the following conditions are
equivalent
(i) (X, τ) is para-Lindelof;
(ii) There exist α ∈M(L) such that (X, τ) is α-para-Lindelof;
(iii) (X, [τ ]) is para-Lindelof.

Proof. (i) ⇒ (ii) is obvious.
(ii)⇒ (iii): LetU ⊂ [τ ] be an open cover of X. NowU∗ = {χU : U ∈ U} is
an open α-Q-cover of > and it has a locally countable refinement V which
is also an α-Q-cover of >.
Let W = {V(α0) : V ∈ V}. Clearly W is both a refinement of U and a
cover of X. Since (X, τ) is weakly induced, we have W ⊂ [τ ]. Now we
want to prove that W is locally countable. Let x ∈ X. Since (X, τ) is
α-para-Lindelof, there exist B ∈ Q(xα) such that B only quasi coincides
with a countable number of members V0, V1, V2, · · · of V. Let O = B(⊥).
By the weakly induced property of (X, τ), O ∈ [τ ]. For every V ∈ V,
if O ∩ V(α0) 6= φ, then there exist an ordinary point y ∈ O ∩ V(α0), and
hence B(y) 6≤ ⊥, V (y) 6≤ α0. Therefore V (y)0 < α and it follows that
B(y) 6≤ V (y)0 and thus B q V . So V ∈ {V0, V1, V2, · · ·} and O intersects
only a countable number of members V0(α0), V1(α0), V2(α0), · · · ofW. Hence
(X, [τ ]) is para-Lindelof.

(iii) ⇒ (i): Suppose that α ∈ M(L) and U ⊂ τ be an open α-Q-cover
of >. Since (X, τ) is weakly induced U∗ = {U(α0) : U ∈ U} is an open
cover of (X, [τ ]). Since (X, [τ ]) is para-Lindelof, there exist a refinement
V of U* which is also a locally countable cover of X. For every V ∈ V,
let UV ∈ U such that V ⊂ UV (α0). Let W = {χV ∧ UV : V ∈ V}. Now
clearly W is both a refinement of U and an α-Q-cover of >. Now we
will prove that W is locally countable. Let xα ∈ M(LX). Then since
V is locally countable, there exist a neighbourhood B of x such that B
intersects with Vi for countably many Vi ∈ V. Now we have χB ∈ Q(xα).
We will show that χB q χVi ∧ UVi for at most countably many i. For if
possible χB q χV ∧UV for uncountably many V ∈ V. Then χB q χV or χB
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q UV for uncountably many V ∈ V. In both cases B intersects with V for
uncountably many V ∈ V, which is a contradiction and hence W is locally
countable. Therefore (X, τ) is α-para-Lindelof. This completes the proof.
2

3.8. Theorem

Let (X, τ) be a weakly induced L-ts. Then the following conditions are
equivalent
(i) (X, τ) is ∗-para-Lindelof;
(ii) There exist α ∈M(L) such that (X, τ) is α∗-para-Lindelof;
(iii) (X, [τ ]) is para-Lindelof.

Proof. (i) ⇒ (ii) is obvious.
(ii)⇒ (iii): LetU ⊂ [τ ] be an open cover of X. NowU∗ = {χU : U ∈ U} is
an open α-Q-cover of > and it has a locally countable refinement V which
is also an α-Q-cover of >.
Take W = {V(α0) : V ∈ V} then W is both a refinement of U and a
cover of X. Since (X, τ) is weakly induced, we have W ⊂ [τ ]. Now we
want to prove that W is locally countable. Let x ∈ X. Since (X, τ)
is α∗-para-Lindelof, there exist B ∈ Q(xα) such that χB(⊥) only quasi
coincides with a countable number of members V0, V1, V2, · · · of V. Then
x ∈ B(⊥). By the weakly induced property of (X, τ), B[⊥] ∈ [τ ], so B(⊥)
is a neighbourhood of x. For every V ∈ V, if B(⊥) ∩ V(α0) 6= φ, then there
exist an ordinary point y ∈ B(⊥) ∩ V(α0), V (y) 6≤ α0, V (y) > ⊥, V (y)0 < ⊥.
So χB(⊥)(y) = > 6≤ V (y)0, χB(⊥) q V , V ∈ {V0, V1, V2, · · ·}. Therefore
the neighbourhood B(⊥) is of x intersects a countable number of members
V0(α0), V1(α0), V2(α0), · · · of W, thus W is locally countable in X. Hence
(X, [τ ]) is para-Lindelof.

(iii)⇒ (i): Suppose that α ∈M(L) and U ⊂ τ be an open α-Q-cover of
>. Since (X, τ) is weakly induced U∗ = {U(α0) : U ∈ U} is an open cover
of (X, [τ ]). Since (X, [τ ]) is para-Lindelof, there exist a locally countable
and open refinement V of U* which is also a cover of X. For every V ∈ V,
let UV ∈ U such that V ⊂ UV (α0). Let W = {χV ∧ UV : V ∈ V}. Then
W ⊂ τ is clearly a refinement of U and an α-Q-cover of >. Now we will
prove that W is ∗-locally countable. Let xα ∈ M(LX) and B ∈ Q(xα).
If possible let χ(χV ∧ UV )(⊥) q B for uncountably many V ∈ V. That
is χV ∧ χUV (⊥) q B for uncountably many V ∈ V. And hence χV q B
or χUV (⊥) q B for uncountably many V ∈ V. In both cases V intersects
with the neighbourhood of x for uncountably many V ∈ V which is a
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contradiction that V is locally countable. Hence W is ∗-locally countable
and this completes the proof. 2

3.9. Theorem

Let (X, τ) be an L-ts. Then the following are equivalent
(i) (X, τ) is para-Lindelof;
(ii) For every open α-Q-cover A of (X, τ), there is a locally countable
refinement B such that if xα ∈M(LX) then xα ∈ int(st(xα,B)).

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i): Suppose A = {At : t ∈ T} is an open α-Q-cover of >. Let
B = {Bt : t ∈ T} be a locally countable refinement as given in (ii). Let
C be an open α-Q-cover of > such that every element of C intersects at
most countably many elements of B. Then for every xα ∈M(LX), there is
a locally countable refinement D of C such that xα ∈ int(st(xα,D)).

For each B ∈ B, take AB ∈ A such that B ≤ AB and let GB =
int(st(B,D)) ∧AB. Then clearly G = {GB : B ∈ B} is an α-Q-cover of >
and hence is an open refinement of A. To show G is locally countable, let
xα ∈M(LX) and W ∈ Q(xα) such that W intersects only countably many
elements of D. Now since each D ∈ D intersects only countably many
elements of B, it follows that W intersects only countably many elements
of {st(B,D) : B ∈ B}. Hence G is locally countable and the theorem is
proved. 2

Similar to Theorem 3.9 we can prove the following result:

3.10. Theorem

Let (X, τ) be an L-ts. Then the following are equivalent
(i) (X, τ) is σ-para-Lindelof;
(ii) For any open α-Q-cover A of (X, τ), there is a σ-locally countable
refinement B = ∪Bi such that if xα ∈ M(LX) then xα ∈ int(st(xα,Bk))
for some k ∈N.

4. Flintily Para-Lindelof Spaces

4.1. Definition

Let (X, τ) be an L-ts. A ∈ LX , A = {At : t ∈ T} ⊆ LX , xλ ∈ M(LX). A
is called flintily locally countable at xλ if there exist U ∈ Q(xλ) ∩ crs(τ)
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and a countable subset T0 of T such that t ∈ T \ T0 ⇒ At ¬ q U . And
A is called flintily locally countable in A, if A is flintily locally countable
at every molecule xλ ∈ M(↓ A). A is called flintily locally countable for
short, if A is flintily locally countable in >.

4.2. Theorem

In L-ts the following implications hold
Flintily local countable ⇒ ∗-local countable ⇒ local countable

4.3. Proposition

Let (X, τ) be an L-ts, {At : t ∈ T} ⊆ LX , xλ ∈M(LX). Then
(i) {At : t ∈ T} is ∗-locally countable at xλ ⇒ {χ(At)(⊥) : t ∈ T} is ∗-locally
countable at xλ.
(ii) {At : t ∈ T} is flintily locally countable at xλ ⇒ {χ(At)(⊥) : t ∈ T} is
flintily locally countable at xλ.

4.4. Theorem

Let (X, τ) be an L-ts, A ∈ LX , A = {At : t ∈ T} ⊆ LX . If A is flintily
locally countable in A, then clA is flintily locally countable in A.

4.5. Remark

Clearly flintily local countability is strictly stronger than ∗-local countabil-
ity. But in weakly ⊥-induced L-ts they are coincident with each other.

4.6. Theorem

Let (X, τ) be a weakly ⊥-induced L-ts, A ∈ LX , A = {At : t ∈ T} ⊆
LX . Then A is flintily locally countable in A, if and only if A is ∗-locally
countable in A.

Proof. By Theorem 4.2, it is enough to prove that ∗-local countability
implies flinty local countability. Suppose A is ∗-local countable in A. Let
xλ ∈M(↓ A). Then there exist U ∈ Q(xλ) and a countable subset T0 of T
such that t ∈ T \ T0⇒ χ(At)(⊥) ¬ q U is satisfied. Since (X, τ) is weakly ⊥-
induced, U(⊥) ∈ [τ ]. Let t ∈ T \ T0, y ∈ At(⊥), then U 0(y) ≥ χ(At)(⊥)(y) =

>. So y ∈ U 0[>] = X \ U(⊥) and hence (χU(⊥))
0(y) = > = χ(At)(⊥)(y).
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That is to say χ(At)(⊥) ≤ (χU(⊥))
0, χ(At)(⊥) ¬ q(χU(⊥)). Since χU(⊥) ∈ τ ,

χU(⊥) ∈ Q(xλ) ∩ crs(τ). Hence A is flintily locally countable. 2

4.7. Definition

Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). A is called flintily α-para-
Lindelof if for every open α-Q-cover Φ of A, there exist an open refinement
Ψ of Φ which is flintily locally countable in A and Ψ is also an α-Q-cover of
A. A is called flintily para-Lindelof if A is flintily α-para-Lindelof for every
α ∈M(L). And (X, τ) is flintily para-Lindelof if > is flintily para-Lindelof.

By Theorem 4.2, the following implications hold:

4.8. Theorem

Let (X, τ) be an L-ts, A ∈ LX , α ∈M(L), then
(i) A is flintily α-para-Lindelof ⇒ A is α∗-para-Lindelof ⇒ is α-para-
Lindelof.
(ii) A is flintily para-Lindelof⇒ A is ∗-para-Lindelof⇒ A is para-Lindelof.

Similar to Theorem 3.5 we can prove that flintily para-Lindelofness is
hereditary with respect to closed subsets.

4.9. Theorem

Let (X, τ) be an L-ts, A ∈ LX , α ∈M(L), B ∈ τ 0. Then
(i) A is flintily α-para-Lindelof ⇒ A ∧B is flintily α-para-Lindelof.
(ii) A is flintily para-Lindelof ⇒ A ∧B is flintily para-Lindelof.

4.10. Theorem

In a weakly induced L-ts (X, τ), the following are equivalent
(i) (X, τ) is flintily para-Lindelof.
(ii) There exist α ∈M(L) such that (X, τ) is flintily α-para-Lindelof;
(iii) (X, [τ ]) is para-Lindelof.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii): Let U be an open cover of (X, [τ ]). Then Φ = {χU : U ∈ U}
is an open α-Q-cover of > and by (ii) it has an open and flintily locally
countable refinement Ψ = {At : t ∈ T} such that Ψ is an α-Q-cover of >.
For every t ∈ T , take Vt = At(α0) and V = {Vt : t ∈ T}. Then by the
weakly induced property of (X, τ), V is an open cover of (X, [τ ]). Now we
will prove V is a locally countable refinement of U. Let Vt ∈ V. Since
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is Ψ a refinement of Φ, there exist U ∈ U such that At ≤ χU . Suppose
x ∈ Vt, then At(x) 6≤ α0, so χU (x) 6= ⊥, x ∈ U , Vt ⊂ U . Therefore V is a
refinement of U.

Let x ∈ X. Since Ψ is flintily locally countable, there exist B ∈ Q(xα)∩
crs(τ) such that At q B for only a countable number of members Ats in ψ.
Since B ∈ Q(xα) is crisp, B(⊥) is the neighbourhood of x. For every t ∈ T
if At ¬ q B, then Vt ∩ B(⊥) = Φ. So B(⊥) intersects with only a countable
members of V, thus V is locally countable. Hence (X, [τ ]) is paraLindelof.

(iii) ⇒ (i) suppose α ∈ M(L), A = {At : t ∈ T} is an open α-Q-cover of
>. For every t ∈ T take Ut = At(α0) and U = {Ut : t ∈ T}. Since A is
an open α-Q-cover of > and (X, τ) is weakly induced, U is an open cover
of (X, [τ ]). Therefore by (iii), there exists an open and locally countable
refinement V = {Vs : s ∈ S} of U which is also a cover of (X, [τ ]). For
every s ∈ S take t(s) ∈ T such that Vs ⊂ Ut(s), let Ws = At(s) ∧ χγs
then Ws is an open L-set and Ws ≤ At(s) for every s ∈ S. Therefore
W = {Ws : s ∈ S} is an open refinement of A. Now we will show that
W is an open α-Q-cover of >. Let xα ∈ M(LX) take s ∈ S such that
x ∈ Vs and hence x ∈ Ut(s). So At(s)(x) 6≤ α0, α 6≤ At(s)(x)

0. Since x ∈ Vs,
χV s ∈ Q(xα), we have Ws = At(s) ∧ χV s ∈ Q(xα). Hence W is an open
α-Q-cover of >.

Suppose xα ∈M(LX), then since V being locally countable in (X, [τ ]),
there exist a neighbourhood B of x in (X, [τ ]) such that B intersects with
only countably many members of V say Vs0 , Vs1 , Vs2 , · · ·. Then for every
s ∈ S \ {s0, s1, s2 . . .}, V s ∩ B = Φ, B ⊂ V s0 and thus χB ≤ χV

0
s ≤

A0t(s) ∨ χV
0
s = Ws0. That is χB ¬ q Ws. Hence W is flintily locally

countable. This completes the proof. 2

5. Invariant Theorems

In this section we study the behaviour of para-Lindelof spaces under various
types of fuzzy mappings.

5.1. Definition

[17] Let (X, τ), (Y, µ) be L-topological spaces, f : X → Y be an ordinary
mapping. Based on this we define the L-fuzzy mapping f→ : LX → LY

and its L-fuzzy reverse mapping f← : LY → LX by
f→ : LX → LY , f→(A)(y) = ∨{A(x) : x ∈ X, f(x) = y}∀A ∈ LX ,∀y ∈ Y .
f← : LY → LX , f←(B)(x) = B(f(x)),∀B ∈ LY ,∀x ∈ X.
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5.2. Definition

[17] Let (X, τ), (Y, µ) be L-topological spaces,
f→ : LX → LY an L-fuzzy mapping. We say f→ is an L-fuzzy continuous
mapping from (X, τ) to (Y, µ) if its L-fuzzy reverse mapping f← : LY → LX

maps every open subset in (Y, µ) as an open one in (X, τ). i.e., ∀V ∈ µ,
f←(V ) ∈ τ .

5.3. Definition

[17] Let (X, τ), (Y, µ) be L-topological spaces,
f→ : LX → LY an L-fuzzy mapping. We say f→ is open if it maps every
open subset in (X, τ) as an open one in (Y, µ). i.e., ∀U ∈ τ , f→(U) ∈ µ.

5.4. Definition

[17] Let (X, τ), (Y, µ) be L-topological spaces,
f→ : LX → LY an L-fuzzy mapping. We say f→ is closed if it maps every
closed subset in (X, τ) as an closed one in (Y, µ). i.e., ∀F ∈ τ 0, f→(F ) ∈ µ0.

5.5. Definition

[1] Let (X, τ), (Y, µ) be L-ts’s, f→ : LX → LY an L-fuzzy mapping. Then
f→ is perfect if it is continuous, closed and f←(y) is N -compact for every
y ∈ Y .

5.6. Result

[17] If (X, τ), (Y, µ) are two weakly induced L-topological spaces, then
(i) If the map f→ : LX → LY is L-fuzzy continuous, then f : (X, [τ ]) →
(Y, [µ]) is continuous;
(ii) If the map f→ : LX → LY is L-fuzzy closed, then f : (X, [τ ])→ (Y, [µ])
is closed;
(iii) If the map f→ : LX → LY is L-fuzzy open, then f : (X, [τ ])→ (Y, [µ])
is open.

5.7. Theorem

Let (X, τ), (Y, µ) are two weakly induced L-topological spaces. Then if
f→ : LX → LY is perfect, then so is f : (X, [τ ])→ (Y, [µ]).
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Proof. Let yα ∈ M(LY ). Since f→ : LX → LY is perfect, f←(yα) is
N -compact. Now to prove f : (X, [τ ])→ (Y, [µ]) is perfect, it is enough to
prove that f←(yα) is compact for every y ∈ Y . Now let U ∈ [τ ] be an open
cover of f−1(y). Consider U∗ = {χU : U ∈ U}. This is an open α-Q-cover
of f←(yα). For, let xα ≤ f←(yα). i.e., f←(yα)(x) = yα(f(x)) ≥ α. Now let
U ∈ U be such that x ∈ U . This is possible since U is a cover of f−1(y).
Then χU (x) ≥ yα ≥ α. i.e., χU (x) ≥ α or xα ≤ χU . Hence clearly xα q χU .
Hence {χU : U ∈ U} is an open α-Q-cover of f←(yα).
Again f←(yα) being N -compact, there exists a finite sub collection U∗s of
U∗ which is also an α−-Q cover of f←(yα). Let U∗s = {χU1, χU2, · · · , χUk}.
Then clearly {U1, U2, · · · , Uk} will be a finite sub cover of f−1(y). This
completes the proof. 2

5.8. Theorem

(X, τ), (Y, µ) are two weakly induced L-tss. If (X, τ) is para-Lindelof and
f→ : LX → LY be a closed map with f←(yα) Lindelof for each yα ∈M(LY ),
then (Y, µ) is para-Lindelof.

Proof. Let U be an open α-Q-cover of Y and letW = {Wt : t ∈ T} be
a locally countable open α-Q-cover refinement of {f←(U) : U ∈ U}. Now
for any yα ∈M(LY ), f←(yα) is Lindelof so there is an open set Gyα in LX

such that f←(yα) ≤ Gyα and Gyα ≤ Wt for countably many t ∈ T . Take
Vyα as the saturated part of Gyα. Then f→(Vyα) is an open set about yα.
Consider H = {f→(Wt) :Wt ∈W}. Now f→(Vyα) meeting only countably
many elements of H. Hence H is locally countable and it is clear that
yα ∈ int(st(yα,H)) for every yα ∈ LY . Since H is a refinement of U, it
follows from Theorem 3.9 that (Y, µ) is para-Lindelof. 2

Now by Theorem 5.7 we readily have

5.9. Theorem

(X, τ), (Y, µ) are two weakly induced L-tss and f→ : LX → LY be a perfect
map. Then (X,µ) is para-Lindelof if and only if (Y, µ) is para-Lindelof.

A similar result we can obtain for flintily para-Lindelof space also:

5.10. Theorem

(X, τ), (Y, µ) are two weakly induced L-tss and f→ : LX → LY be a
perfect map. Then (X,µ) is flintily para-Lindelof if and only if (Y, µ) is
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flintily para-Lindelof.
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