Proyecciones Journal of Mathematics Vol. 28, N^o 3, pp. 253–270, December 2009. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172009000300006

FUZZY PARA - LINDELOF SPACES

T. BAIJU
and
SUNIL JACOB JOHN
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT, INDIA
Received: July 2009. Accepted: October 2009

Abstract

In this paper we introduce the concept of Para-Lindelof spaces in L-topological spaces by means of locally countable families of L-fuzzy sets. Further some characterizations of fuzzy para-Lindelofness and flintily para-Lindelofness in the weakly induced L-topological spaces are also obtained. More over the behavior of fuzzy para-Lindelof spaces under various types of maps such as fuzzy closed maps, fuzzy perfect maps are also investigated.

Keywords: L-Topology, Fuzzy para-Lindelofness, Flintily para-Lindelofness, locally countable family.

2000 AMS Classification : 54D 20, 54A 40.

1. Introduction

As a generalization of a set, the concept of fuzzy set was introduced by Zadeh [18]. Fuzzy topology comes as the generalization of general topology using the concept of a fuzzy set. In 1968 Chang [6] introduced the concept of fuzzy topology and Lowen [12] introduced a more natural definition of fuzzy topology.

Compactness and metrizability are the heart and soul of general topology. In 1944 J. Dieudonne [7] defined paracompactness as a natural generalization of compactness. Later several other covering properties such as meta-compactness, sub para-compactness, sub meta-compactness, para-Lindelofness etc. have naturally evolved from para compactness. The concept of para-Lindelof spaces was introduced by J. Greever [9] in 1968 and further studies were conducted by Burke ([4, 5]), Fleissner-Reed [8].

The concept of paracompactness in fuzzy topology was introduced by Luo [13]. Authors have introduced the concept and studied some properties regarding metacompactness, subparacompactness, and submetacompactness in L-topological spaces in [14], [3], [2] respectively. In this paper we define locally countable families and introduce the concept of para-Lindelof spaces in L-topological spaces. Besides getting some characterization for para-Lindelof and flintily para-Lindelof in the weakly induced L-topological spaces, it is also seen that these properties are closed hereditary. Further the invariance of these properties under perfect maps is also proved.

Let L be a complete lattice. Its universal bounds are denoted by \bot and \top . We presume that L is consistent. i.e., \bot is distinct from \top . Thus $\bot \le \alpha \le \top$ for all $\alpha \in L$. We note $\lor \phi = \bot$ and $\land \phi = \top$. The two point lattice $\{\bot, \top\}$ is denoted by 2. A unary operation ' on L is a quasicomplementation. It is an involution (ie., $\alpha'' = \alpha$ for all $\alpha \in L$) that inverts the ordering. (ie., $\alpha \le \beta$ implies $\beta' \le \alpha'$). In (L,') the DeMorgan laws hold: $(\lor A)' = \land \{\alpha' : \alpha \in A\}$ and $(\land A)' = \lor \{\alpha' : \alpha \in A\}$ for every $A \subset L$. Moreover, in particular, $\bot' = \top$ and $\top' = \bot$.

A molecule or co-prime element in a lattice L is a join irreducible element in L and the set of all non zero co-prime elements of L is denoted by M(L) and prime elements by pr(L). A complete lattice L is completely distributive if it satisfies either of the logically equivalent CD1 or CD2 be-

low: CD1:
$$\wedge_{i \in I} (\vee_{j \in J_i} a_{i,j}) = \vee_{\phi \in \Pi J_i i \in I} (\wedge_{i \in I} a_{i,\phi_{(i)}})$$

CD2: $\vee_{i \in I} (\wedge_{j \in J_i} a_{i,j}) = \wedge_{\phi \in \Pi J_i i \in I} (\vee_{i \in I} a_{i,\phi_{(i)}})$
for all $\{\{a_{ij} : j \in J_i\} : i \in I\} \subset P(L) \setminus \{\phi\},$

If L is a complete lattice, then for a set X, L^X is the complete lattice of

all maps from X into L, called L-sets or L-subsets of X. Under point-wise ordering, $a \leq b$ in L^X if and only if $a(x) \leq b(x)$ in L for all $x \in X$. If $A \subset X$, $1_A \in 2^X \subset L^X$ is the characteristic function of A. The constant member of L^X with value α is denoted by α itself. Usually we will not distinguish between a crisp set and its characteristic function. Wang [15] proved that a complete lattice is completely distributive if and only if for each $\alpha \in L$, there exists $B \subseteq L$ such that (i) $a = \forall A$ and (ii) if $A \subseteq L$ and $a \leq \forall B$, then for each $b \in B$, there exists $c \in A$ such that $b \leq c$. C is called the minimal set of C and C and C denote the union of all minimal sets of C. Again C and C are minimal sets of C and C are minimal sets

For $\alpha \in L$ and $A \in L^X$, we use the following notations.

```
A_{[\alpha]} = \{x \in X : A(x) \ge \alpha\};
A^{[\alpha]} = \{x \in X : A(x) \le \alpha\};
A^{(\alpha)} = \{x \in X : A(x) \not\ge \alpha\};
A_{(\alpha)} = \{x \in X : A(x) \not\le \alpha\}.
```

Clearly L^X has a quasi complementation 'defined point-wisely $\alpha'(x) = \alpha(x)$ ' for all $\alpha \in L$ and $x \in X$. Thus the DeMorgan laws are inherited by $(L^X,')$.

Let (L,') be a complete lattice equipped with an order reversing involution and X be any non empty set. A subfamily $\tau \subset L^X$ which is closed under the formation of sups and finite infs (both formed in L^X) is called an L-topology on X and its members are called open L-sets. The pair (X,τ) is called an L-topological space (L-ts). The category of all L-topological spaces, together with L-continuous mappings and the composition and identities of set is denoted by L-Top. Quasi complements of open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely distributive lattice is \vee -generating. Moreover for a continuous lattice L and a topological space (X,T), $T=i_L\omega_L(T)$ is not true in general. By proposition 3.5 in Kubiak [11] we know that one sufficient condition for $T=i_L\omega_L(T)$ is that L is completely distributive.

In [16] Wang extended the Lowen functor ω for completely distributive lattices as follows: For a topological space $(X,T), (X,\omega(T))$ is called the induced space of (X,T) where $\omega(T) = \{A \in L^X : \forall \alpha \in M(L), A^{(\alpha')} \in T\}$. In 1992 Kubiak also extended the Lowen functor ω_L for a complete lattice L. In fact when L is completely distributive, $\omega_L = \omega$.

An L-topological space (X, τ) is called weakly induced space if $\forall \alpha \in M(L), \forall A \in \tau$ it is true that $A^{(\alpha')} \in [\tau]$ where $[\tau]$ is the set of all crisp

open sets in τ .

Based on these facts, in this paper we use a complete, completely distributive lattice L in L^X . For a standardized basic fixed-basis terminology, we follow Hohle and Rodabaugh [10].

2. Preliminaries and Basic Definitions

2.1. Definition

[17] Let (X, τ) be an L-ts. A fuzzy point x_{α} is quasi coincident with $D \in L^X$ (and write $x_{\alpha} \prec D$) if $x_{\alpha} \not\leq D'$. Also D quasi coincides with E at x (D q E at x) if $D(x) \not\leq E'(x)$. We say D quasi coincident with E and write D q E if D q E at x for some $x \in X$. Further $D \neg q$ E means D not quasi coincides with E. We say $U \in \tau$ is quasi coincident nbd of x_{α} (Q- nbd) if $x_{\alpha} \prec U$. The family of all Q- nbds of x_{α} is denoted by $Q_{\tau}(x_{\alpha})$ or $Q(x_{\alpha})$.

2.2. Definition

[17] Let (X, τ) be an L-ts, $A \in L^X$. $\Phi \subset L^X$ is called a Q-cover of A if for every $x \in Supp(A)$, there exist $U \in \Phi$ such that $x_{A(x)} \prec U$. Φ is a Q-cover of (X, τ) if Φ is a Q-cover of T. If $\alpha \in M(L)$, then $\mathbf{C} \in \tau$ is an α -Q-nbd of A if $\mathbf{C} \in Q(x_{\alpha})$ for every $x_{\alpha} \leq A$. Φ is called an α -Q-cover of A, if for each $x_{\alpha} \leq A$, there exists $U \in \Phi$ such that $x_{\alpha} \prec U$. Φ is called an open α -Q-cover of A if $\Phi \subset \tau$ and Φ is an α -Q-cover of A. Φ is called a sub α -Q-cover of A if $\Phi_0 \subset \Phi$ and Φ_0 is also an α -Q-cover of A. Φ is called an α -Q-cover of A, if there exists $\gamma \in \beta^*(\alpha)$ such that Φ is γ -Q-cover of A.

2.3. Definition

[17] Let (X, τ) be an L-ts, $D \in L^X$. D is called N-compact if for every $\alpha \in M(L)$, every open α -Q cover of D has a finite sub family which is an α -Q cover of D. (X, τ) is called N-compact if \top is N-compact.

2.4. Definition

[?] Let (X, τ) be an L-ts, $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$, $x_\lambda \in M(L^X)$. A is called locally finite at x_λ , if there exist $U \in Q(x_\lambda)$ and a finite subset T_0 of T such that $t \in T \setminus T_0 \Rightarrow A_t \neg q \ U$. And \mathbf{A} is called *-locally finite at x_λ if there exist $U \in Q(x_\lambda)$ and a finite subset T_0 of T such that

 $t \in T_0 \Rightarrow \chi_{(A_t)_{(\perp)}} \neg q U$. **A** is called locally finite (*-locally finite) for short, if **A** is locally finite(*-locally finite) at every molecule $x_\lambda \in M(L^X)$.

2.5. Definition

[14] Let (X, τ) be an L-ts. $\mathbf{A} = \{A_t : t \in T\} \subset L^X$, $x_\lambda \in M(L^X)$. \mathbf{A} is called point finite at x_λ if $x_\lambda \prec A_t$ for at most finitely many $t \in T$. And \mathbf{A} is *-point finite at x_λ if there exists at most finitely many $t \in T$ such that $x_\lambda \prec \chi_{(A_t)_{(\perp)}}$. \mathbf{A} is called point finite (resp. *-point finite) for short, if \mathbf{A} is point finite (resp. *-point finite) at every molecule x_λ of L^X .

2.6. Definition

Let (X, τ) be an L-ts, $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$, $x_\lambda \in M(L^X)$. \mathbf{A} is called locally countable at x_λ , if there exist $U \in Q(x_\lambda)$ and a countable subset T_0 of T such that $t \in T \setminus T_0 \Rightarrow A_t \neg q U$. And \mathbf{A} is called *-locally countable at x_λ if there exist $U \in Q(x_\lambda)$ and a countable subset T_0 of T such that $t \in T_0 \Rightarrow \chi_{(A_t)_{(\perp)}} \neg q U$. \mathbf{A} is called locally countable (*-locally countable) for short, if \mathbf{A} is locally countable (*-locally countable) at every molecule $x_\lambda \in M(L^X)$.

The previous notions "locally countable family" is defined for L-ts. They can be also defined for L-subsets:

2.7. Definition

Let (X, τ) be an L-ts. $A \in L^X$, $\mathbf{A} = \{A_t : t \in T\} \subset L^X$, $x_\lambda \in M(L^X)$. \mathbf{A} is called locally countable in A, if \mathbf{A} is locally countable at every molecule $x_\lambda \in M(\downarrow A)$.

2.8. Definition

Let (X, τ) be an L-ts. $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X, B \in L^X$.

A is called σ -locally countable in B if **A** is the countable union of sub families which are locally countable in B. **A** is called σ -locally countable for short, if **A** is σ -locally countable in \top .

2.9. Definition

[17] Let (X, τ) be an L-ts. Then by $[\tau]$ we denote the family of support sets of all crisp subsets in τ . $(X, [\tau])$ is a topology and it is the background

space. (X, τ) is weakly induced if $U \in \tau$ is a lower semi continuous function from the background space $(X, [\tau])$ to L.

2.10. Definition

[17] Let (X, τ) be an L-ts. (X, τ) is called weakly α -induced if $U_{(\alpha)} \in [\tau]$ for every $U \in \tau$.

2.11. Proposition

- [17] Let (X,τ) be an L-ts. Then the following conditions are equivalent.
- (i) (X, τ) is weakly induced.
- (ii) (X, τ) is weakly γ -induced for every $\gamma \in pr(L)$.
- (iii) (X, τ) is weakly α -induced for every $\alpha \in L$.

2.12. Definition

[17] For a property P of ordinary topological space, a property P^* of L-ts is called a good L-extension of P, if for every ordinary topological space (X,T),(X,T) has the property P if and only if $(X,\omega_L(T))$ has property P^* . In particular when L=[0,1] we say P^* is a good extension of P. Where $\omega_L(T)$ is the family of all lower semi continuous function from (X,T) to L.

2.13. Definition

[17] A collection **A** refines a collection $\mathbf{B}(\mathbf{A} < \mathbf{B})$ if for every $A \in \mathbf{A}$, there exists $B \in \mathbf{B}$ such that $A \leq B$.

2.14. Definition

[17] Let (X, τ) be an L-ts. $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$ is a closure preserving collection if for every subfamily \mathbf{A}_0 of \mathbf{A} , $cl[\vee \mathbf{A}_0] = \vee [cl\mathbf{A}_0]$.

2.15. Proposition

[17] Let (X, τ) be an L-ts. $\mathbf{A} \subset L^X$ is closure preserving. Then for every sub family $\mathbf{A}_0 = \{A_t : t \in T\} \subset \mathbf{A}, \forall_{t \in T} \ cl \ A_t \text{ is a closed subset.}$

2.16. Theorem

Every locally countable family of subsets is closure preserving.

Proof. Let $\mathbf{A} \subset L^X$ is locally countable, $\mathbf{A}_0 = \{A_t : t \in T\} \subset \mathbf{A}$, then \mathbf{A}_0 is locally countable. Since $\vee (cl\mathbf{A}_0) \leq cl(\vee \mathbf{A}_0)$ is clear it is sufficient to prove that $cl(\vee \mathbf{A}_0) \leq \vee (cl\mathbf{A}_0)$. Suppose $x_\alpha \in M(\downarrow cl(\vee \mathbf{A}_0))$. Since \mathbf{A}_0 is locally countable, there exist $U \in Q(x_\alpha)$ such that $\Rightarrow A_t \neg q \ U$ for every $t \in T \setminus T_0$ where T_0 is a countable subset of T. This implies that $A_t \leq U'$ for every $t \in T \setminus T_0$. If $x_\alpha \not\leq \vee (cl\mathbf{A}_0)$, then $x_\alpha \not\leq cl\mathbf{A}_t$ for every $t \in T_0$ and hence there exist $U_t \in Q(x_\alpha)$ such that $A_t \leq U'_t$. Since T_0 is countable, $V = U \wedge (\vee_{t \in T_0} U_t) \in Q(x_\alpha)$ and $A_t \leq V'$ for every $t \in T$. So $\vee_{t \in T} A_t \leq V'$ and hence $x_\alpha \leq cl(\vee \mathbf{A}_0) = cl(\vee_{t \in T} A_t) \leq cl(V') = V'$. That is x_α is not quasi coincidence with V, which is a contradiction that $V \in Q(x_\alpha)$. Therefore $x_\alpha \in \vee (cl\mathbf{A}_0)$ and thus $cl(\vee \mathbf{A}_0) = \vee (cl\mathbf{A}_0)$. \square

2.17. Definition

[14] A collection **U** of fuzzy subsets of an *L*-topological space (X, τ) is said to be well monotone if the subset relation '<' is a well order on **U**.

2.18. Definition

[14] A collection **U** of fuzzy subsets of an *L*-topological space (X, τ) is said to be directed if $U, V \in \mathbf{U}$ implies there exists $W \in \mathbf{U}$ such that $U \vee V < W$.

2.19. Definition

Let (X, τ) be an L-ts, $A \in L^X$, $\mathbf{B} \subset L^X$. Then $st(A, \mathbf{B}) = \bigvee \{B \in \mathbf{B} : B \neq A\}$ is defined as the star of \mathbf{B} about A. If $x_{\lambda} \in M(L^X)$, then $st(\{x_{\lambda}\}, \mathbf{B})$ is denoted by $st(x_{\lambda}, \mathbf{B})$.

2.20. Definition

Let (X, τ) be an L-ts. $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$ is a interior preserving collection if for every subfamily \mathbf{A}_0 of \mathbf{A} , $int[\wedge \mathbf{A}_0] = \wedge [int\mathbf{A}_0]$.

3. Para-Lindelof Spaces

3.1. Definition

[17] Let (X,τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$. A is called α -Lindelof if every open α -Q-cover of A has a countable subfamily which is also an α -Q-cover of A. A is Lindelof if A is α - Lindelof for every $\alpha \in M(L)$. And (X,τ) is Lindelof if T is Lindelof.

3.2. Definition

Let (X,τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$. A is called α -para-Lindelof $(\alpha^*$ -para-Lindelof) if for every open α -Q-cover Φ of A, there exist an open refinement Ψ of Φ which is locally countable (*-locally countable) in A and Ψ is also an α -Q-cover of A. A is para-Lindelof (*-para-Lindelof) if A is α -para-Lindelof (α^* -para-Lindelof) for every $\alpha \in M(L)$. (X,τ) is para-Lindelof (*-para-Lindelof) if Γ is para-Lindelof (*-para-Lindelof).

3.3. Definition

Let (X, τ) be an L-ts, $\alpha \in M(L)$. (X, τ) is called σ -para-Lindelof if for every open α -Q-cover Φ of X, there exist an open refinement Ψ of Φ which is σ -locally countable in X and also an α -Q-cover of X.

3.4. Proposition

Let (X, τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$. Then

- (i) A is α^* -para-Lindelof \Rightarrow A is α -para-Lindelof.
- (ii) A is *-para-Lindelof \Rightarrow A is para-Lindelof.

Para-Lindelof and *-Para-Lindelof are hereditary with respect to closed subsets.

3.5. Theorem

Let (X, τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$, $B \in \tau'$. Then

- (i) A is α -para-Lindelof $\Rightarrow A \wedge B$ is α -para-Lindelof.
- (ii) A is para-Lindelof $\Rightarrow A \land B$ is para-Lindelof.

Proof. We need to prove only (i). Suppose that **U** is an open α -Q-cover of $A \wedge B$. Take $\mathbf{V} = \mathbf{U} \cup \{B'\}$. Now clearly **V** is an open α -Q-cover of A. Since A is α -para-Lindelof, **V** has an open refinement **W** such that **W** is locally countable in A and is also an α -Q-cover of A. Take $\mathbf{W}_0 = \{W \in \mathbf{W} : \exists U \in \mathbf{U}, W \leq U\}$. Now we show that \mathbf{W}_0 is the required locally countable refinement of **V** which is also an α -Q-cover of $A \wedge B$. Clearly \mathbf{W}_0 is a locally countable refinement. Let $x_{\alpha} \leq A \wedge B \leq A$, since **W** is an α -Q-cover of A, there exist $W \in \mathbf{W}$ such that $x_{\alpha} \prec W$. Since $x_{\alpha} \leq B$, $B \not\leq B'$, i.e. $W \not\leq B'$. Since **W** is a refinement of $\mathbf{V} = \mathbf{U} \cup \{B'\}$, $\exists U \in \mathbf{U}$ such that $W \leq U$. Thus $W \in \mathbf{W}_0$ and hence $x_{\alpha} \prec W \in \mathbf{W}_0$. \square

A similar theorem holds for α^* -para-Lindelof and *-para-Lindelof spaces also.

3.6. Theorem

Let (X, τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$, $B \in \tau'$. Then

- (i) A is α^* -para-Lindelof $\Rightarrow A \wedge B$ is α^* -para-Lindelof.
- (ii) A is *-para-Lindelof $\Rightarrow A \land B$ is *-para-Lindelof.

3.7. Theorem

Let (X, τ) be a weakly induced L-ts. Then the following conditions are equivalent

- (i) (X, τ) is para-Lindelof;
- (ii) There exist $\alpha \in M(L)$ such that (X, τ) is α -para-Lindelof;
- (iii) $(X, [\tau])$ is para-Lindelof.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let $\mathbf{U} \subset [\tau]$ be an open cover of X. Now $\mathbf{U}^* = \{\chi_U : U \in \mathbf{U}\}$ is an open α -Q-cover of \top and it has a locally countable refinement \mathbf{V} which is also an α -Q-cover of \top .

Let $\mathbf{W} = \{V_{(\alpha')} : V \in \mathbf{V}\}$. Clearly \mathbf{W} is both a refinement of \mathbf{U} and a cover of X. Since (X,τ) is weakly induced, we have $\mathbf{W} \subset [\tau]$. Now we want to prove that \mathbf{W} is locally countable. Let $x \in X$. Since (X,τ) is α -para-Lindelof, there exist $B \in Q(x_{\alpha})$ such that B only quasi coincides with a countable number of members V_0, V_1, V_2, \cdots of \mathbf{V} . Let $O = B_{(\perp)}$. By the weakly induced property of (X,τ) , $O \in [\tau]$. For every $V \in \mathbf{V}$, if $O \cap V_{(\alpha')} \neq \phi$, then there exist an ordinary point $y \in O \cap V_{(\alpha')}$, and hence $B(y) \not\leq \bot$, $V(y) \not\leq \alpha'$. Therefore $V(y)' < \alpha$ and it follows that $B(y) \not\leq V(y)'$ and thus $B(y) \not\leq V(y)'$ and thus $C(y) \in V(y)$ and $C(y) \in V(y)$ and $C(y) \in V(y)$ and $C(y) \in V(y)$ and $C(y) \in V(y)$ is para-Lindelof.

(iii) \Rightarrow (i): Suppose that $\alpha \in M(L)$ and $\mathbf{U} \subset \tau$ be an open α -Q-cover of \top . Since (X,τ) is weakly induced $\mathbf{U}^* = \{U_{(\alpha')} : U \in \mathbf{U}\}$ is an open cover of $(X,[\tau])$. Since $(X,[\tau])$ is para-Lindelof, there exist a refinement \mathbf{V} of \mathbf{U}^* which is also a locally countable cover of X. For every $V \in \mathbf{V}$, let $U_V \in \mathbf{U}$ such that $V \subset U_{V(\alpha')}$. Let $\mathbf{W} = \{\chi_V \wedge U_V : V \in \mathbf{V}\}$. Now clearly \mathbf{W} is both a refinement of \mathbf{U} and an α -Q-cover of \top . Now we will prove that \mathbf{W} is locally countable. Let $x_\alpha \in M(L^X)$. Then since \mathbf{V} is locally countable, there exist a neighbourhood B of x such that B intersects with V_i for countably many $V_i \in \mathbf{V}$. Now we have $\chi_B \in Q(x_\alpha)$. We will show that $\chi_B q \chi_{V_i} \wedge U_{V_i}$ for at most countably many i. For if possible $\chi_B q \chi_V \wedge U_V$ for uncountably many $V \in \mathbf{V}$. Then $\chi_B q \chi_V$ or χ_B

 $q\ U_V$ for uncountably many $V \in \mathbf{V}$. In both cases B intersects with V for uncountably many $V \in \mathbf{V}$, which is a contradiction and hence W is locally countable. Therefore (X,τ) is α -para-Lindelof. This completes the proof. \square

3.8. Theorem

Let (X,τ) be a weakly induced L-ts. Then the following conditions are equivalent

- (i) (X, τ) is *-para-Lindelof;
- (ii) There exist $\alpha \in M(L)$ such that (X, τ) is α^* -para-Lindelof;
- (iii) $(X, [\tau])$ is para-Lindelof.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let $\mathbf{U} \subset [\tau]$ be an open cover of X. Now $\mathbf{U}^* = \{\chi_U : U \in \mathbf{U}\}$ is an open α -Q-cover of \top and it has a locally countable refinement \mathbf{V} which is also an α -Q-cover of \top .

Take $\mathbf{W} = \{V_{(\alpha')} : V \in \mathbf{V}\}$ then \mathbf{W} is both a refinement of \mathbf{U} and a cover of X. Since (X,τ) is weakly induced, we have $\mathbf{W} \subset [\tau]$. Now we want to prove that \mathbf{W} is locally countable. Let $x \in X$. Since (X,τ) is α^* -para-Lindelof, there exist $B \in Q(x_\alpha)$ such that $\chi_{B(\bot)}$ only quasi coincides with a countable number of members V_0, V_1, V_2, \cdots of \mathbf{V} . Then $x \in B_{(\bot)}$. By the weakly induced property of (X,τ) , $B_{[\bot]} \in [\tau]$, so $B_{(\bot)}$ is a neighbourhood of x. For every $V \in \mathbf{V}$, if $B_{(\bot)} \cap V_{(\alpha')} \neq \phi$, then there exist an ordinary point $y \in B_{(\bot)} \cap V_{(\alpha')}$, $V(y) \not\leq \alpha'$, $V(y) > \bot$, $V(y)' < \bot$. So $\chi_{B(\bot)}(y) = \top \not\leq V(y)'$, $\chi_{B(\bot)} q V$, $V \in \{V_0, V_1, V_2, \cdots\}$. Therefore the neighbourhood $B_{(\bot)}$ is of x intersects a countable number of members $V_{0(\alpha')}, V_{1(\alpha')}, V_{2(\alpha')}, \cdots$ of \mathbf{W} , thus \mathbf{W} is locally countable in X. Hence $(X, [\tau])$ is para-Lindelof.

(iii) \Rightarrow (i): Suppose that $\alpha \in M(L)$ and $\mathbf{U} \subset \tau$ be an open α -Q-cover of \top . Since (X, τ) is weakly induced $\mathbf{U}^* = \{U_{(\alpha')} : U \in \mathbf{U}\}$ is an open cover of $(X, [\tau])$. Since $(X, [\tau])$ is para-Lindelof, there exist a locally countable and open refinement \mathbf{V} of \mathbf{U}^* which is also a cover of X. For every $V \in \mathbf{V}$, let $U_V \in \mathbf{U}$ such that $V \subset U_{V(\alpha')}$. Let $\mathbf{W} = \{\chi_V \wedge U_V : V \in \mathbf{V}\}$. Then $\mathbf{W} \subset \tau$ is clearly a refinement of \mathbf{U} and an α -Q-cover of \top . Now we will prove that \mathbf{W} is *-locally countable. Let $x_\alpha \in M(L^X)$ and $B \in Q(x_\alpha)$. If possible let $\chi(\chi_V \wedge U_V)_{(\perp)} \neq B$ for uncountably many $V \in \mathbf{V}$. And hence $\chi_V \neq B$ or $\chi_{UV(\perp)} \neq B$ for uncountably many $V \in \mathbf{V}$. In both cases V intersects with the neighbourhood of x for uncountably many $V \in \mathbf{V}$ which is a

contradiction that V is locally countable. Hence W is *-locally countable and this completes the proof. \square

3.9. Theorem

Let (X,τ) be an L-ts. Then the following are equivalent

- (i) (X, τ) is para-Lindelof;
- (ii) For every open α -Q-cover **A** of (X, τ) , there is a locally countable refinement **B** such that if $x_{\alpha} \in M(L^X)$ then $x_{\alpha} \in int(st(x_{\alpha}, \mathbf{B}))$.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (i): Suppose $\mathbf{A} = \{A_t : t \in T\}$ is an open α -Q-cover of \top . Let $\mathbf{B} = \{B_t : t \in T\}$ be a locally countable refinement as given in (ii). Let \mathbf{C} be an open α -Q-cover of \top such that every element of \mathbf{C} intersects at most countably many elements of \mathbf{B} . Then for every $x_{\alpha} \in M(L^X)$, there is a locally countable refinement \mathbf{D} of \mathbf{C} such that $x_{\alpha} \in int(st(x_{\alpha}, \mathbf{D}))$.

For each $B \in \mathbf{B}$, take $A_B \in \mathbf{A}$ such that $B \leq A_B$ and let $G_B = \inf(st(B, \mathbf{D})) \wedge A_B$. Then clearly $\mathbf{G} = \{G_B : B \in \mathbf{B}\}$ is an α -Q-cover of \top and hence is an open refinement of \mathbf{A} . To show \mathbf{G} is locally countable, let $x_{\alpha} \in M(L^X)$ and $W \in Q(x_{\alpha})$ such that W intersects only countably many elements of \mathbf{D} . Now since each $D \in \mathbf{D}$ intersects only countably many elements of $\{st(B, \mathbf{D}) : B \in \mathbf{B}\}$. Hence \mathbf{G} is locally countable and the theorem is proved. \square

Similar to Theorem 3.9 we can prove the following result:

3.10. Theorem

Let (X,τ) be an L-ts. Then the following are equivalent

- (i) (X, τ) is σ -para-Lindelof;
- (ii) For any open α -Q-cover \mathbf{A} of (X, τ) , there is a σ -locally countable refinement $\mathbf{B} = \cup \mathbf{B}_i$ such that if $x_{\alpha} \in M(L^X)$ then $x_{\alpha} \in int(st(x_{\alpha}, \mathbf{B}_k))$ for some $k \in \mathbf{N}$.

4. Flintily Para-Lindelof Spaces

4.1. Definition

Let (X, τ) be an L-ts. $A \in L^X$, $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$, $x_\lambda \in M(L^X)$. \mathbf{A} is called flintily locally countable at x_λ if there exist $U \in Q(x_\lambda) \cap crs(\tau)$

and a countable subset T_0 of T such that $t \in T \setminus T_0 \Rightarrow A_t \neg q U$. And \mathbf{A} is called flintily locally countable in A, if \mathbf{A} is flintily locally countable at every molecule $x_{\lambda} \in M(\downarrow A)$. \mathbf{A} is called flintily locally countable for short, if \mathbf{A} is flintily locally countable in \top .

4.2. Theorem

In L-ts the following implications hold Flintily local countable \Rightarrow *-local countable \Rightarrow local countable

4.3. Proposition

Let (X, τ) be an L-ts, $\{A_t : t \in T\} \subseteq L^X$, $x_\lambda \in M(L^X)$. Then (i) $\{A_t : t \in T\}$ is *-locally countable at $x_\lambda \Rightarrow \{\chi_{(A_t)_{(\bot)}} : t \in T\}$ is *-locally countable at x_λ .

(ii) $\{A_t : t \in T\}$ is flintily locally countable at $x_{\lambda} \Rightarrow \{\chi_{(A_t)_{(\perp)}} : t \in T\}$ is flintily locally countable at x_{λ} .

4.4. Theorem

Let (X, τ) be an L-ts, $A \in L^X$, $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$. If \mathbf{A} is flintily locally countable in A, then $cl\mathbf{A}$ is flintily locally countable in A.

4.5. Remark

Clearly flintily local countability is strictly stronger than *-local countability. But in weakly \perp -induced L-ts they are coincident with each other.

4.6. Theorem

Let (X, τ) be a weakly \perp -induced L-ts, $A \in L^X$, $\mathbf{A} = \{A_t : t \in T\} \subseteq L^X$. Then \mathbf{A} is flintily locally countable in A, if and only if \mathbf{A} is *-locally countable in A.

Proof. By Theorem 4.2, it is enough to prove that *-local countability implies flinty local countability. Suppose **A** is *-local countable in A. Let $x_{\lambda} \in M(\downarrow A)$. Then there exist $U \in Q(x_{\lambda})$ and a countable subset T_0 of T such that $t \in T \setminus T_0 \Rightarrow \chi_{(A_t)_{(\perp)}} \neg q U$ is satisfied. Since (X, τ) is weakly \bot -induced, $U_{(\perp)} \in [\tau]$. Let $t \in T \setminus T_0$, $y \in A_{t(\perp)}$, then $U'(y) \geq \chi_{(A_t)_{(\perp)}}(y) = \top$. So $y \in U'_{[\top]} = X \setminus U_{(\perp)}$ and hence $(\chi_{U_{(\perp)}})'(y) = \top = \chi_{(A_t)_{(\perp)}}(y)$.

That is to say $\chi_{(A_t)_{(\perp)}} \leq (\chi_{U_{(\perp)}})'$, $\chi_{(A_t)_{(\perp)}} \neg q(\chi_{U_{(\perp)}})$. Since $\chi_{U_{(\perp)}} \in \tau$, $\chi_{U_{(\perp)}} \in Q(x_\lambda) \cap crs(\tau)$. Hence **A** is flintily locally countable. \square

4.7. Definition

Let (X,τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$. A is called flintily α -para-Lindelof if for every open α -Q-cover Φ of A, there exist an open refinement Ψ of Φ which is flintily locally countable in A and Ψ is also an α -Q-cover of A. A is called flintily para-Lindelof if A is flintily α -para-Lindelof for every $\alpha \in M(L)$. And (X,τ) is flintily para-Lindelof if Γ is flintily para-Lindelof. By Theorem 4.2, the following implications hold:

4.8. Theorem

Let (X, τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$, then

- (i) A is flintily α -para-Lindelof \Rightarrow A is α^* -para-Lindelof \Rightarrow is α -para-Lindelof.
- (ii) A is flintily para-Lindelof \Rightarrow A is *-para-Lindelof \Rightarrow A is para-Lindelof. Similar to Theorem 3.5 we can prove that flintily para-Lindelofness is hereditary with respect to closed subsets.

4.9. Theorem

Let (X, τ) be an L-ts, $A \in L^X$, $\alpha \in M(L)$, $B \in \tau'$. Then

- (i) A is flintily α -para-Lindelof $\Rightarrow A \wedge B$ is flintily α -para-Lindelof.
- (ii) A is flintily para-Lindelof $\Rightarrow A \land B$ is flintily para-Lindelof.

4.10. Theorem

In a weakly induced L-ts (X, τ) , the following are equivalent

- (i) (X, τ) is flintily para-Lindelof.
- (ii) There exist $\alpha \in M(L)$ such that (X, τ) is flintily α -para-Lindelof;
- (iii) $(X, [\tau])$ is para-Lindelof.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let **U** be an open cover of $(X, [\tau])$. Then $\Phi = \{\chi_U : U \in \mathbf{U}\}$ is an open α -Q-cover of \top and by (ii) it has an open and flintily locally countable refinement $\Psi = \{A_t : t \in T\}$ such that Ψ is an α -Q-cover of \top . For every $t \in T$, take $V_t = A_{t(\alpha')}$ and $\mathbf{V} = \{V_t : t \in T\}$. Then by the weakly induced property of (X, τ) , \mathbf{V} is an open cover of $(X, [\tau])$. Now we will prove \mathbf{V} is a locally countable refinement of \mathbf{U} . Let $V_t \in \mathbf{V}$. Since

is Ψ a refinement of Φ , there exist $U \in \mathbf{U}$ such that $A_t \leq \chi_U$. Suppose $x \in V_t$, then $A_t(x) \not\leq \alpha'$, so $\chi_U(x) \neq \bot$, $x \in U$, $V_t \subset U$. Therefore \mathbf{V} is a refinement of \mathbf{U} .

Let $x \in X$. Since Ψ is flintily locally countable, there exist $B \in Q(x_{\alpha}) \cap$ $crs(\tau)$ such that $A_t \neq B$ for only a countable number of members A_t s in ψ . Since $B \in Q(x_{\alpha})$ is crisp, $B_{(\perp)}$ is the neighbourhood of x. For every $t \in T$ if $A_t \neg q B$, then $V_t \cap B_{(\perp)} = \Phi$. So $B_{(\perp)}$ intersects with only a countable members of V, thus V is locally countable. Hence $(X, [\tau])$ is paraLindelof. (iii) \Rightarrow (i) suppose $\alpha \in M(L)$, $\mathbf{A} = \{A_t : t \in T\}$ is an open α -Q-cover of T. For every $t \in T$ take $U_t = A_{t(\alpha')}$ and $\mathbf{U} = \{U_t : t \in T\}$. Since **A** is an open α -Q-cover of \top and (X,τ) is weakly induced, **U** is an open cover of $(X, [\tau])$. Therefore by (iii), there exists an open and locally countable refinement $\mathbf{V} = \{V_s : s \in S\}$ of \mathbf{U} which is also a cover of $(X, [\tau])$. For every $s \in S$ take $t(s) \in T$ such that $V_s \subset U_{t(s)}$, let $W_s = A_{t(s)} \wedge \chi \gamma_s$ then Ws is an open L-set and $Ws \leq A_{t(s)}$ for every $s \in S$. Therefore $\mathbf{W} = \{Ws : s \in S\}$ is an open refinement of **A**. Now we will show that **W** is an open α -Q-cover of \top . Let $x_{\alpha} \in M(L^X)$ take $s \in S$ such that $x \in V_s$ and hence $x \in U_{t(s)}$. So $A_{t(s)}(x) \nleq \alpha'$, $\alpha \nleq A_{t(s)}(x)'$. Since $x \in V_s$, $\chi_{Vs} \in Q(x_{\alpha})$, we have $Ws = A_{t(s)} \wedge \chi_{Vs} \in Q(x_{\alpha})$. Hence **W** is an open α -Q-cover of \top .

Suppose $x_{\alpha} \in M(L^X)$, then since **V** being locally countable in $(X, [\tau])$, there exist a neighbourhood B of x in $(X, [\tau])$ such that B intersects with only countably many members of **V** say $V_{s_0}, V_{s_1}, V_{s_2}, \cdots$. Then for every $s \in S \setminus \{s_0, s_1, s_2 \ldots\}, \ Vs \cap B = \Phi, \ B \subset Vs'$ and thus $\chi_B \leq \chi_{V_s'} \leq A'_{t(s)} \vee \chi_{V_s'} = Ws'$. That is $\chi_B \neg q Ws$. Hence **W** is flintily locally countable. This completes the proof. \square

5. Invariant Theorems

In this section we study the behaviour of para-Lindelof spaces under various types of fuzzy mappings.

5.1. Definition

[17] Let (X, τ) , (Y, μ) be L-topological spaces, $f: X \to Y$ be an ordinary mapping. Based on this we define the L-fuzzy mapping $f^{\to}: L^X \to L^Y$ and its L-fuzzy reverse mapping $f^{\leftarrow}: L^Y \to L^X$ by $f^{\to}: L^X \to L^Y$, $f^{\to}(A)(y) = \vee \{A(x): x \in X, f(x) = y\} \forall A \in L^X, \forall y \in Y.$ $f^{\leftarrow}: L^Y \to L^X$, $f^{\leftarrow}(B)(x) = B(f(x)), \forall B \in L^Y, \forall x \in X.$

5.2. Definition

[17] Let (X,τ) , (Y,μ) be L-topological spaces, $f^{\rightarrow}: L^X \rightarrow L^Y$ an L-fuzzy mapping. We say f^{\rightarrow} is an L-fuzzy continuous mapping from (X,τ) to (Y,μ) if its L-fuzzy reverse mapping $f^{\leftarrow}: L^Y \rightarrow L^X$ maps every open subset in (Y,μ) as an open one in (X,τ) . i.e., $\forall V \in \mu$, $f^{\leftarrow}(V) \in \tau$.

5.3. Definition

[17] Let (X, τ) , (Y, μ) be L-topological spaces, $f^{\rightarrow}: L^X \rightarrow L^Y$ an L-fuzzy mapping. We say f^{\rightarrow} is open if it maps every open subset in (X, τ) as an open one in (Y, μ) . i.e., $\forall U \in \tau, f^{\rightarrow}(U) \in \mu$.

5.4. Definition

[17] Let (X, τ) , (Y, μ) be L-topological spaces, $f^{\rightarrow}: L^X \rightarrow L^Y$ an L-fuzzy mapping. We say f^{\rightarrow} is closed if it maps every closed subset in (X, τ) as an closed one in (Y, μ) . i.e., $\forall F \in \tau'$, $f^{\rightarrow}(F) \in \mu'$.

5.5. Definition

[1] Let (X, τ) , (Y, μ) be L-ts's, $f^{\rightarrow}: L^X \rightarrow L^Y$ an L-fuzzy mapping. Then f^{\rightarrow} is perfect if it is continuous, closed and $f^{\leftarrow}(y)$ is N-compact for every $y \in Y$.

5.6. Result

[17] If (X, τ) , (Y, μ) are two weakly induced L-topological spaces, then

(i) If the map $f^{\rightarrow}: L^X \rightarrow L^Y$ is L-fuzzy continuous, then $f: (X, [\tau]) \rightarrow (Y, [\mu])$ is continuous;

(ii) If the map $f^{\rightarrow}: L^X \rightarrow L^Y$ is L-fuzzy closed, then $f: (X, [\tau]) \rightarrow (Y, [\mu])$ is closed;

(iii) If the map $f^{\rightarrow}: L^X \rightarrow L^Y$ is L-fuzzy open, then $f: (X, [\tau]) \rightarrow (Y, [\mu])$ is open.

5.7. Theorem

Let (X, τ) , (Y, μ) are two weakly induced L-topological spaces. Then if $f^{\rightarrow}: L^X \rightarrow L^Y$ is perfect, then so is $f: (X, [\tau]) \rightarrow (Y, [\mu])$.

Proof. Let $y_{\alpha} \in M(L^{Y})$. Since $f^{\rightarrow}: L^{X} \rightarrow L^{Y}$ is perfect, $f^{\leftarrow}(y_{\alpha})$ is N-compact. Now to prove $f: (X, [\tau]) \rightarrow (Y, [\mu])$ is perfect, it is enough to prove that $f^{\leftarrow}(y_{\alpha})$ is compact for every $y \in Y$. Now let $\mathbf{U} \in [\tau]$ be an open cover of $f^{-1}(y)$. Consider $\mathbf{U}^{*} = \{\chi_{U} : U \in \mathbf{U}\}$. This is an open α -Q-cover of $f^{\leftarrow}(y_{\alpha})$. For, let $x_{\alpha} \leq f^{\leftarrow}(y_{\alpha})$. i.e., $f^{\leftarrow}(y_{\alpha})(x) = y_{\alpha}(f(x)) \geq \alpha$. Now let $U \in \mathbf{U}$ be such that $x \in U$. This is possible since U is a cover of $f^{-1}(y)$. Then $\chi_{U}(x) \geq y_{\alpha} \geq \alpha$. i.e., $\chi_{U}(x) \geq \alpha$ or $x_{\alpha} \leq \chi_{U}$. Hence clearly $x_{\alpha} \neq \chi_{U}$. Hence $\{\chi_{U} : U \in \mathbf{U}\}$ is an open α -Q-cover of $f^{\leftarrow}(y_{\alpha})$. Again $f^{\leftarrow}(y_{\alpha})$ being N-compact, there exists a finite sub collection \mathbf{U}^{*}_{s} of \mathbf{U}^{*} which is also an α^{-} -Q cover of $f^{\leftarrow}(y_{\alpha})$. Let $\mathbf{U}^{*}_{s} = \{\chi_{U1}, \chi_{U2}, \cdots, \chi_{Uk}\}$. Then clearly $\{U_{1}, U_{2}, \cdots, U_{k}\}$ will be a finite sub cover of $f^{-1}(y)$. This completes the proof. \square

5.8. Theorem

 (X, τ) , (Y, μ) are two weakly induced L-tss. If (X, τ) is para-Lindelof and $f^{\rightarrow}: L^X \rightarrow L^Y$ be a closed map with $f^{\leftarrow}(y_{\alpha})$ Lindelof for each $y_{\alpha} \in M(L^Y)$, then (Y, μ) is para-Lindelof.

Proof. Let **U** be an open α -Q-cover of Y and let $\mathbf{W} = \{W_t : t \in T\}$ be a locally countable open α -Q-cover refinement of $\{f^{\leftarrow}(U) : U \in \mathbf{U}\}$. Now for any $y_{\alpha} \in M(L^Y)$, $f^{\leftarrow}(y_{\alpha})$ is Lindelof so there is an open set $G_{y\alpha}$ in L^X such that $f^{\leftarrow}(y_{\alpha}) \leq G_{y\alpha}$ and $G_{y\alpha} \leq W_t$ for countably many $t \in T$. Take $V_{y\alpha}$ as the saturated part of $G_{y\alpha}$. Then $f^{\rightarrow}(V_{y\alpha})$ is an open set about y_{α} . Consider $\mathbf{H} = \{f^{\rightarrow}(W_t) : W_t \in \mathbf{W}\}$. Now $f^{\rightarrow}(V_{y\alpha})$ meeting only countably many elements of \mathbf{H} . Hence \mathbf{H} is locally countable and it is clear that $y_{\alpha} \in int(st(y_{\alpha}, \mathbf{H}))$ for every $y_{\alpha} \in L^Y$. Since \mathbf{H} is a refinement of \mathbf{U} , it follows from Theorem 3.9 that (Y, μ) is para-Lindelof. \square

Now by Theorem 5.7 we readily have

5.9. Theorem

 $(X,\tau),\,(Y,\mu)$ are two weakly induced L-tss and $f^{\to}:L^X\to L^Y$ be a perfect map. Then (X,μ) is para-Lindelof if and only if (Y,μ) is para-Lindelof.

A similar result we can obtain for flintily para-Lindelof space also:

5.10. Theorem

 $(X,\tau),\ (Y,\mu)$ are two weakly induced L-tss and $f^{\to}:L^X\to L^Y$ be a perfect map. Then (X,μ) is flintily para-Lindelof if and only if (Y,μ) is

flintily para-Lindelof.

References

- [1] Baiju, T. and Sunil Jacob John, Finitistic Spaces in L-topological spaces, *Proyecciones Journal of Mathematics* 28 (1), pp. 47–56, (2009).
- [2] Baiju, T. and Sunil Jacob John, Fuzzy submetacompact spaces. (communicated)
- [3] Baiju, T. and Sunil Jacob John, Subparacompactness in *L*-topological spaces (communicated).
- [4] Burke, D. K, Paralindelof spaces and closed mappings, *Topology Proc.* 5, pp. 47–57, (1980).
- [5] Burke, D. K, Refinements of locally countable collections, Topology Proc. 4, pp. 19–27, (1979).
- [6] Chang, C. L. Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, pp. 182–190, (1968).
- [7] Dieudonne, J. Une generalization des espaces compact, J. Math. Pures. Appl. 23, pp. 65–76, (1944).
- [8] Fleissner, W. G, and Reed, G. M., Para-Lindelof spaces and spaces with a σ -locally countable base, *Topology Proc.* 2, pp. 89–110, (1977).
- [9] Greever, J. On some generalized compactness properties, *Publ. Res. Inst. Math. Soc.*, Ser. A 4 (1), 39–49, (1968).
- [10] Hohle, U. and Rodabaugh, S. E. Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Hand Book of Fuzzy Set Series 3, Kluwer Academic Pub. (1999).
- [11] Kubiak, T. The topological modification of the L-fuzzy unit interval, in: S.E. Rodabaugh, E.P. Klement, U. Hohle (Eds.), Applications of Category Theory to Fuzzy Subsets, (Kluwer Academic Publishers, Dordrecht, pp. 275–305, (1992).
- [12] Lowen, R., Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl. 56, pp. 621–633, (1976).

- [13] Luo Mao-Kang, Paracompactness in fuzzy topological spaces, *J. Math. Anal. Appl.* 130 (1), pp. 55–77, (1988).
- [14] Sunil Jacob John and Baiju, T. Metacompactness in L-topological spaces, Iranian Journal of Fuzzy Systems 5 (3), pp. 71–79, (2008).
- [15] Wang, G. J. On the structure of fuzzy lattices, *Acta math. Sinica* 29, pp. 539–543, (1986).
- [16] Wang, G. J. Theory of L-fuzzy topological spaces, Shaanxi Normal University Pub., Xian (1988).
- [17] Ying Ming Liu and Mao-Kang Luo, Fuzzy Topology, Advances in Fuzzy SystemsApplications and Theory Vol. 9, World Scientific, (1997).
- [18] Zadeh, L. A. Fuzzy sets, Information and Control 8, pp. 338–353, (1965).

T. Baiju

Department of Mathematics National Institute of Technology Calicut Calicut 673 601 Kerala India

e-mail: baijutmaths@gmail.com

and

Sunil Jacob John

Department of Mathematics National Institute of Technology Calicut Calicut 673 601 Kerala India

e-mail: sunil@nitc.ac.in