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Universidad Católica del Norte
Antofagasta - Chile

Abstract

The goal of this note is to give a new, simple and elegant proof
to the Uniform Boundedness Principle (UBP) to m-linear mappings,
which surprisingly, as far as we know, does not appear in the lit-
erature. The multilinear UBP is well-known for specialists but the
original proof (presented in [4]) seems a little bit unnatural and uses
the linear UBP. In the present note we show a quite simple argument
which does not need to invoke the linear UBP and, when m = 1,
recovers the classical proof of the linear case. As an immediate con-
sequence, we obtain the Banach-Steinhaus Theorem (BST) for multi-
linear mappings.
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1. Introduction

The theory of multilinear mappings and polynomials between Banach spaces
is a natural extension of linear functional analysis and has been developed
through different directions. In this context, it is natural to study whether
versions of classical linear results hold in the multilinear setting (see, e.g.,
[2]).

The multilinear versions of the Uniform Boundedness Principle (UBP)
and Banach-Steinhaus Theorem (BST) are well-known for specialists, but
we think that the proofs presented in the literature are not the most natural
ones. The UBP for multilinear maps is proved in [4] and the BST for
multilinear maps is a folkloric result and the standard proof is an adaptation
of [1, Ex 1.11]. Both proofs need to use the linear UBP. Precisely, in [4] the
proof of the multilinear UBP seems unnecessarily complicated and invokes
twice the linear version of the UBP and uses an induction argument; the
proof of the multilinear BST uses that every separately continuousm-linear
map (defined in Banach spaces) is continuous and this is a consequence of
the linear UBP (see [1, Theorem 1.2]).

The main goal of this short note is to present easy proofs of the mul-
tilinear UBT and BST without using the linear UBT. Besides, our proofs
follow the same lines of the linear respective proofs. In resume, we know
that the subject of this note (a multilinear UBT and BST) is well-known,
but we think that our presentation contributes to redeem a hidden feature
of the proof of the linear UBT: it is naturally and elegantly adaptable to
multilinear mappings. Our approach follows the same line of the proof of
the Banach-Steinhaus Theorem for homogeneous polynomials in [3, Theo-
rem 2.6]. However, the proof of the multilinear case is technically different
from the proof of the polynomial case, since there is no polarization formula
for non-symmetric multilinear mappings.

From now on m is a positive integer, Ei, i = 1, ...,m, and F are normed
linear spaces over the real or complex scalar fields. If x ∈ E and r > 0,
BE(x; r) denotes the closed ball of center x and radius r. It is well known
that E1× · · ·×Em, with E1, ..., Em Banach spaces, is a Banach space with
the norm k(x1, ..., xm)k = max1≤i≤m kxik .

The space of continuous m-linear mappings from E1 × · · · × Em to F
is denoted by L (E1, ..., Em;F ) . It is easy to prove that an m-linear map
A : E1 × · · · ×Em → F is continuous if, and only if,

kAk := sup
kxik≤1,i=1,...,m

kA(x1, ..., xm)k <∞.
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2. Uniform Boundedness and Banach-Steinhaus Theorem for
multilinear mappings

The reader will note that the proof of the next theorem (UBP for multilinear
mappings) is inspired on the classical proof of the linear case but, as we
have mentioned, contrary to the proof in [4], our proof does not require
invoking the linear UBP. If we take m = 1, our proof is precisely the proof
of the linear UBP.

Theorem 1 (Uniform Boundedness Principle for multilinear mappings).
Let E1, ..., Em be Banach spaces, F be a normed space and {Ti}i∈I be a
family in L (E1, ..., Em;F ). If

sup
i∈I
kTi (x1, ..., xm)k <∞ for all (x1, ..., xm) ∈ E1 × · · · ×Em,(2.1)

then
sup
i∈I
kTik <∞.

Proof. For each positive integer n, let

An =

(
(x1, ..., xm) ∈ E1 × · · · ×Em; sup

i∈I
kTi (x1, ..., xm)k ≤ n

)
.

Note that each An is a closed subset of E1 × · · · × Em
(2.1)
=

S∞
n=1 An.

From the Baire Category Theorem we know that there is a positive inte-
ger n0 such that An0 has non-empty interior. Let (a1, ..., am) be an interior
point ofAn0 . So, there is a constant r > 0 so thatBE1×···×Em ((a1, ..., am) ; r)
is contained in An0 .

Let i ∈ I. We have kTi (y1, a2 + y2, ..., am + ym) + Ti (a1, a2 + y2, ..., am + ym)k
= kTi (a1 + y1, ..., am + ym)k ≤ n0, for every (y1, ..., ym) ∈ BE1×···×Em ((0, ..., 0) ; r) .
Hence

kTi (y1, a2 + y2, ..., am + ym)k ≤ n0 + kTi (a1, a2 + y2, ..., am + ym)k ≤ 2n0
(2.2)
for every (y1, ..., ym) ∈ BE1×···×Em ((0, ..., 0) ; r) .

Using the same argument, for every (z1, ..., zm) ∈ BE1×···×Em ((0, ..., 0) ; r) ,
we get kTi (z1, z2, a3 + z3, ..., am + zm) + Ti (z1, a2, a3 + z3, ..., am + zm)k

= kTi (z1, a2 + z2, ..., am + zm)k
(2.2)
≤ 2n0,

and
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kTi (z1, z2, a3 + z3, ..., am + zm)k
(2.3) and (2.2)

≤ ≤2n0 + 2n0 = 4n0.

By repeating this argument m times, we have

kTi (x)k ≤ 2mn0

for all x ∈ BE1×···×Em ((0, ..., 0) ; r). Since i ∈ I is arbitrary, we easily get

sup
i∈I
kTik ≤

2mn0
rm

.

2

The following corollary is an immediate consequence of Theorem 1:

Corollary 1 (Banach-Steinhaus Theorem for multilinear mappings).
Let E1, ..., Em be Banach spaces, F be a normed space and (An)

∞
n=1 be

a sequence in L (E1, ..., Em;F ) so that for each xj ∈ Ej , the sequence
(An(x1, ..., xm))

∞
n=1 is convergent. If A(x1, ..., xm) = limn→∞An(x1, ..., xm)

for each xj ∈ Ej , then A ∈ L (E1, ..., Em;F ) .

Proof. It is clear that A is m-linear. Since (An(x1, ..., xm))
∞
n=1 is con-

vergent, it follows that

sup
n
kAn(x1, ..., xm)k <∞ for every (x1, ..., xm) ∈ E1 × · · · ×Em.

From the previous result, we conclude that there is a real number C > 0
such that

sup
n
kAnk < C.

So,

kAn(x1, ..., xm)k ≤ kAnk kx1k · · · kxmk < C kx1k · · · kxmk ,

and, making n→∞, it follows that A is continuous. 2
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