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Abstract

In this paper we work with the variety of commutative algebras
satisfying the identity B((xy)x — ((yz)z)z) +v(23y — ((yz)z)z) = 0,
where B,y are scalars. They are called generalized almost-Jordan
algebras. We prove that this variety is equivalent to the variety of
commutative algebras satisfying (38 + v)(Gy(z, z,t) — Gz (y, z,t)) +
B+ 3v)(J(x, 2z, )y — J(y, 2z, t)x) = 0, for all z,y,2z,t € A, where
J(z,y,2) = (zy)z+(yz)z+(z2)y and G, (y, 2, t) = (yz, z,t)+(yt, x, 2)+
(zt,z,y). Moreover, we prove that if A is a commutative algebra, then
J(x,z,t)yy = J(y, z,t)x, for all x,y,z,t € A, if and only if A is a gen-
eralized almost-Jordan algebra for § = 1 and v = =3, that is, A
satisfies the identity (z*y)x + 2((yz)z)z — 32%y = 0 and we study
this identity. We also prove that if A is a commutative algebra, then
Gy(z,z,t) = Gu(y, 2,t), for all x,y,z,t € A, if and only if A is an
almost-Jordan or a Lie Triple algebra.
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1. Introduction

In this work, F' is a field of charF # 2 and A be a commutative not
necessarily associative algebra over F.

The algebra A is called Jordan algebra if satisfies (y2, z,y) = 0, for all
y,x € A. For properties of these algebras see [10]. It is know, see Osborn
[7], that a Jordan algebra satisfies the identity

(1.1) 3(zy)z — 2((yx)z)z — 23y = 0.

Algebras satisfying identity (1.1), called Lie Triple algebras or almost-
Jordan algebras have been studied by Hentzel, Peresi, Osborn, Peterson
and Sidorov [5, 7, 8, 9, 11].

Identity (1.1) was generalized in 1988 by Carini, Hentzel and Piaccentini-
Cattaneo, see [3]. After that, Arenas and Labra call them generalized
almost-Jordan algebras, see [1].

We say that A is a generalized almost-Jordan algebra if it satisfies:

(12) 5@~ (o) + (2~ (o)) =0

for all z,y € A, where 5,y € F and (3,7) # (0,0).

In the study of degree four identities not implied by conmutativity,
Osborn [8] classified those that were implied by the fact of possessing a
unit element. Carini, Hentzel and Piacentini-Cattaneo [3] extended this
work by dropping the restriction on the existence of the unit element. The
identity defining a generalized almost-Jordan algebra with 3,~ € F appears
as one of these identities.

We have:

y—2*(yo), (yo, 2, 2) =

SO

($2,y,$)—(y$,(l},$) = ($2y)!13—<(y$)$)$, ($2,$,y)—(y$,(l},$) - a:?’y—((yx)a:)x

and
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0= 5((a*)a ~ (go)o)e) + (% ~ (o)) =
B((ﬁ y,x) — (yz, , w)) + v((ﬂc?, z,y) — (yz, , x))

Therefore, in terms of associators a generalized almost-Jordan algebra
satisfies,
(1.3) B(?,y,x) + (2?2, y) = (B +7)(ya, =, x)

If 5 =3 and v = —1, we obtain an almost-Jordan algebra, that is, A
satisfies
3(2?,y,2) = (¢%, 2,9) + 2y, z, ).

Generalized almost-Jordan algebras A have been studied in [3] where
the authors proved that for almost all the algebras, simplicity implies asso-
ciativity, in [1], where the authors proved that these algebras always have
a trace form in terms of the trace of right multiplication operators. They
also prove that if A is finite-dimensional and solvable, then it is nilpotent.
In [2] the author found the Wedderburn decomposition of A assuming that
for every ideal I of A either I has a non zero idempotent or I C R, R the
solvable radical of A and the quotient A/R is separable, in [4] the authors
give a characterization of representations and irreducibles modules of these
algebras, and in [6] where, assuming that A also satisfies ((zz)z)x = 0 the
authors proved the existence of an ideal I of A such that Al =IA =0 and
the quotient algebra A/I is power-associative.

In this paper we prove the equivalence between generalized almost-
Jordan algebras, and commutative algebras satisfying the identity (33 +
Y(Gy(z, 2,t) — Ga(y, 2, 1)) + (B + 37)(J(z, 2z, t)y — J(y, 2,t)z) = 0, for all
x,y,z,t € A, where J(z,y,2) = (zy)z + (yz)z + (z2)y and G,(y, z,t) =
(yz,x,t)+(yt, z, z)+(zt, x,y), Theorem 3.2. We prove that a Jordan algebra
satisfies the identity G.(y,z,t) = 0 for all z,y,2,t € A. Conversely if
charF' # 3, then every commutative algebra G(y, z,t) = 0 for all z, y, z,t €
A is a Jordan algebra, Proposition 3.1. Moreover, we prove that if A is a
commutative algebra, then J(zx,z,t)y = J(y, z,t)x for all z,y,z,t € A, if
and only if A is a generalized almost-Jordan algebra for 5 =1 and v = —3,
that is, A satisfies the identity (z%y)x + 2((y:p)x)x — 323y = 0, Proposition
3.4. We also prove that if A is a commutative algebra, then Gy (z, z,t) =
G.(y,z,t), for all z,y, z,t € A, if and only if A is an almost-Jordan algebra,
Proposition 3.5. Finally, we give same new identities, Theorem 3.13 and
Proposition 3.15 for commutative algebras satisfying the identity (z2y)z +

2((yw):p)x — 323y = 0.
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2. Preliminaries

In this section we found relationships among generalized almost-Jordan
algebras and alternative algebras, Jordan algebras, baric algebras or b-
algebras.

Proposition 2.1. Let A be a commutative right alternative algebra. Then
A is a generalized almost-Jordan algebra, for § = v = 1.

Proof: Since A is a right alternative algebra, then A is an alternative
algebra and (z,y, z) = —(z, 2,y), so by (1.2) we have, (22,y, z)+ (22, 2,y) =
(22, y,2) — (22,y,2) = 0 = 2(yz, 2, T). O

If A is a F-algebra, then we will define a new algebra A’ = Fe ® A, as
vector space, and the multiplication given by:

(e +u)(Be +v) = afle + uv,
where e is an idempotent, o, 5 € F and u,v € A.

Proposition 2.2. Let A be a generalized almost-Jordan algebra. Then A’
is a generalized almost-Jordan algebra and w: A’ — F, given by w(ae+u) =
«, is a nonzero homomorphism of algebras.

Proof: Let o, € Fu,v € A,x = ae +u and y = fe + v. Since ez =0
and e? = e for all z € A, then (a,b,c) =0, if a,b,c € AU {e}, and at least
one of them is equal to e, so

22 = o?e + u?, yr = afe + vu,

(22, y,z) = (a®e +u?, Be + v, ae +u) = a3B(e, e, e) + (U2, v,u) = (v, v, u)
(22, z,y) = (u?,u,v) and (yz,z,z) = (vu,u,u).

therefore
By, x) + (2%, x,y) = B, v,u) +y(u?, u,v) = (B4 7)(vu, u,u) =
B+ (yz,z, 7). 0

Definition 2.3. Let A be a F-algebra. If w: A — F is a nonzero algebra
homomorphism, then the ordered pair (A,w) is called a baric algebra or
b-algebra. When a b-algebra (A, w) is a generalized almost-Jordan algebra,
then we call it generalized almost-Jordan b-algebra.

Corollary 2.4. Let A be a generalized almost-Jordan algebra. Then (A’,w)
is a generalized almost-Jordan b-algebra.
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If A is a F-algebra, then we will define a new algebra A% = F @ A, as
vector space, and the multiplication given by:

(a+u)(B+v) =af +av+ fu+uv,
where o, 8 € F and u,v € A, A# has unit element 1 +0 = 1.

Theorem 2.5. Let A be a generalized almost-Jordan algebra. Then A%
is a generalized almost-Jordan algebra if and only if 3+ 3y =0 or A is an
alternative algebra.

Proof: Let o, € F,u,v € A;jx = a+u and y = 4+ v. We note that
(1,a,b) = (a,1,b) = (a,b,1) =0 = (a, b, a), for all a,b € A¥, so

22 = o + 20u + u?, yxr = aff + ow + Bu + vu,

(22,9, 7) = (a®+20u+u?, B+v, a+u) = 2a(u, v, u)+ (u?,v,u) = (u?,v,u),
(22, 2,9) = (&® + 2au +u?, a +u, B+ v) = 2a(u, u,v) + (u?,u,v),
(yz,z,x) = (aff + av + fu + vu, 0 + v, + u) = a(v,u,u) + (vu, u,u),
(u,u,v) = v?v — u(uww) = — (vu)u — vu?) | = —(v,u,u).

therefore

By, x) + (2% 2,y) — (B+)(yz, 2, 2) = B(u?, v, u) + 20y (u, u,v) +
7(“2711’7”) - O‘(B + 7)(”7“7“) - (5 + 7)(1}“’ u?“) = QQV(U,U,U) - O‘(ﬂ +
V) (v, u,u) = —2ay(v, u,u) — (B + ) (v, u,u) = —a(3y + B) (v, u, u). Since
« is arbitrary, then the Theorem follows. O

Corollary 2.6. Let A be an almost-Jordan algebra. Then A# is an almost-
Jordan algebra.

Corollary 2.7. If A is an almost-Jordan algebra and w: A% — F is given
by w(a + u) = a. Then (A%, w) is an almost-Jordan b-algebra.

Example 2.8. Let F' be a field of characteristic not 2 and A be a commu-
tative F-algebra of basis {s,t} with the multiplication:

This algebra is an almost-Jordan algebra, but is not a Jordan algebra,
see [7]. Moreover, it is a b-algebra and the only idempotent is zero.
In fact, let w: A — F given by w(as + bt) = a, where a,b € F, then
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w((as +bt)(a's +b't)) =w (aa’s + 3(2ad +ab/ + a’b)t) =aa' =
w(as + bt)w(a's + b't), for all a,a’,b,b' € F,

so, this algebra is a b-algebra.
If e = as + bt € A, such that ¢? = e, then

1
as + bt = a®s + 5(2(12 + 2ab)t = a*s + (a* + ab)t,

so a = a’® and b = a® + ab, therefore, a = b = 0, then e = 0 is the only
idempotent of A.

Example 2.9. Let F be a field and A be a commutative F'-algebra of basis
{x1, 9, 3,4} with the multiplication:

r1 T2 X3 Ty
1|22 23 O 0
Ty | T3 X3 0 I3

z3{ 0 0 0 O

4| 0 23 0 x9+4+ 3

In [1] the authors prove that this algebra is a generalized almost-Jordan
algebra for all 3, € F, because (x?y)x = ((yz)z)r = 23y = 0 for all 7,y €
A. Since (z1,71,72) = 23w — 21(T172) = T3, then A is not alternative
algebra.

We will to prove that this algebra is not a b-algebra.

Let w: A — F be an algebra homomorphism, since x§ =0,2% = 23,22 =
w9 and 13 = T2 + 23, then w(w3) = w(r2) = w(z1) = w(z4) = 0, so A is not
a b-algebra.

3. Main Results

Let A be a generalized almost-Jordan algebra.
Linearising (1.3) we have,

5((:82, Y, 2) + 2(xz,y, :L‘)) + 7((1:2, 2,y) + 2(zz, z, y)> —

(3.1)
=(B+) ((ya:,a:, 2) + (yz,z,2) + (yz,x,az))
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( (tz,y,2) + (xz,y,t) + (tz,y,ﬂf)>+
< (tz,z,y) + (z2,t,y) + (tz,:c,y)) =
(3.2)
=B+ 7)((y:f: t,2) + (yx, 2, t)+
+(yt, x, 2) + (yt, z,z) + (yz,z,t) + (yz,t, az))
Let G4: A x Ax A— A given by
Ge(y, 2, t) = (yz,x,t) + (yt, x, 2) + (2t,2,y)

It is easy to see that, G, is 3-lineal function and symmetric in ev-
ery two variables. Moreover, the complete linearization of the (:v2,y,ac)
is 2G,(y,2,t). If A is a Jordan algebra, then G,(y,z,t) = 0, for all
x,y,z,t € A. Conversely we have.

Proposition 3.1. Let A be a commutative algebra over a field of charac-
teristic not 3, such that
Gz(y, z,t) =0,

for all ,y,z,t € A. Then A is a Jordan algebra.

Proof: Setting z =t = y in G,(y, z,t) = (yz,x,t)+(yt, x, 2)+(2t, x,y) = 0,
we get (y2,z,9) + (¥, 2,9) + (¥*, z,y) = 0, so 3(y*,z,y) = 0, then A is a
Jordan algebra. a

Theorem 3.2. A is a generalized almost-Jordan algebra, if and only if A
is a commutative algebra satisfying

(384) <Gy(:p, )= Gy, 2, t)> +(B+37) (J(:B, By — J(y, =, t)x) o,
for all z,y, 2,t € A, where J(a,b,c) = (ab)e + (be)a + (ca)b.
Proof: By (3.2) we have,

2ﬁGy(aj,z,t)+27<(ta¢,z,y)—f—(xz,t,y)-I—(tz,:z:,y)) = (B+7) (Gt(x,y, z)+

G (y, 2, t) + Gz(a:,y,t)) —(B+7) <(mz,t, y) + (tz,z,y) + (tz, z,y)), o

268Gy (z,2,t) + (B + 37) <(xz, t,y) + (tz,z,y) + (tz, z, y)) =

(3.3)
(6+7) (Gt@c,y, o)+ Gy, 2.t) + Gz<a:,y,t>).
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In (3.3), replacing by y and y by x, we have
298G (y, 2 ) + (B + 37) ((yz, £2) + (t2,4,2) + (ty, 2, @) _
(847 (Gil1,2) + Gyla,2,8) + Gilo.)).
By (3.3) and (3.4),
28 <Gy(g:, 2t) — Galy, z,t)>+
(B +37) ((wz, ty) + (tz,z,y) + (tz, 2,y)—
(gt @) — (b2, @) — (b, z,x)) _

(B+7) (Gx(y, z,t) — Hy(z, z, t)>, S0

(3.4)

(38 +2)(Gule.%.0) = Guly 2.0)) +
(6 +37v) ((azz, t,y) + (tz,z,y) + (tx, 2, y)

—(yz, t,x) — (tz,y,x) — (ty, z, w)) =0, but

(xz,t,y) + (tz,z,y) + (tz, z,y) — (yz,t,z) — (tz,y,z) — (ty, z,z) =

(z2)t)y — (z2)(ty) + ((tz)z)y — (t2)(zy) + ((t2)2)y — (tz)(2y) —

(y2)t)z + (y2)(tz) — ((t2)y)z + (t2)(yz) — ((ty)2)z + (ty)(22) =
<(J:z)t+(tz):n+(t:1:)z y— ((yz)t+(tz)y+(ty)z)$ J(x,z, t)y—J(y, 2, t)x,

where J(a,b,c) = (ab)c+ (bc)a + (ca)b. Therefore,

(36+7) <Gy(a:, 2,t) — Gy(y, 2 t)) (B+3Y) (J(a:, z, )y —J(y, z, t)a:) =0.
(3.5)

Conversely, setting z =t = z in (3.5) we have

(3847) <Gy(x,x,m)—Gx(y,a:,x)>+(B+3'y) <J(w,x,x)y—J(y,x,:r):p) =0. (x)

Then, using the definition of G, G and the conmutativity of the alge-
bra we obtain:
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Gy(z,z,z) — Gy (y,w r) = 3(22,y,x) — 2(yz, x, x) — (22, 2,9)
= 3(¢*y)z — 32*(yx) — 2((yx)z)z + 2(yr)2® — 2y + 2*(yz)
= 3(z%y)z — 2((yz)z)2 — 23Y.

Moreover, J(z,z,t)y — J(y, z,t)x = 323y — 2((yz)z) — (2%y)2.
Replacing these values in (*) we get

(36+7) (3(3721/)56—2((1/90):6)33—:633/)+(/6’+37) (3w3y—2((yw)m)x—(x2y)w) =0
Reordering these terms we obtain
8ya’y — (86 + 87)((yx)z)x + 88(a*y)x = 0.
Since characteristic of the field is different of 2 we get
v2%y — (B +7)((yz)z)z + f(z’y)z =0,

and by identity (2), A is a generalized almost-Jordan algebra. O

In [7], Osborn introduced two mappings,

H(y;z, 2,t)

- (y( ))t + (y(zt))a: + (y(tm))z and
K(y,z,z,t) = (z

y)(2t) + (yz)(at) + (yt)(z2), so

Gy(w, 2,t) = (w2,9,1) + (wt,y,2) + (st,y,2) = ((22)y) )t + ((@t)y) = +
()7 — (@2)(wt) — (@) (y2) — (2t)(ya) = H(y;w, 2,t) = K(y,,2,1),
but K(z,y, 2, t) = (yz)(2t) + (z2)(yt) + (at)(yz) = K(y,z, z,t), then
(3.6) Gy(z,2,t) — Go(y, 2,t) = H(z;y, 2,t) — H(y; z, 2, 1),
for all z,v, z,t € A.

Corollary 3.3. If A satisfies the identity (?)? = z* for all x € A and
B+ 3y #0, then J(z,z,t)y = J(y, z,t)z.

Proof: By [7], we have H(y;x, z,t) = H(z;y, 2,t) for all z,y,2,t € A and
by Theorem 3.2, J(z, z,t)y = J(y, z, t)x. O

Proposition 3.4. Let A be a commutative algebra. Then the following
identities are equivalent:
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1. (22%y)x + 2((yx)r)x — 323y = 0,
2. J(z,z,t)y = J(y, 2z, t)x.

Proof: Since A satisfies the identity (z%y)x + 2((yz)z)z — 323y = 0, then
A is a generalized almost-Jordan algebra for § = 1,7 = —3 and S+ 3y # 0,
so by (3.5), J(x,z,t)y = J(y, z,t)x.

Conversely, setting z =t = zin J(z, z,t)y = J(y, 2, t)z, we get J(z, z, x)y =
J(y,z, )z, that is 323y = ((yz)z)x + (2%y)r + ((yz)z)7, S0 A satisfies the
identity (z2y)z + 2((yz)z)z — 323y = 0. O

Proposition 3.5. Let A be a commutative algebra. Then A is an almost-
Jordan algebra if and only if

Gy(x7 th) = Gx(yazat)a
for all x,y,z,t € A.

Proof: Since A is an almost-Jordan algebra, 43y =0s0 38+~ # 0, and
by (3.5), <Gy(w,z,t) — Gm(y,z,t)> =0, so Gy(z, z,t) = G4(y, 2, 1).

Conversely, if A satisfies the identity, Gy(x,z,t) = Gz(y,2,t), then
developing the associators we have

[(y2)z = (z2)y]t + [(yt)z — (zt)y]z + ((zt)2)y — ((zt)y)z = 0.
Since (y, z,z) = (yz)r — y(zz) and (y,t,z) = (yt)x — y(tz), we get
(v, z, )t + (y, 8, 2)2 + ((zt)x)y — ((2t)y)z = 0.

Replacing (2, z,y) = ((2t)z)y—(2t)(zy) and (2t, y, x) = ((2t)y)z —(21)(zy)
in the above expression we obtain

(3'7) (y’ Z? x)t + (y7 t? :L‘)Z + (Zt’ x? y) - (Zt7 y7 $) = 0'

Since A is a commutative algebra, then (a,b,c¢) = —(¢,b,a) and (3.7)
becames
(3.8) (x,z, )t + (x,t,y)z + (y, x, 2t) — (z,y, 2t) = 0.

Setting z =t = z in (3.8), we obtain

2(3?,96,3/)3? + (y,$,$2) - (x,y,xQ) =0.
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Developing the associators and using the commutativity we get
3(z%y)z — 2(z(zy))z — yad = 0.
By identity (1.1), A is an almost-Jordan algebra. O
By identity (3.6), we have

Corollary 3.6. Let A be a commutative algebra. Then A is an almost-
Jordan algebra if and only if

H(y;@,2,t) = H(x;y, 2,t),
for all x,y,z,t € A.
By [7], we have

Proposition 3.7. If A satisfies the identity (x?)? = z* for all z € A, then
A is an almost-Jordan algebra.

Remark 3.8. The converse of the Proposition 3.7 is note true. Let A be
the algebra of Example 2.8, so s* = s + %t and (s?)? = s + 2t # st

An algebra A is called power-associative algebra if for all x € A, the
subalgebra A(x) of A generated by x is associative algebra.

Corollary 3.9. If A is a commutative power-associative algebra, then A
is an almost-Jordan algebra.

By Corollaries 3.3 and 3.9, we have

Proposition 3.10. If A is a commutative power-associative algebra and
B+3v # 0, then A is an almost-Jordan algebra and J(x, z,t)y = J(y, z,t)x.

Corollary 3.11. If A is a commutative power-associative algebra and 3 +
3~y #£ 0, then the following identities hold,

1. 3(x%y)x — 2((ya:)a:))a: — 23y =0,
2. (z2%y)z + 2((yx)x)a: — 323y = 0.

for all z,y € A.
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Remark 3.12. The converse of the Corollary 3.11 is note true. Let A
be the algebra of Example 2.9, so A satisfies both identities, but A is not
power-associative algebra, because x§ = 0 and (22)? = 3.

Let A be a commutative algebra which satisfies the identities of Corol-
lary 3.11, then (z%y)z = ((yx)z)xr = 23y for all z,y € A. In this case the
converse is true.

Next, let A be a commutative non necessarily power-associative algebra,
so identities (1) and (2) of the above Corollary are not equivalent. Since
identity (1), a Lie triple or almost-Jordan algebra has been largely studied
we will study an algebra A satisfying

(3.9) (z%y)z + 2((ya:)x>x — 323y =0,

for all z,y € A, which is identity (2) of Corollary 3.11.

It is known (see [1]) that every finite dimensional solvable algebra satis-
fiyng (3.9) is nilpotent. If R is radical of A and A/R is solvable, then A has
Wedderburn decomposition, (see [2]). Moreover, if A has an idempotent el-
ement, then A = Ao@Al@Afg, where A; ={z € A|ex =iz},i=0,1, —%,
is the Peirce decomposition of A. The subspaces A; satisfies the relations,
(see [2]):

A% C Ay, A2 C Ay, ApAy ={0} = AngO = Aig, Angl CA_

3.
2

In this work we give same new identities.
Substituting y = z¥ in (3.9), we get (z22F)x + 2253 — 3232F = 0, so

(3.10) 20813 = 3932k — (2%M)z, k> 2
The identity (3.9) is equivalent to
(311) ($2,y,33)+2(y:£,1:,$)—3(:32,:6,21) :Oa

for all z,y € A.
Linearising (3.11), we have

(3 12) 2(:1:'27y7‘7:) + ($2,y, Z) + Q(yZ,JI,I') + Q(yﬂj‘, va) + Q(yx,a:, Z)_
. _6(1;273;7:’4) - 3(1‘2, Z7y) =0
Interchanging y and z, we have

Q(l'y, Z7$) + (:327 Zay) + 2(y27$7$) + Q(Zl',y,l') + 2(Z$7$7y)_
_6($y7 z, Z) - 3($27y72:) =0
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Subtracting both identities and canceling out by the factor 4, we obtain

(313) ($2,y72) - (:1:27'27?/) + 2(y$,.’17, Z) - Q(Zﬂi,ﬂf,y) = Oa

so (22, y, 2)+2(yz, z, 2) = (22, z,9)+2(2z, 7, y), and substituting in identity

(3.11), we get
(314) (SUZ,y,ZL') + (yz,m,a:) + (yl’, Z7$) - 2(1’2,$,y) - (CUQ,Z,Z/) =0

Theorem 3.13. Let A be an algebra which satisfies identity (3.9). Then
A satisfies the following identities for i,j > 2,1 # j:

1. (22,2, 27) = Q(xj“a:i - xi+2xj),
2. 20927 = (/a2 + (2T a))z + ((2f2d)z)w — (2227)at.

Proof: Setting y = 2°, z = 2/ and then y = 27, z = 2! in identity (3.14),
we have,

(:L‘J:—’—l?:z:l:ax) + (xlx]’;lj’l‘) + (:Ei'—’—l?x]jaa:) - 2(13]:—"_1,23,(1:1:) - ( 2’1"?7%.75) = 0’
(2 20 x) + (272t z, 2) + (27T 2t ) — 2(2 2, 27) — (22, 2%, 27) = 0

Subtracting both identities we obtain
—2(J:j+1,:c,a:i) —( Q,SEj,ZL‘i) + 2($i+1,x,xj) + (:UQ,xi,:nj) =0,
Developing the associators, we obtain
—209 20" 4 221290 4 (2%2) 2 — 2 (2fa) = 0,
This is identity (1).
To get identity (2) we use the commutativity and we will develop

the associator in the identity: (27! 2% z) + (2'2/, 2, 2) + (', 27, 2) —
2(xi 2, 2ty — (22,27, 2%) = 0. O

Remark 3.14. Setting y = z = ' in identity (3.14), we have
202yt = 2(x e 4 ((2%)22)z — (2)%2? — (2%2")z’ + 22(2")>.

Proposition 3.15. Let A be an algebra which satisfies identity (3.9). Then
A satisfies the following identities for k > 1:

1. 2z%2F — 2254222 4 (22)22F — 22(222F) = 0,
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2. 4kt = 4(232%)z + B3P — 2084222 — 22 (222F),

3. 4kt = 4(232%)z + 3232 — 204k — (22)2aF.

Proof: Setting i = 2,j = k in (1) of Theorem 3.13, we obtain identity (1).

Setting ¢ = 2,7 = k in (2) of Theorem 3.13, we obtain

228222 = (2"t 4+ (2328 + ((2228)2)x — (2%2F)a?,

Using the identity (3.10), we get

20k 202 = (313 — 22K ) 1 (a32F)x + (32Fad — 22532 — (222F)2? =

3xhtigd — dghtd 4 A(232F) — (222F)22,

which is identity (2).

Finally identity (3) follows from identities (1) and (2). O
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