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Abstract

In this paper we prove in details the completeness of the solutions
of a linear control system on a connected Lie group. On the other
hand, we summarize some results showing how to compute the solu-
tions. Some examples are given.
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1. Introduction

In [1] Ayala and Tirao introduced the concept of linear control system %
on a connected Lie group G as the family of ordinary differential equations
given by

m

OF g(t) = X(g(t) + > ui(t) X7 (g(t)),

j=1

where X is a linear vector field, (see Definition 2.1), X7 are right-invariant
vector fields for 7 = 1,...,m and u = (uq,...,uy) belongs to the class of
admissible control functions & C L>*(R,R™).

Linear control systems are important for at least two reasons. First,
they are a natural generalization of the well known linear control system
on the Euclidean space G = R" given by

z(t) = Az(t) + Bu(t), AeR"™", Be R™™ and u = (uy,...,un) € U.

Besides that, [9] Jouan proved that ¥ is relevant from theoretical and
practical point of view, see also [2], [3], [4], [6], [7] and [8]. Actually, he
shows that any general affine control system

DIV i(t) = X (a(t) + Y ui(H) X7 (a(t)),
j=1

on a connected manifold M whose dynamics generate a finite dimensional
Lie algebra, i.e.

dim Spang.4 {X, Y1, ...,Ym} < 0.

is equivalent to a linear control system on a Lie group G or on a homoge-
neous space of G.

In this paper we prove in details the completeness of the Y-solution
¢(t,g,u) for any initial condition g € G, control u € U and t € R. Fur-
thermore, we show a way to compute the flow of an arbitrary drift X and
then the solution ¢(t, g, u), which is specially suitable for nilpotent and
simply connected Lie groups. In the same spirit we also recall a series
solution-formula which appears in [1].
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2. Linear vector fields

In [1] the authors introduced the notion of the normalizer of a Lie algebra
g which is by definition the space

n:=normx(G)(g) :={F € X(G); forall Y €g, [F,V]€g}

where X (G) stands for the set of all smooth vector fields on G.
Let us denote by e € G the identity element of G.

Definition: 2.1. A vector field X on G is said to be linear if it belongs
ton and X(e) = 0.

The following result (Theorem 1 of [7]) gives equivalent conditions for
a vector field on G to be linear.

Theorem: 2.2. Let X be a vector field on a connected Lie group G. The
following conditions are equivalent:

1. X is linear
2. X is an infinitesimal automorphism

3. X satisfies

(2.1)  X(gh) = (dLy)nX (h) + (dRp)yX(g), forall g,h € G.

If we denote by (¢1);cr the flow associated to the linear vector field X,
by definition an infinitesimal automorphism is a vector field such that its
flow

{pt : t € R} C Aut(Q)

is a subgroup of the Lie group of the automorphism of G. As usual, L,
and R, denote the left and right translations on G and dL4, dR, their
derivatives.

Remark: 2.3. Item 2. of Theorem 2.2 shows that X is complete. In fact,
since X (e) = 0 for t € R it follows that ¢, is well defined in a neighborhood
Vi of e € G. Since G is connected, V; generates G. So, for any g € G there
exist g1,...,9n € V¢ such that g = g1 - - - g5, implying that

et(9) = @i(g1- - gn) = wi(g1) -+ pe(gn)
is well defined and therefore X is complete.
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Next we show that associated with any linear vector field X there exists
a g-derivation that is related with the flow of X'. Recall that D : g — g is
a derivation if
D[X,Y]|=[DX,Y]|+ [X,DY], for any X,Y € g.
Of course p(e) = e for all t € R, so if Y € g we obtain

XYV = (F) (e-DawY (el = () @),

The vector field Y is right invariant, therefore at any point g € G

2Y)0) = (§),_ @o-0aw¥ @@ = (§) -V @

- <%)t:0 (ng)e(d(Pft)eY(e) = (ng)e[X’Y](e)'

In fact for any t € R, ¢; is an automorphism of G therefore

Y-t O Rgpt(g) = Rg O P—t-

Thus, for a given linear vector field X', one can associate the derivation
D of g defined as

DY = —[X,Y](e), forallY € g.

The minus sign in the above formula comes from the fact [Az, b] = —Ab
in R?. Tt is also used in order to avoid a minus sign in the equality stated
in Proposition 2 of [7].

Remark: 2.4. For all t € R, (dg;). = €'P. In particular, from the com-
mutative diagram

g (dp)e— g
exp | | exp
G pr—> G

it follows that

@i(expY) = exp(dipy).Y = exp(e!PY), for all t € R,Y € g.
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Remark: 2.5. If G is a connected and simply connected nilpotent Lie
group the exponential map is a diffeomorphism. In particular, given a
derivation it is possible to explicitly compute the drift X through the for-
mula above via the logarithm map, as follows. Let log(g) =Y, then

©i(g) = exp(ePlog(g)), forallt € R, g € G.

Remark: 2.6. In [1] the authors proved that for connected and simply
connected Lie groups the normalizer is isomorphic to the semidirect product
g®,0g between g and the Lie algebra of derivations 0g of g. Therefore,
any linear vector field defines a derivation, but the converse is true just for
simply connected Lie groups.

Remark: 2.7. For a general Lie algebra g pick an inner derivation D € 0g
which means D = [, Y], where Y € g. In this situation D defines a linear
vector field X = XP and it is easy to determine

d
X =|(—
(dt>t:O 7t

through the computation of its flow as follows

©vi(g) = exp(tY)gexp(—tY), for all t € R.

3. Completeness of the solutions

Consider a linear control system on a Lie group G introduced in [1] as

m

5 - g(t) = X(g(t)) + > u;(t) X (g(t)),

Jj=1

where the drift X is a linear vector field, X7 are right-invariant vector fields,
u€eU C L*®(R,Q C R™) is the class of admissible controls, with Q@ C R™
a convex subset satisfying 0 € int).

Since all the vector fields involved are analytical, for each control func-
tion v € U and each initial value ¢ € G there exists a unique solu-
tion ¢(t,g,u) defined on an open interval containing ¢ = 0 and satisfying
#(0,g,u) = g. Note that in general ¢(t, g,u) is just a solution in the sense
of Carathéodory, i.e., a locally absolutely continuous curve satisfying the
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corresponding differential equation almost everywhere. In its domain we
know that any solution of 3 satisfies the cocycle property

¢(t —"_ S’ g’ u) = ¢(t7 ¢(S7 g7 u)? @Su)
where the map ©; is the shift flow on U/ defined by

(Ow)(s) :=u(t + s).

In the sequel, instead of ¢(t,g,u) we usually write ¢:,(g). Note that
smoothness of the vector fields X, X!, ..., X™ implies the smoothness of
étu. Moreover, for a fixed t and u the map g € G — ¢ ,(9) € G is a
diffeomorphism whose inverse is given by g € G — ¢_0,4(9) € G.

The next result shows that in order to compute solutions of ¥ starting
from an arbitrary initial condition it is enough to compute the correspond-
ing solution at the identity element.

Proposition: 3.1. For a given v € U, t € R, let us denote by ¢, =

¢r.u(e) the solution of ¥ starting at the origin e € G. Then, the solution of
3 starting at g € G satisfies

B(t,g,u) = bt - pi(g) = Lg, , (1(9))-

Proof: Let us consider the curve «(t) given by

a(t) = dru - pi(9)-
Therefore, a(0) = g and
é‘(t) = (dL%,u)got(g)%(Pt(g) + (ngot(g))@,u%(bt,u

=(dLg; )i ()X (21(9)) + (AR, (9)) 6 {X (Pru) + D7y (1) X7 (¢t,u)}
:{(dL%,u)cpt(g)X(‘Pt (g)) + (ngot(g))¢t,uX(¢t,u)} + Z;nzl Uy (t)Xj(O‘(t))'
By item 2. of Theorem 2.2

ALy ) pr(g) X (91 (9)) + (AR, (g)) .0 X (Ptu) = X(Drupr(g)) = X(a(t)).

Consequently
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m

a(t) = X(a(t) + D ui(t) X (alt)).

J=1

By the uniqueness of the solution, we have the desired conclusion.
O

Theorem: 3.2. For each w € U and g € G the corresponding solution
¢1u(g) of ¥ is defined in the whole real line.

Proof: Since the solution of ¥ starting at g and control u is given by
dtu(9) = drupi(g) we only have to show that the solution starting at the
identity element e € G is defined for any t € R.

Consider u € U and let a(t) defined on (—7',7) be the maximal solution
of ¥ associated with u satisfying «(0) = e. Let S(t) be also a solution
associated with u satisfying 3(7) = e and defined on (7 —0,744). Consider
the curve

a(t) te (—1,7—19)
)= { B, (roysy(g™h) [ =367+ D)

where g = « (T — %5) and h = f3 (T — % ) It is straightforward to check

that ~y is well defined and continuous. Moreover, for all t € (—7/, 7 — 34),
v(t) it is a solution of ¥. If we denote by n(t) := Pr(r—Ls) (g7 'h) we have,
2

for all t € [r — 16,7 +6)

$(1) = B0 = (AL s)yyi(e) + (R0 B10)

However,
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= X(3(8) + 2 X ()

showing that ~(¢) is a solution of ¥ defined on (—7’, 7 + §) associated with
u € U and satisfying (0) = e which is a contradiction with the maximality
of a(t). It turns out that  must be defined in (—7’,00). Analogously it
is possible to show the same for negative times. Thus, the solutions of X
starting at e € G are defined in the whole real line. a

4. Solution and series

In this section we recall a result that appears in [1] which shows how to
compute the Y solutions when you know the flow of the drift.

Theorem: 4.1. Let us consider a constant admissible control, u € R™.
m
Therefore, the vector field X + > has the solution given by

7=1

(4.1) o(t, g, u) = @i(x) exp (i(—l)"“t"dn(XuaD))

J=1

m .
where X" =3 u; X’ € g and for each n > 1,
j=1

dn : gR08 — g

is a homogeneous polynomial map of degree n.
In particular, some of the first terms of d,, are obtained by recursive
formula as follows:

di(Y",D) = Y™

1
(Y, D) = D)
ds(Y", D) = SV, DY")]+ DY)

1 1
dy(Y",D) = ﬁ[Y“,D%Y“)]Jrﬂzﬁ(}f“), etc.
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5. Examples

In order to build examples of linear control systems on a Lie group G it
is worth to compute first the Lie algebra dg of g, see [5]. Of course, the
dimension of dg varies from Abelian to semisimple Lie groups. In fact, in
the Euclidean case any linear transformation D : RY — R is trivially a
derivation. However, in a semisimple Lie group every derivation is inner.
Thus, the dimension of dg varies from d? to d.

In this section we show some examples

Example: 5.1. Let G = E(2) the Lie group of the Euclidean motions of
the plane

1 0 0
G={g=| 2 a b |:(z,y)eR,a®+1?>=1
y —b «

Any point (z,y) in R? is both translated and rotated by the action of
elements in G. The Lie algebra g of G is given by

0O 0 O
g= a 0 ¢ |:a,b,ceR
b —c 0
Let us consider the basis
0 0 O 0 0O 0 0 O
g=Span{Y'=|1 0 0 |,Y?2=]l0 0 0 |,Y3=|0 0 1
0 0 O 1 00 0 -1 0

and the inner derivations D; and D3 determined by Y'! and Y3 respectively.
We obtain linear vector fields X'= Pt and x3= AP as follows

d
Xlg) = <a>t0 exp(tY!)gexp(—tY!)
p 1 0 0 0 0 0
= <&> r+t—at a b = 1—a 0 O
=0 y+bt —b —a b 00

and
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d
Xig) = (5) _ ewergesn(-)
d 1 0 O 0 00
= <$> xcost+ysint a b | = y 0 0
=0 —xsint +ycost —b a -z 0 0

Example: 5.2. Let g = RX!' + RX? + RX? the Lie algebra of the con-
nected and simply connected Heisenberg Lie group G with the following
generators

The only one non-vanishing Lie bracket is [X3, X?] = X'. The group

G is diffeomorphic to R3 with the non-Abelian group operation * : G — G
given by

(@1, @2, 23) * (y1,Y2,y3) = (1 + 1 + x3Y2, T2 + Y2, 23 + y3), and
(z1,22,23) "' = (—1 + T2x3, —T2, —T3).

On the other hand, the exponential and logarithm maps are given by

1
exp(a1 X! + aa X? + a3 X?) = (a1 + 50203, a2, as)

and

1
log(xy1, z2,23) = (1 — 51‘2.%’3))(1 + 29 X2 + 23 X3.

Let us consider the linear control system ¥ given by

§=X(g9) +uX?(9), u€R,

where g = (x1,x2,3) € G and the infinitesimal automorphism X is deter-
mined by

1
Xt(ilfl,IL’Q,IL’g) — (:El + $2t + §$%t,$2, tIBQ + 1'3)-
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In fact, it can be checked that &X; € Aut(G) for every real number ¢. In
coordinates, the system X reads
T1= 29 + %x% + uxs
> .i?2: u
1'3: T2

According to our previous results, the solution exists and is given by
the series-solution as

Ptu(9) = wi(g) exp (i(—l)"ﬂtndn(uY?,D)) :

j=1
10
The derivation D associated to X is the matrix 0 O |. Since D
10
S

is nilpotent with nilpotency degree 2, it follows that d,, is zero for n > 4.

The non-null terms of the series are listed below:

di = uY?
1
dy = 5q,,,(yl+y3),
1 2v1
= ——u?Y
ds 1211, and
dy = ds=---=0.

In such a case, we get a finite series

C(t) = tdy — t2dy + t3ds

so that

ot 1 o P g
exp ((t) = exp —pd T U Y +uty —guY .

By the exponential rule, the solution ¢ ,,(¢g) with initial condition g and
constant control u reads

o(t,g,u) =

(:m + (:Bz + 323 + uwS) t+ (uzz — §) 2 = Gu? @y + ut, s + 25 - %u) '
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