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Abstract

In this paper we prove in details the completeness of the solutions
of a linear control system on a connected Lie group. On the other
hand, we summarize some results showing how to compute the solu-
tions. Some examples are given.
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1. Introduction

In [1] Ayala and Tirao introduced the concept of linear control system Σ
on a connected Lie group G as the family of ordinary differential equations
given by

Σ : ġ(t) = X (g(t)) +
mX

j =1

uj(t)X
j(g(t)),

where X is a linear vector field, (see Definition 2.1), Xj are right-invariant
vector fields for j = 1, . . . ,m and u = (u1, . . . , um) belongs to the class of
admissible control functions U ⊂ L∞(R,Rm).

Linear control systems are important for at least two reasons. First,
they are a natural generalization of the well known linear control system
on the Euclidean space G = Rn given by

ẋ(t) = Ax(t) +Bu(t), A ∈ Rn×n, B ∈ Rn×m and u = (u1, . . . , um) ∈ U .

Besides that, [9] Jouan proved that Σ is relevant from theoretical and
practical point of view, see also [2], [3], [4], [6], [7] and [8]. Actually, he
shows that any general affine control system

ΣM : ẋ(t) = X(x(t)) +
mX
j=1

uj(t)X
j(x(t)),

on a connected manifold M whose dynamics generate a finite dimensional
Lie algebra, i.e.

dimSpanLA
n
X,Y 1, ..., Y m

o
<∞.

is equivalent to a linear control system on a Lie group G or on a homoge-
neous space of G.

In this paper we prove in details the completeness of the Σ-solution
φ(t, g, u) for any initial condition g ∈ G, control u ∈ U and t ∈ R. Fur-
thermore, we show a way to compute the flow of an arbitrary drift X and
then the solution φ(t, g, u), which is specially suitable for nilpotent and
simply connected Lie groups. In the same spirit we also recall a series
solution-formula which appears in [1].
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2. Linear vector fields

In [1] the authors introduced the notion of the normalizer of a Lie algebra
g which is by definition the space

η := normX (G)(g) := {F ∈ X (G); for all Y ∈ g, [F ,Y] ∈ g}

where X (G) stands for the set of all smooth vector fields on G.
Let us denote by e ∈ G the identity element of G.

Definition: 2.1. A vector field X on G is said to be linear if it belongs
to η and X (e) = 0.

The following result (Theorem 1 of [7]) gives equivalent conditions for
a vector field on G to be linear.

Theorem: 2.2. Let X be a vector field on a connected Lie group G. The
following conditions are equivalent:

1. X is linear

2. X is an infinitesimal automorphism

3. X satisfies

X (gh) = (dLg)hX (h) + (dRh)gX (g), for all g, h ∈ G.(2.1)

If we denote by (ϕt)t∈R the flow associated to the linear vector field X ,
by definition an infinitesimal automorphism is a vector field such that its
flow

{ϕt : t ∈ R} ⊂ Aut(G)

is a subgroup of the Lie group of the automorphism of G. As usual, Lg

and Rg denote the left and right translations on G and dLg, dRg their
derivatives.

Remark: 2.3. Item 2. of Theorem 2.2 shows that X is complete. In fact,
since X (e) = 0 for t ∈ R it follows that ϕt is well defined in a neighborhood
Vt of e ∈ G. Since G is connected, Vt generates G. So, for any g ∈ G there
exist g1, . . . , gn ∈ Vt such that g = g1 · · · gn implying that

ϕt(g) = ϕt(g1 · · · gn) = ϕt(g1) · · ·ϕt(gn)
is well defined and therefore X is complete.
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Next we show that associated with any linear vector field X there exists
a g-derivation that is related with the flow of X . Recall that D : g→ g is
a derivation if

D [X,Y ] = [DX,Y ] + [X,DY ] , for any X,Y ∈ g.
Of course ϕt(e) = e for all t ∈ R, so if Y ∈ g we obtain

[X , Y ](e) =
µ
d

dt

¶
t=0
(dϕ−t)ϕt(e)Y (ϕt(e)) =

µ
d

dt

¶
t=0
(dϕ−t)eY (e).(2.2)

The vector field Y is right invariant, therefore at any point g ∈ G

[X , Y ](g) =
µ
d

dt

¶
t=0
(dϕ−t)ϕt(g)Y (ϕt(g)) =

µ
d

dt

¶
t=0
(dϕ−t)ϕt(g)(dRϕt(g))eY (e)

=

µ
d

dt

¶
t=0
(dRg)e(dϕ−t)eY (e) = (dRg)e[X , Y ](e).

In fact for any t ∈ R, ϕt is an automorphism of G therefore

ϕ−t ◦Rϕt(g) = Rg ◦ ϕ−t.
Thus, for a given linear vector field X , one can associate the derivation

D of g defined as

DY = −[X , Y ](e), for all Y ∈ g.
The minus sign in the above formula comes from the fact [Ax, b] = −Ab

in Rd. It is also used in order to avoid a minus sign in the equality stated
in Proposition 2 of [7].

Remark: 2.4. For all t ∈ R, (dϕt)e = etD. In particular, from the com-
mutative diagram

g (dϕt)e−→ g
exp ↓ ↓ exp
G ϕt−→ G

it follows that

ϕt(expY ) = exp(dϕt)eY = exp(etDY ), for all t ∈ R, Y ∈ g.
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Remark: 2.5. If G is a connected and simply connected nilpotent Lie
group the exponential map is a diffeomorphism. In particular, given a
derivation it is possible to explicitly compute the drift X through the for-
mula above via the logarithm map, as follows. Let log(g) = Y, then

ϕt(g) = exp(e
tD log(g)), for all t ∈ R, g ∈ G.

Remark: 2.6. In [1] the authors proved that for connected and simply
connected Lie groups the normalizer is isomorphic to the semidirect product
g⊗s∂g between g and the Lie algebra of derivations ∂g of g. Therefore,
any linear vector field defines a derivation, but the converse is true just for
simply connected Lie groups.

Remark: 2.7. For a general Lie algebra g pick an inner derivation D ∈ ∂g
which means D = [·, Y ] , where Y ∈ g. In this situation D defines a linear
vector field X = XD and it is easy to determine

X =

µ
d

dt

¶
t=0

ϕt

through the computation of its flow as follows

ϕt(g) = exp(tY )g exp(−tY ), for all t ∈ R.

3. Completeness of the solutions

Consider a linear control system on a Lie group G introduced in [1] as

Σ : ġ(t) = X (g(t)) +
mX
j=1

uj(t)X
j(g(t)),

where the drift X is a linear vector field, Xj are right-invariant vector fields,
u ∈ U ⊂ L∞(R,Ω ⊂ Rm) is the class of admissible controls, with Ω ⊂ Rm

a convex subset satisfying 0 ∈ intΩ.
Since all the vector fields involved are analytical, for each control func-

tion u ∈ U and each initial value g ∈ G there exists a unique solu-
tion φ(t, g, u) defined on an open interval containing t = 0 and satisfying
φ(0, g, u) = g. Note that in general φ(t, g, u) is just a solution in the sense
of Carathéodory, i.e., a locally absolutely continuous curve satisfying the
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corresponding differential equation almost everywhere. In its domain we
know that any solution of Σ satisfies the cocycle property

φ(t+ s, g, u) = φ(t, φ(s, g, u),Θsu)

where the map Θt is the shift flow on U defined by

(Θtu)(s) := u(t+ s).

In the sequel, instead of φ(t, g, u) we usually write φt,u(g). Note that
smoothness of the vector fields X , X1, . . . ,Xm implies the smoothness of
φt,u. Moreover, for a fixed t and u the map g ∈ G 7→ φt,u(g) ∈ G is a
diffeomorphism whose inverse is given by g ∈ G 7→ φ−t,Θtu(g) ∈ G.

The next result shows that in order to compute solutions of Σ starting
from an arbitrary initial condition it is enough to compute the correspond-
ing solution at the identity element.

Proposition: 3.1. For a given u ∈ U , t ∈ R, let us denote by φt,u :=
φt,u(e) the solution of Σ starting at the origin e ∈ G. Then, the solution of
Σ starting at g ∈ G satisfies

φ(t, g, u) = φt,u · ϕt(g) = Lφt,u(ϕt(g)).

Proof: Let us consider the curve α(t) given by

α(t) = φt,u · ϕt(g).

Therefore, α(0) = g and

α̇(t) = (dLφt,u)ϕt(g)
d
dtϕt(g) + (dRϕt(g))φt,u

d
dtφt,u

=(dLφt,u)ϕt(g)X (ϕt(g)) + (dRϕt(g))φt,u

(
X (φt,u) +

Pm
j=1 uj(t)X

j(φt,u)

)

=

(
(dLφt,u)ϕt(g)X (ϕt(g))+(dRϕt(g))φt,uX (φt,u)

)
+
Pm

j=1 uj(t)X
j(α(t)).

By item 2. of Theorem 2.2

(dLφt,u)ϕt(g)X (ϕt(g)) + (dRϕt(g))φt,uX (φt,u) = X (φt,uϕt(g)) = X (α(t)).

Consequently
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α̇(t) = X (α(t)) +
mX
j=1

uj(t)X
j(α(t)).

By the uniqueness of the solution, we have the desired conclusion.
2

Theorem: 3.2. For each u ∈ U and g ∈ G the corresponding solution
φt,u(g) of Σ is defined in the whole real line.

Proof: Since the solution of Σ starting at g and control u is given by
φt,u(g) = φt,uϕt(g) we only have to show that the solution starting at the
identity element e ∈ G is defined for any t ∈ R.

Consider u ∈ U and let α(t) defined on (−τ 0, τ) be the maximal solution
of Σ associated with u satisfying α(0) = e. Let β(t) be also a solution
associated with u satisfying β(τ) = e and defined on (τ−δ, τ+δ). Consider
the curve

γ(t) :=

(
α(t) t ∈ (−τ 0, τ − 1

2δ)
β(t)ϕt−(τ− 1

2
δ)(g

−1h) [τ − 1
2δ, τ + δ)

where g = α
³
τ − 1

2δ
´
and h = β

³
τ − 1

2δ
´
. It is straightforward to check

that γ is well defined and continuous. Moreover, for all t ∈ (−τ 0, τ − 1
2δ),

γ(t) it is a solution of Σ. If we denote by η(t) := ϕt−(τ− 1
2
δ)(g

−1h) we have,

for all t ∈ [τ − 1
2δ, τ + δ)

γ̇(t) =
d

dt
β(t)η(t) = (dLβ(t))η(t)η̇(t) + (dRη(t))β(t)β̇(t).

However,

η̇(t) = X (η(t)) and β̇(t) = X (β(t)) +
mX
j=1

Xj(β(t))

and so

η(t) = (dLβ(t))η(t)X (η(t)) + (dRη(t))β(t)

⎛⎝X (β(t)) + mX
j=1

Xj(β(t))

⎞⎠
= (dLβ(t))η(t)X (η(t)) + (dRη(t))β(t)X (β(t)) +

mX
j=1

Xj (β(t)η(t))
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= X (γ(t)) +
mX
j=1

Xj (γ(t))

showing that γ(t) is a solution of Σ defined on (−τ 0, τ + δ) associated with
u ∈ U and satisfying γ(0) = e which is a contradiction with the maximality
of α(t). It turns out that α must be defined in (−τ 0,∞). Analogously it
is possible to show the same for negative times. Thus, the solutions of Σ
starting at e ∈ G are defined in the whole real line. 2

4. Solution and series

In this section we recall a result that appears in [1] which shows how to
compute the Σ solutions when you know the flow of the drift.

Theorem: 4.1. Let us consider a constant admissible control, u ∈ Rm.

Therefore, the vector field X +
mP
j=1

has the solution given by

φ(t, g, u) = ϕt(x) exp

⎛⎝ ∞X
j=1

(−1)n+1tndn(Xu,D)

⎞⎠(4.1)

where Xu =
mP
j=1

ujX
j ∈ g and for each n ≥ 1,

dn : g⊗s∂g −→ g

is a homogeneous polynomial map of degree n.

In particular, some of the first terms of dn are obtained by recursive
formula as follows:

d1(Y
u,D) = Y u

d2(Y
u,D) =

1

2
D(Y u)

d3(Y
u,D) =

1

12
[Y u,D(Y u)] +

1

6
D2(Y u)

d4(Y
u,D) =

1

24
[Y u,D2(Y u)] +

1

24
D3(Y u), etc.
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5. Examples

In order to build examples of linear control systems on a Lie group G it
is worth to compute first the Lie algebra ∂g of g, see [5]. Of course, the
dimension of ∂g varies from Abelian to semisimple Lie groups. In fact, in
the Euclidean case any linear transformation D : Rd → Rd is trivially a
derivation. However, in a semisimple Lie group every derivation is inner.
Thus, the dimension of ∂g varies from d2 to d.

In this section we show some examples

Example: 5.1. Let G = E(2) the Lie group of the Euclidean motions of
the plane

G=

⎧⎪⎨⎪⎩g =
⎛⎜⎝ 1 0 0

x a b
y −b α

⎞⎟⎠ : (x, y) ∈ R , a2 + b2 = 1

⎫⎪⎬⎪⎭ .
Any point (x, y) in R2 is both translated and rotated by the action of

elements in G. The Lie algebra g of G is given by

g =

⎧⎪⎨⎪⎩
⎛⎜⎝ 0 0 0

a 0 c
b −c 0

⎞⎟⎠ : a, b, c ∈ R
⎫⎪⎬⎪⎭ .

Let us consider the basis

g=Span

⎧⎪⎨⎪⎩Y 1 =
⎛⎜⎝ 0 0 0
1 0 0
0 0 0

⎞⎟⎠ , Y 2 =

⎛⎜⎝ 0 0 0
0 0 0
1 0 0

⎞⎟⎠ , Y 3 =

⎛⎜⎝ 0 0 0
0 0 1
0 −1 0

⎞⎟⎠
⎫⎪⎬⎪⎭

and the inner derivationsD1 andD3 determined by Y
1 and Y 3 respectively.

We obtain linear vector fields X 1= XD1 and X 3= XD3 as follows

X 1(g) =

µ
d

dt

¶
t=0

exp(tY 1)g exp(−tY 1)

=

µ
d

dt

¶
t=0

⎛⎜⎝ 1 0 0
x+ t− at a b
y + bt −b −a

⎞⎟⎠ =
⎛⎜⎝ 0 0 0
1− a 0 0
b 0 0

⎞⎟⎠
and
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X 3(g) =

µ
d

dt

¶
t=0

exp(tY 3)g exp(−tY 3)

=

µ
d

dt

¶
t=0

⎛⎜⎝ 1 0 0
x cos t+ y sin t a b
−x sin t+ y cos t −b a

⎞⎟⎠ =
⎛⎜⎝ 0 0 0

y 0 0
−x 0 0

⎞⎟⎠
Example: 5.2. Let g = RX1 +RX2 +RX3 the Lie algebra of the con-
nected and simply connected Heisenberg Lie group G with the following
generators

X1 =
∂

∂x1
, X2 = x3

∂

∂x1
+

∂

∂x2
and X3 =

∂

∂x3

The only one non-vanishing Lie bracket is [X3,X2] = X1. The group

G is diffeomorphic to R3 with the non-Abelian group operation ∗ : G→ G
given by

(x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1 + x3y2, x2 + y2, x3 + y3), and

(x1, x2, x3)
−1 = (−x1 + x2x3,−x2,−x3).

On the other hand, the exponential and logarithm maps are given by

exp(a1X
1 + a2X

2 + a3X
3) = (a1 +

1

2
a2a3, a2, a3)

and

log(x1, x2, x3) = (x1 −
1

2
x2x3)X

1 + x2X
2 + x3X

3.

Let us consider the linear control system Σ given by

ġ = X (g) + uX2(g), u ∈ R,
where g = (x1, x2, x3) ∈ G and the infinitesimal automorphism X is deter-
mined by

Xt(x1, x2, x3) = (x1 + x2t+
1

2
x22t, x2, tx2 + x3).
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In fact, it can be checked that Xt ∈ Aut(G) for every real number t. In
coordinates, the system Σ reads

Σ :

⎧⎪⎨⎪⎩
.
x1= x2 +

1
2x
2
2 + ux3

.
x2= u
.
x3= x2

According to our previous results, the solution exists and is given by
the series-solution as

φt,u(g) = ϕt(g) exp

⎛⎝ ∞X
j=1

(−1)n+1tndn(uY 2,D)

⎞⎠ .

The derivation D associated to X is the matrix

⎛⎜⎝ 0 1 0
0 0 0
0 1 0

⎞⎟⎠. Since D
is nilpotent with nilpotency degree 2, it follows that dn is zero for n ≥ 4.
The non-null terms of the series are listed below:

d1 = uY 2,

d2 =
1

2
u(Y 1 + Y 3),

d3 = − 1
12

u2Y 1 and

d4 = d5 = · · · = 0.

In such a case, we get a finite series

ζ(t) = td1 − t2d2 + t3d3

so that

exp ζ(t) = exp

ÃÃ
− t3

12
u2 − t2

2
u

!
Y 1 + utY 2 − t2

2
uY 3

!
.

By the exponential rule, the solution φt,u(g) with initial condition g and
constant control u reads

φ(t, g, u) =³
x1 +

³
x2 +

1
2x
2
2 + ux3

´
t+

¡
ux2 − u

2

¢
t2 − t3

3 u
2, x2 + ut, tx2 + x3 − t2

2 u
´
.
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