Proyecciones Journal of Mathematics Vol. 35, N^o 4, pp. 481-490, December 2016. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172016000400009

Some geometric properties of lacunary Zweier Sequence Spaces of order α

Karan Tamang North Eastern Regional Institute of Science and Tech., India and Bipan Hazarika Rajiv Gandhi University, India Received : July 2016. Accepted : September 2016

Abstract

In this paper we introduce a new sequence space using Zweier matrix operator and lacunary sequence of order α . Also we study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space.

Keywords and phrases : Lacunary sequence; Zweier operator; order continuous; Fatou property; Banach-Saks property

AMS subject classification (2010) : 40A05, 40D25, 46A45.

1. Introduction

Throughout the article w, c, c_0 and ℓ_{∞} denotes the spaces of all, convergent, null and bounded sequences, respectively. Also, by ℓ_1 and ℓ_p , we denote the spaces of all absolutely summable and p-absolutely summable series, respectively. Recall that a sequence $(x(i))_{i=1}^{\infty}$ in a Banach space X is called Schauder (or basis) of X if for each $x \in X$ there exists a unique sequence $(a(i))_{i=1}^{\infty}$ of scalars such that $x = \sum_{i=1}^{\infty} a(i)x(i)$, i.e. $\lim_{n\to\infty} \sum_{i=1}^{n} a(i)x(i) = \sum_{i=1}^{n} a(i)x(i)$ x. A sequence space X with a linear topology is called a K-space if each of the projection maps $P_i: X \to \mathbf{C}$ defined by $P_i(x) = x(i)$ for $x = (x(i))_{i=1}^{\infty} \in$ X is continuous for each natural *i*. A *Fréchet space* is a complete metric linear space and the metric is generated by a *F*-norm and a Fréchet space which is a K-space is called an FK-space i.e. a K-space X is called an FKspace if X is a complete linear metric space. In other words, X is an FKspace if X is a Fréchet space with continuous coordinatewise projections. All the sequence spaces mentioned above are FK-space except the space c_{00} which is the space of real sequences which have only a finite number of nonzero coordinates. An FK-space X which contains the space c_{00} is said to have the property AK if for every sequence $(x(i))_{i=1}^{\infty} \in X, x = \sum_{i=1}^{\infty} x(i)e(i)$ where $e(i) = (0, 0, \dots 1^{i^{th} place}, 0, 0, \dots).$

A Banach space X is said to be a *Köthe sequence space* if X is a subspace of w such that

- (a) if $x \in w, y \in X$ and $|x(i)| \le |y(i)|$ for all $i \in \mathbf{N}$, then $x \in X$ and $||x|| \le ||y||$
- (b) there exists an element $x \in X$ such that x(i) > 0 for all $i \in \mathbf{N}$.

We say that $x \in X$ is order continuous if for any sequence $(x_n) \in X$ such that $x_n(i) \leq |x(i)|$ for all $i \in \mathbf{N}$ and $x_n(i) \to 0$ as $n \to \infty$ we have $||x_n|| \to 0$ holds.

A Köthe sequence space X is said to be order continuous if all sequences in X are order continuous. It is easy to see that $x \in X$ order continuous if and only if $||(0, 0, ..., 0, x(n+1), x(n+2), ...)|| \to 0$ as $n \to \infty$.

A Köthe sequence space X is said to be the Fatou property if for any real sequence x and (x_n) in X such that $x_n \uparrow x$ coordinatewisely and $\sup_n ||x_n|| < \infty$, we have that $x \in X$ and $||x_n|| \to ||x||$.

A Banach space X is said to have the Banach-Saks property if every bounded sequence (x_n) in X admits a subsequence (z_n) such that the sequence $(t_k(z))$ is convergent in X with respect to the norm, where

$$t_k(z) = \frac{z_1 + z_2 + \dots + z_k}{k} \text{ for all } k \in \mathbf{N}.$$

Some of works on geometric properties of sequence space can be found in [3, 4, 8, 9, 13, 16, 17, 18, 19, 20, 22, 23].

Şengönül [24] defined the sequence $y = (y_k)$ which is frequently used as the Z^i -transformation of the sequence $x = (x_k)$ i.e.

$$y_k = ix_k + (1-i)x_{k-1}$$

where $x_{-1} = 0, k \neq 0, 1 < k < \infty$ and Z^i denotes the matrix $Z^i = (z_{nk})$ defined by

$$z_{nk} = \begin{cases} i, & \text{if } n = k; \\ 1 - i, & \text{if } n - 1 = k; \\ 0, & \text{otherwise.} \end{cases}$$

Şengönül [24] introduced the Zweier sequence spaces \mathcal{Z} and \mathcal{Z}_0 as follows

$$\mathcal{Z} = \{ x = (x_k) \in w : Z^i x \in c \}$$

and

$$\mathcal{Z}_0 = \{ x = (x_k) \in w : Z^i x \in c_0 \}$$

For details on Zweier sequence spaces we refer to [5, 10, 11, 12, 14, 15].

2. Lacunary Zweier sequence spaces of order α

by lacunary sequence we mean an increasing sequence $\theta = (k_r)$ of positive integers satisfyling $k_0 = 0$ and $h_r := k_r - k_{r-1} \to \infty$ as $r \to \infty$. We denote the intervals, by $I_r = (k_{r-1}, k_r]$, which determines θ . Let $\alpha \in (0, 1]$ be any real number and let p be a positive real number such that $1 \le p < \infty$. Now we define the following sequence space.

$$[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = \left\{ x \in w : \sup_{r} \frac{1}{h^{\alpha}_{r}} \sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p} < \infty \right\}.$$

`

Special cases:

- (a) For p = 1 we have $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}$.
- (b) For $\alpha = 1$ and p = 1 we have $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = [\mathcal{Z}_{\theta}]_{\infty}$.

For details on sequence spaces of order α we refer to [1, 2, 6, 7].

Theorem 2.1. Let $\alpha \in (0,1]$ and p be a positive real number such that $1 \leq p < \infty$. Then the sequence space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ is a BK-space normed by

(2.1)
$$||x||_{\alpha} = \sup_{r} \frac{1}{h_{r}^{\alpha}} \left(\sum_{k \in I_{r}} |\left(Z^{i}x\right)_{k}|^{p} \right)^{\frac{1}{p}}$$

Proof. Since the matrix Z^i is a triangle, we have the result by norm (2.1) and the Theorem 4.3.12 of Wilansky [[25], p. 63]. $\Box [Z^{\alpha}_{\theta}]_{\infty} \subset [Z^{\alpha}_{\theta}]_{\infty}(p)$.

Theorem 2.2. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. Then $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) \subset [\mathcal{Z}^{\beta}_{\theta}]_{\infty}(p)$.

Proof. The proof of theorem follows from the following inequality. For all $r \in \mathbf{N}$ we have is straightforward, so omitted.

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \le \frac{1}{h_r^{\beta}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p.$$

E.	-		٦
1			1
-L	_	_	л

Theorem 2.3. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all r, then $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) \subset [\mathcal{Z}^{\beta}_{\phi}]_{\infty}(p)$ if and only if $\sup_r \left(\frac{h_r^{\alpha}}{l_r^{\beta}}\right) < \infty$.

Proof. Let $x = (x_k) \in [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ and $\sup_r \left(\frac{h^{\alpha}_r}{l^{\beta}_r}\right) < \infty$. Then $\sup_r \frac{1}{h^{\alpha}_r} \sum_{k \in I} |\left(Z^i x\right)_k|^p < \infty$ and there exists a positive number K such that $h_r^{\alpha} \leq K l_r^{\beta}$ and so that $\frac{1}{l_r^{\beta}} \leq \frac{K}{h_r^{\alpha}}$ for all r. Therefore, we have

$$\frac{1}{l_r^\beta} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \le \frac{K}{h_r^\alpha} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p.$$

Now taking supremum over r, we get

$$\sup_{r} \frac{1}{l_r^{\beta}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \le \sup_{r} \frac{K}{h_r^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p$$

and hence $x \in [\mathcal{Z}_{\phi}^{\beta}]_{\infty}(p)$.

Next suppose that $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) \subset [\mathcal{Z}^{\beta}_{\phi}]_{\infty}(p)$ and $\sup_{r} \left(\frac{h^{\alpha}_{r}}{l^{\beta}_{r}}\right) = \infty$. Then there exists an increasing sequence (r_{i}) of natural numbers such that $\lim_{i} \left(\frac{h^{\alpha}_{r_{i}}}{l^{\beta}_{r_{i}}}\right) = \infty$. Let L be a positive real number, then there exists $i_{0} \in \mathbf{N}$ such that $\frac{h^{\alpha}_{r_{i}}}{l^{\beta}_{r_{i}}} > L$ for all $r_{i} \geq i_{0}$. Then $h^{\alpha}_{r_{i}} > Ll^{\beta}_{r_{i}}$ and so $\frac{1}{l^{\beta}_{r_{i}}} > \frac{L}{h^{\alpha}_{r_{i}}}$. Therefore we can write

$$\frac{1}{l_{r_i}^{\beta}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p > \frac{L}{h_{r_i}^{\alpha}} \sum_{k \in I_r} |\left(Z^i x\right)_k|^p \text{ for all } r_i \ge i_0.$$

Now taking supremum over $r_i \ge i_0$ then we get

(2.2)
$$\sup_{r_i \ge i_0} \frac{1}{l_{r_i}^{\beta}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p > \sup_{r_i \ge i_0} \frac{L}{h_{r_i}^{\alpha}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p$$

Since the relation (2.2) holds for all $L \in \mathbf{R}^+$ (we may take the number L sufficiently large), we have

$$\sup_{r_i \ge i_0} \frac{1}{l_{r_i}^{\beta}} \sum_{k \in I_{r_i}} |\left(Z^i x\right)_k|^p = \infty$$

but $x = (x_k) \in [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ with

$$\sup_{r} \left(\frac{h_r^{\alpha}}{l_r^{\beta}} \right) < \infty.$$

Therefore $x \notin [\mathcal{Z}_{\phi}^{\beta}]_{\infty}(p)$ which contradicts that $[\mathcal{Z}_{\theta}^{\alpha}]_{\infty}(p) \subset [\mathcal{Z}_{\phi}^{\beta}]_{\infty}(p)$. Hence $\sup_{r \geq 1} \left(\frac{h_{r}^{\alpha}}{l_{r}^{\beta}}\right) < \infty$. \Box **Corollary 2.4.** Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all $r \geq 1$, then

(a)
$$[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = [\mathcal{Z}^{\beta}_{\phi}]_{\infty}(p)$$
 if and only if $0 < \inf_{r} \left(\frac{h^{\alpha}_{r}}{l^{\beta}_{r}}\right) < \sup_{r} \left(\frac{h^{\alpha}_{r}}{l^{\beta}_{r}}\right) < \infty$.
(b) $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = [\mathcal{Z}^{\alpha}_{\phi}]_{\infty}(p)$ if and only if $0 < \inf_{r} \left(\frac{h^{\alpha}_{r}}{l^{\alpha}_{r}}\right) < \sup_{r} \left(\frac{h^{\alpha}_{r}}{l^{\alpha}_{r}}\right) < \infty$.
(c) $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) = [\mathcal{Z}^{\beta}_{\theta}]_{\infty}(p)$ if and only if $0 < \inf_{r} \left(\frac{h^{\alpha}_{r}}{h^{\beta}_{r}}\right) < \sup_{r} \left(\frac{h^{\alpha}_{r}}{h^{\beta}_{r}}\right) < \infty$.

Theorem 2.5. $\ell_p \subset [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) \subset \ell_{\infty}.$

Proof. The proof of the result is straightforward, so omitted. \Box

Theorem 2.6. If $0 , then <math>[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p) \subset [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(q)$.

Proof. The proof of the result is straightforward, so omitted. \Box

3. Some geometric properties

In this section we study some of the geometric properties like order continuous, the Fatou property and the Banach-Saks property in this new sequence space.

Theorem 3.1. The space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ is order continuous.

Proof. We have to show that the space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ is an AK-space. It is easy to see that $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ contains c_{00} which is the space of real sequences which have only a finite number of non-zero coordinates. By using the definition of AK-properties, we have that $x = (x(i)) \in [\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ has a unique representation $x = \sum_{i=1}^{\infty} x(i)e(i)$ i.e. $||x - x^{[j]}||_{\alpha} = ||(0, 0, ..., x(j), x(j + 1), ...)||_{\alpha} \to 0$ as $j \to \infty$, which means that $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ has AK. Therefore BK-space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ containing c_{00} has AK-property, hence the space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ is order continuous. \Box

Theorem 3.2. The space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ has the Fatou property.

Proof. Let x be a real sequence and (x_j) be any nondecreasing sequence of non-negative elements form $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ such that $x_j(i) \to x(i)$ as $j \to \infty$ coordinatewisely and $\sup_j ||x_j||_{\alpha} < \infty$.

Let us denote $T = \sup_j ||x_j||_{\alpha}$. Since the supremum is homogeneous, then we have

$$\frac{1}{T} \sup_{r} \frac{1}{h_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \left(Z^{i} x_{j}(i) \right)_{k} \right|^{p} \right)^{\frac{1}{p}}$$
$$\leq \sup_{r} \frac{1}{h_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \frac{\left(Z^{i} x_{j}(i) \right)_{k}}{\left| \left| x_{n} \right| \right|_{\alpha}} \right|^{p} \right)^{\frac{1}{p}}$$
$$= \frac{1}{\left| \left| x_{n} \right| \right|_{\alpha}} \left| \left| x_{n} \right| \right|_{\alpha} = 1.$$

Also by the assumptions that (x_j) is non-dreceasing and convergent to x coordinatewisely and by the Beppo-Levi theorem, we have

$$\frac{1}{T} \lim_{j \to \infty} \sup_{r} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left| \left(Z^i x_j(i) \right)_k \right|^p \right)^{\frac{1}{p}}$$
$$= \sup_{r} \frac{1}{h_r^{\alpha}} \left(\sum_{k \in I_r} \left| \frac{\left(Z^i x(i) \right)_k}{T} \right|^p \right)^{\frac{1}{p}} \le 1,$$

whence

$$||x||_{\alpha} \le T = \sup_{j} ||x_j||_{\alpha} = \lim_{j \to \infty} ||x_j||_{\alpha} < \infty.$$

Therefore $x \in [\mathcal{Z}_{\theta}^{\alpha}]_{\infty}(p)$. On the other hand, since $0 \leq x$ for any natural number j and the sequence (x_j) is non-decreasing, we obtain that the sequence $(||x_j||_{\alpha})$ is bounded form above by $||x||_{\alpha}$. Therefore $\lim_{j\to\infty} ||x_j||_{\alpha} \leq ||x||_{\alpha}$ which contadicts the above inequality proved already, yields that $||x||_{\alpha} = \lim_{j\to\infty} ||x_j||_{\alpha}$. \Box

Theorem 3.3. The space $[\mathcal{Z}^{\alpha}_{\theta}]_{\infty}(p)$ has the Banach-Saks property.

Proof. The proof of the result follows from the standard technique. \Box

References

- [1] R. Çolak, C. A. Bektaş λ -statistical convergence of order α , Acta Math. Sci., 31 (3), pp. 953-959, (2011).
- [2] R. Çolak, Statistical Convergence of Order α, Modern Methods in Analysis and Its Applications, pp. 121-129. Anamaya Pub., New Delhi (2010).
- [3] Y. A. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Bannach sequence spaces, Acta Sci. Math.(Szeged), 65, pp. 179-187, (1999).
- [4] J. Diestel, Sequence and Series in Banach spaces, in Graduate Texts in Math., Vol. 92, Springer-Verlag, (1984).
- [5] A. Esi, A. Sapszoğlu, On some lacunary σ -strong Zweier convergent sequence spaces, Romai J., 8 (2), pp. 61-70, (2012).
- [6] M. Et, M. Çinar, M. Karakaş, On λ -statistical convergence of order α of sequences of function, J. Inequa. Appl., 2013:204, (2013).
- [7] M. Et, S. A. Mohiuddine, A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequa. Appl., 2013:469, (2013).
- [8] M. Et, V. Karakaya, A new difference sequence set of order α and its geometrical properties, Abst. Appl. Anal., Volume 2014, Article ID 278907, 4 pages, (2014).
- [9] M. Et, M. Karakaş, Muhammed Çinar, Some geometric properties of a new modular space defined by Zweier operator, Fixed point Theory Appl., 2013:165, (2013).
- [10] B. Hazarika, K. Tamang, B. K. Singh, Zweier ideal convergent sequence spaces defined by Orlicz function, The J. Math. Comp. Sci., 8 (3), pp. 307-318, (2014).
- [11] B. Hazarika, K. Tamang, B. K. Singh, On paranormed Zweier ideal convergent sequence spaces defined by Orlicz Function, J. Egypt. Math. Soc., 22 (3), pp. 413-419, (2014).

- [12] Y. F. Karababa and A. Esi, On some strong Zweier convergent sequence spaces, Acta Univ. Apulensis, 29, pp. 9-15, (2012).
- [13] M. Karakaş, M. Et, V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences, Acta Math. Ser. B. Engl. Ed., 33 (6), pp. 1711-1720, (2013).
- [14] V. A. Khan, K. Ebadullah, A. Esi, N. Khan, M. Shafiq, On Paranorm Zweier *I*-convergent sequences spaces, Inter. J. Anal., Vol. 2013, Article ID 613501, 6 pages, (2013).
- [15] V. A. Khan, K. Ebadullah, A. Esi, M. Shafiq, On some Zweier *I*convergent sequence spaces defined by a modulus function, Afr. Mat. DOI 10.1007/s13370-013-0186-y (2013).
- [16] V. A. Khan, A. H. Saifi, Some geometric properties of a generalized Cesáro Masielak-Orlicz sequence space, Thai J. Math., 1 (2), pp. 97-108, (2003).
- [17] V. A. Khan, Some geometric properties for Nörlund sequence spaces, Nonlinear Anal. Forum, 11(1), pp. 101-108, (2006).
- [18] V. A. Khan, Some geometric properties of a generalized Cesáro sequence space, Acta Math. Univ. Comenian, 79 (1), pp. 1-8, (2010).
- [19] V. A. Khan, Some geometrical properties of Riesz-Musielak-Orlicz sequence spaces, Thai J. Math., 8(3), pp. 565-574, (2010).
- [20] V. A. Khan, Some geometrical properties of generalized lacunary strongly convergent sequence space, J. Math. Anal., 2(2), pp. 6-14, (2011).
- [21] L. Leindler, Uber die la Vallée-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung., 16, pp. 375-387, (1965).
- [22] M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new Banach sequence space, J. Ineq. Appl., Article ID 86757, 6, (2007).
- [23] M. Mursaleen, V. A. Khan, Some geometric properties of a sequence space of Riesz mean, Thai J. Math., 2, pp. 165-171, (2004).
- [24] M. Şengönül, On the Zweier sequence space, Demonstratio Math. Vol.XL No. (1), pp. 181-196, (2007).

[25] A. Wilansky, Summability Theory and its Applications, North-Holland Mathematics Studies 85, Elsevier Science Publications, Amsterdam, New York: Oxford, (1984).

Karan Tamang

Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India e-mail : karanthingh@gmail.com

and

Bipan Hazarika

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India e-mail : bh_rgu@yahoo.co.in

490