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Abstract

In this paper we have introduced the concept of asymptotically dou-
ble lacunary statistically equivalent of interval numbers and strong
asymptotically double lacunary statistically equivalent of interval num-
bers. We have investigated the relations related to these spaces.
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1. Introduction

Interval arithmetic was first suggested by Dwyer [22] in 1951. Development
of interval arithmetic as a formal system and evidence of its value as a
computational device was provided by Moore [25] in 1959 and Moore and
Yang [26] in 1962. Furthermore, Moore and others [23, 24] have developed
applications to differential equations.

Chiao in [18] introduced sequence of interval numbers and defined usual
convergence of sequences of interval number. Sengoniil and Eryilmaz in [21]
introduced and studied bounded and convergent sequence spaces of interval
numbers and showed that these spaces are complete metric space.

In the recent days, Esi in [1] and [2] introduced and studied strongly
almost A\— convergence and statistically almost A— convergence of interval
numbers and lacunary sequence spaces of interval numbers, respectively.
For more information about interval numbers one may refer to Debnath
and Saha [31], Debnath et al. [29, 30].

The idea of statistical convergence for ordinary sequences was intro-
duced by Fast [12] in 1951. Schoenberg [15] studied statistical convergence
as a summability method and listed some of elementary properties of sta-
tistical convergence. Both of these authors noted that if bounded sequence
is statistically convergent, then it is Cesaro summable. Existing work on
statistical convergence appears to have been restricted to real or complex
sequence, but several authors extended the idea to apply to sequences of
fuzzy numbers and also introduced and discussed the concept of statisti-
cally convergent sequences of fuzzy numbers. For some very interesting
investigations concerning statistical convergence, one may consult the pa-
pers of Cakalli [11], Miller [13], Maddox [14] and many others, where more
references on this important summability method can be found.

In 1993, Marouf [19] presented definitions for asymptotically equiva-
lent sequences and asymptotic regular matrices. In 2003, Patterson [27]
extended these concepts by presenting as asymptotically statistical equiv-
alent analog of these definitions and natural regularity conditions for non-
negative summability matrices.

2. Preliminaries

We denote the set of all real valued closed intervals by R. Any elements of R
is called interval number and denoted by A = [z, x,] . Let z; and z, be first
and last points of T interval number, respectively. For 41, A5 € R, we have
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Zl = ZQ < T1,=T2;, .’L'1r:f1327.-zl+22 = {513 ceR: r1, t oo <x <z, + x2r}7
and if o > 0, then

aAd={zeR: ar, <z <azy,} and if a <0, then

aA={reR: ar;, <z <az,},

Ay Ay

= {z € R:min{zy,.z9,, 21,.22,, 21, .22, 21,22, } < @
< max {x1,.29,, T1,.T2,, 1,.T2,, T1,.22, } -
The set of all interval numbers R is a complete metric space defined by

4 (A, Ay ) = max {far, — a1, — 22, ]}

In the special case A1 = [a,a] and Ay = [b,b], we obtain usual metric
of R. Let us define transformation f : N — IR by k — f(k) = Ak,
A= (Zk) . Then A = (Zk) is called sequence of interval numbers. The A,

is called k' term of sequence A = (Zk) . w' denotes the set of all interval
numbers with real terms.

A double sequence of real numbers is a function x: N x N — R. We
shall use the notation x = (z).

A double sequence z = (x;) has a Pringsheim limit L (denoted by P -
lim x = L) provided that given an € > 0 there exists an Ny € N such that
|(zx,) — L| < € whenever k,I > L. We shall describe such an « = (xy)
more briefly as ”P-convergent”. The double sequence x = (zj) is bounded
if there exists a positive number M such that |(zy;) — L| < M for all k and
1, and

]| = supg x| < oo.

Let p = (pk,) be a double sequence of positive real numbers. If 0 < h
= inf pr; < prg < H = supgpi,; < oo and D = max(1,2771), then for
all ag ;b € C for all k,l € N, we have

|ans + beg[™ < D (Jagg [P + [bea™).
We should note that in contrast to the case for single sequences, a
convergent double sequence need not be bounded. A sequence x = (xy) is

said to be statistically convergent to the number L if for every ¢ > 0

limp2 {k<n:|zgy—L| >e}| =0
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where the vertical bars indicate the number of elements in the enclosed set.
Later, Mursaleen and Edely [20] defined the statistical analogue for double
sequence = = () as follows:

A real double sequence & = (x) is said to be P - statistical convergence
to L provided that for each £ > 0

P —limmp— {(k,0):k < m, | < n; |z —L|>e} =0

In this case, we write Sta — limy,x; = L and we denote the set of all
P- statistical convergent double sequences by Sta.

By a lacunary sequence 6 = (k;); v = 0, 1, 2, ... where kg = 0, we
shall mean an increasing sequence of non-negative integers with h, = k. —
k._1 — oo as r — oo0. The intervals determined by 6 will be denoted by
I, = (ky—1,kr]. The ratio kfil will be denoted by ¢., where r > 1. The
space of lacunary strongly convergent sequence space Ny was defined by
Freedman et al. [10] as follows:

No ={z = (xg) : limrh% Yker |zr — L| =0, for some L}.

The double sequence 6, s = {(k;,ls)} is called double lacunary sequence
if there exist two increasing of integers such that k, =0, h, =k, — k.1 —
oo asr —ooand l, =0, hs =13 —1ls_1 — 00 as s — oo.

Notations: k,s = kyls, hys = hyhs and 0, is determined by I, =
{(k,0): k1 <k <kpandlyy <I<IL}, q = 12, = 72 and g =
4rqs-

The set of all double lacunary sequences denoted by Ny, , = {z = (2) :
P limnsﬁ{sz(k,l)eb,s |zk; — L] =0, for some L}

Definition 1.1. [1] A sequence A = (Xk) of interval numbers is said to
be convergent to the interval number A, if for each £ > 0 there exists a
positive integer k, such that d (Zk,Zo) < ¢ for all k£ > k, and we denote
it by limy Ax = A,.

Thus, limy Ay = A, < limg 21, = 2., and limy, z, = z,,.

For more information about interval numbers one can refer to Esi [1-9]
and Debnath and Saha [29-31]:

Definition 1.2. [19] Two non-negative sequences x = (xy) and y = (yx)
are said to be asymptotically equivalent if lz'TrLk;%]c =1 (denoted by = ~ y).
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Definition 1.3. [16] The sequence x = (x1) has statistical limit L, denoted
by st - lim x= L provided that for every ¢ > 0,

lim,2{the number of k <n: |z, — L| >¢e} =0.
Definition 1.4.[28] Two non-negative sequences = = () and y = (y)

are said to be asymptotically statistical equivalent of multiple L provided
that for every € > 0,

1
lim —{the number of k <mn: |%—L]25}:O.
non Yk

(denoted by zSry), and simply asymptotically statistical equivalent if L =
1.

Definition 1.5.[28] Let 6 be a lacunary sequence; the two non-negative
sequences ¢ = (z) and y = (yi) are said to be asymptotically lacunary
statistical equivalent of multiple L provided that for every € > 0,

lim —
im I

{ken:ﬂﬁ—LDZeHZO
Yk

(denoted by xSéy) and simply asymptotically lacunary statistical equiva-
lent if L = 1.

Definition 1.6. Let 6 be a lacunary sequence; two number sequences
x = (xx) and y = (yi) are strong asymptotically lacunary equivalent of
multiple L provided that

.1 Tk
lm —Syer -2 — L] =0
im o Sier [ - L

(denoted by xN9Ly> and simply strong asymptotically lacunary equivalent
if L=1.

3. Main Results

Definition 3.1 Let 6, 3 = {(k,,ls)} be a double lacunary sequence. Two
non negative double interval sequences T = (Ty) and § = (yy;) # 0 =
[0,0] are said to be asymptotically double lacunary statistical equivalent of
interval number Ty provided that for every ¢ > 0
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{(k,l)elmz d(@jo) zs} =0
Yk,

(denoted by ngmy) and simply 0, s—asymptotically double lacunary sta-

1
P —lim

T,S

T,S

tistical equivalent if
To = 1. In the special case 0, s = {(2",2°)}, we shall write S, s instead
of Sgr s°

Definition 3.2 Let 6, = {(k;,ls)} be a double lacunary sequence and p
= (pr,) be any double sequence of strictly positive real numbers. Two non
negative double sequences of interval numbers T = (Ty;) and § = (7y;) are
said to be strong asymptotically double lacunary statistical equivalent of
interval number Ty provided that for every € > 0

1 —
Eke.[r,s[ d <@7T0> :ka,l = 0
.5 Ykl

P-lmy
P
(denoted by TZN"T»@) and simply 6, ;— strong asymptotically double la-
cunary statistical equivalent if o = 1. In the special case 6, s = {(2",2%)},

4
we shall write 2" instead of 2N9’"»8.

Theorem 3.1 Let 6, s = {(k;,ls)} be a double lacunary sequence. Then
P
()If TQNQW'»Sy then TSy, |7

— P
(ii) If T = (Ta1)€ loo and TSy, .7 then T2 0re7.

(iii) If T = (Ta)€ loo then S,y Nloo = 2N5T75 N lso, where o, denote
the set of bounded sequences.

Proof : (i) Let € > 0 and IQNgT»Sy, then
. Tl — B Ty —
H(k’ Dels:d (yk,l7x0) 2 6}) 2 E(k,l)elr,sand d(%,a()) >e d (_k,z’$0>
and P-limy, s 7=er, [ d (%TO PRt = )
This implies that P-lim,., 71 |{(k,) € L,s: d (3:,70) > ¢}| = 0
Therefore, TSy, .y B
(ii) Suppose that T = (Ty;) and ¥ = (¥y,) in o and TSy, 7. Then there

is a constant M > 0 such that d (%,TO) <M
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Given € > 0. So we have

LS ke, d (m fﬂo)]p’“”

_ _1 M — d (& T ) Pkl

he.s = (kD)€ cand d(;m%)zﬁ[ Tes 0 ]

— Tl Ted = )Pk,
t mL2(ker,, and d (—k’l,ﬂUo) <ed (yk,l,xo)]
<l maz(M", M)

rs 7 (k1)Ely, sand d( L 0)25
+ hl b . €Pk,l
ms  (kl)El sand d( xo) <e
1

< maz(M", MH)

l{(kal €l d(@jo) > 6}‘ + maz(e, el

Therefore, EQNgﬂsg.
(iii) It follows from (i) and (ii).

Theorem 3.2 Let 6, ; = {(ky,ls)} be a double lacunary sequence with lim
inf,gr > 1 and lim inf sg, > 1 then TS, ;7 implies TSy, 7.

Proof : Suppose that lim inf,.qg, > 1 and lim infsqs > 1 then there exists a
0 > 0 such that g > 140, G, > 1+ 0 for sufficiently large r and s, which

implies kT > 1+5 and hs > lié

Since hy s = kyls k: rls1 — kr—1ls — kr_1ls—1

We granted the following

2
et < U0 and

kr—lls—l l
hr,s < 0

If 25, sy then for every € > 0 and for sufficiently large r and s, we have
{(k,l) €Lk <k andl<l,: d(f zo) > s}]

> 5 HU‘C D€l d () 2 e
e {0 D e bys d(3,30) > e

krls

Hence, T5), 7.

Theorem 3.3 Let 6, ; = {(ky,ls)} be a double lacunary sequence with lim
suprqr < 00 and lim supsqy < oo then TSy, ¥ implies TS, 5y.

Proof: If lim sup,q, < oo and lim supsG, < oo then there exists D > 0
such that ¢, < D and g, < D for all r, s > 1. Let TSy, .7, and € > 0. Then
there exist rg < 0 and sy > 0 such that for everyi > rgand j > sg
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o 1 . z -
Cig=7= [{k D) e Iiy: d(3L70) 2 ¢f| <«
Let M =max {C;j: 1 <i<rgand 1< j<sp}and m and n be such
that k,—1 <m <k, and l;_1 < n < ;. Thus we obtain the following

mn

L {0 € Ljik <mand 1 <n: d(ﬂ 70) ze})

S k'rfllsfl

{eD) € Lk <k and 1< 1y d(34,7) > e}

IN

1 1
Bl S(1<t<ro) Ja<usso) MaCtat 5o Dirg<i<e) Yso<uss) MauCru

M 1
S BoT Zast<ro) Y <usso) Mat RS Bro<i<r) so<u<s) MuCtu

MkrOISOTOSO 1
—  kr_1ls—1 kr_1ls—1 2(7‘0<7f§7‘) U(30<u§5)ht,u0t,u

Mkynls,T0S0 1
—_T0°°0 “—~ [ —
S kr,1l371 + (Sup t>rg U’U,ZSOCt:u) k:rfllsfl E(T‘0<t§’r‘) U(So<u§8)ht7u

MEkrylsgroso e
- kr—1ls—1 kr—1ls—1 E(7'0<tS7‘) U(SO<USS)ht’u

< Mkrglsgroso + ED2
kr lls 1

Since k, and [ both approach infinity as both m and n approach infinity
it follows that

e {(kﬁ HhelLjk<mandl<n: d(

mn

E)>5}‘—>0

@l‘ 8l
=)

This completes the proof.

Theorem 3.4 Let 0,5 = {(k;,l5)} be a double lacunary sequence with
1 <liminfr sqrs < lim SUPr,sqy s < OO then
fSr,sg = ESHT,Sy

Proof : The result clearly follows from theorem 3.2 and theorem 3.3.
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