
Energy of strongly connected digraphs whose
underlying graph is a cycle

Juan Monsalve
Universidad de Antioqua, Colombia

and
Juan Rada

Universidad de Antioquía, Colombia
Received : June 2015. Accepted : July 2016

Proyecciones Journal of Mathematics
Vol. 35, No 4, pp. 395-404, December 2016.
Universidad Católica del Norte
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Abstract

The energy of a digraph is defined as E (D) =
nP

k=1

|Re (zk)|, where
z1, . . . , zn are the eigenvalues of the adjacency matrix of D. This is
a generalization of the concept of energy introduced by I. Gutman in
1978 [3]. When the characteristic polynomial of a digraph D is of the
form

φD (z) =

bn2 cX
k=0

(−1)k bk (D) zn−2k(0.1)

where b0 (D) = 1 and bk (D) ≥ 0 for all k, we show that

E (D) = 2

π

∞Z
0

1

t2
ln

⎡⎢⎣bn2 cX
k=0

bk (D) t
2k

⎤⎥⎦ dt(0.2)

This expression for the energy has many applications in the study of
extremal values of the energy in special classes of digraphs. In this
paper we consider the set D∗ (Cn) of all strongly connected digraphs
whose underlying graph is the cycle Cn, and characterize those whose
characteristic polynomial is of the form (0.1). As a consequence, we
find the extremal values of the energy based on (0.2).
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1. Introduction

A directed graph (or just digraph) D consists of a non-empty finite set V
of elements called vertices and a finite set A of ordered pairs of distinct
vertices called arcs. Two vertices are called adjacent if they are connected
by an arc. If there is an arc from vertex u to vertex v we indicate this
by writing uv. A digraph D is symmetric if uv ∈ A then vu ∈ A, where
u, v ∈ V. A one to one correspondence between graphs and symmetric

digraphs is given by G
←→
G , where

←→
G has the same vertex set as the graph

G, and each edge uv of G is replaced by a pair of symmetric arcs uv and vu.
On the other hand, given a digraph D we denote by U (D) the underlying
graph of D defined as the graph with the same set of vertices as D, and
there is an edge between two vertices u and v of U (D) if and only if uv or
vu is an arc of D.

The adjacency matrix of a digraph D with n vertices {v1, . . . , vn} is
defined as the n× n matrix A = (aij) where

aij =

(
1 if vivj is an arc of D
0 if not

The characteristic polynomial of D is the characteristic polynomial of
A and we denoted by φD (z). The eigenvalues z1, . . . zn of A are called
the eigenvalues of the digraph D. Since A is not necessarily a symmetric
matrix, the eigenvalues of D can be complex numbers. The energy of a

digraph D is defined as E (D) =
nP

k=1
|Re (zk)| [6], a generalization of the

energy of a graph introduced by Gutman in 1978 [3] (see also [4] for more
details on this concept and its applications to chemistry). Since Coulson’s
integral formula holds for the energy of a digraph then

E (D) = 2

π

∞Z
0

1

t2
ln |γ (t)| dt(1.1)

where γ (t) = tnφD
³
i
t

´
(see ([5] and [6]). When the characteristic polyno-

mial of a digraph D can be expressed as

φD (z) =

bn2 cX
k=0

(−1)k bk (D) zn−2k(1.2)

where b0 (D) = 1 and bk (D) ≥ 0 for all k, we show in Theorem 2.1 that
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E(D) = 2
π

∞R
0

1
t2 ln

⎡⎣bn2 cP
k=0

bk (D) t
2k

⎤⎦ dt
Consequently, ifD1 andD2 are digraphs with characteristic polynomials

expressed as (1.2), then the energy is increasing with respect to the quasi-
order relationD1 ¹ D2 defined as bk (D1) ≤ bk (D2) for all k. This property
is essential in order to find extemal values of the energy in special classes
of digraphs. So the natural question is: which digraphs satisfy (1.2)?

Let us call Ωn the set of digraphs with n vertices such that the char-
acteristic polynomial is of the form (1.2). It is well known that the set
of bipartite graphs (i.e. bipartite symmetric digraphs) with n vertices is
contained in Ωn. This is not true for general bipartite digraphs. For exam-

ple, if
−→
C4 is the directed cycle of 4 vertices then φ−→

C4
(z) = z4 − 1 does not

alternate signs of the coefficients as in (1.2). It was shown in [7] that the
set ∆n consisting of digraphs with n vertices and such that every cycle has
length ≡ 2(mod4) is contained in Ωn. However it is still an open problem
to determine exactly which digraphs belong to Ωn.

Our interest in this work is to give some insight in this problem. Specif-
ically, we consider the set D∗ (Cn) of strongly connected digraphs whose
underlying graph is the cycle Cn. We first characterize such digraphs and
then compute its characteristic polynomial (Lemma 2.2 and Theorem 2.3).
From this expression of the characteristic polynomial we characterize the
digraphs of D∗ (Cn) which belong to Ωn and then we find the extremal
values of the energy (Theorems 2.4 and 2.6).

2. Energy of strongly connected digraphs whose underlying
graph is a cycle

Let us define a quasi-order relation over Ωn as follows: if D1 and D2 have
characteristic polynomials

φDi (z) =
bn2 cP
k=0

(−1)k bk (Di) z
n−2k

where b0 (Di) = 1 and bk (Di) ≥ 0 for all k (i = 1, 2), then D1 ¹ D2 if and
only if bk (D1) ≤ bk (D2) for all k. If further bk (D1) < bk (D2) for some k
then D1 ≺ D2. We first show that the energy is increasing with respect to
this quasi-order relation.
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Theorem 2.1. If D ∈ Ωn then E(D) = 2
π

∞R
0

1
t2 ln

⎡⎣bn2 cP
k=0

bk (D) t
2k

⎤⎦ dt

In particular, the energy is increasing over Ωn with respect to the quasi-
order relation ¹.

Proof. From (1.1) E(D) = 2
π

∞R
0

1
t2 ln |γ (t)| dt

where γ (t) = tnφD
³
i
t

´
.

Since D ∈ Ωn we deduce that

|γ (t)| =

¯̄̄̄
tnφD

µ
i

t

¶¯̄̄̄
=

¯̄̄̄
¯̄̄tn b

n
2 cX

k=0

(−1)k bk (D)
µ
i

t

¶n−2k ¯̄̄̄¯̄̄
=

bn2 cX
k=0

bk (D) t
2k

and so

E(D) = 2
π

∞R
0

1
t2 ln |γ (t)| dt =

2
π

∞R
0

1
t2 ln

⎡⎣bn2 cP
k=0

bk (D) t
2k

⎤⎦ dt
It follows easily from this expression that the energy is increasing over

Ωn with respect to the quasi-order relation ¹. 2
As we mentioned in the introduction, the set of symmetric bipartite

digraphs with n vertices is contained in Ωn, but for bipartite digraphs in
general this is not true. For instance, consider the cycle Cn on n vertices,
i.e. the vertex of Cn is V (Cn) = {v1, . . . , vn} and the edge set of Cn is

Marisol Martínez
fig1
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E (Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Denote by
−→
Cn the directed cycle

and
←→
Cn the symmetric digraph of Cn (see Fig. 1). Clearly

−→
Cn is a strongly

connected bipartite digraph when n is even, and its characteristic poly-
nomial is φ−→

Cn
(z) = zn − 1. Then for every n which is a multiple of 4,

−→
Cn /∈ Ωn.

We will investigate which strongly connected digraphs whose underlying
graph is Cn belong to Ωn. Let us denote by D (Cn) the set consisting of all
digraphs D such that U (D) = Cn. Moreover, we define

D∗ (Cn) = {U ∈ D (Cn) : U is strongly connected}

Lemma 2.2. A digraph U belongs to D∗ (Cn) if and only if U =
←→
Cn or

U is obtained from
←→
Cn by deleting some arcs of the form vjvj−1, where

j = 1, . . . , n (v0 = vn).

Proof. Assume that U ∈ D∗ (Cn). Since U (D) = Cn, the only possible

directed cycles in U are 2-cycles or
−→
Cn. If U 6=

←→
Cn then there exists an arc

uv of U such that vu is not an arc of U , in other words, uv does not belong

to a 2-cycle. Since U is strongly connected then
−→
Cn must be a cycle of U

(which contains uv) and so U is obtained from
←→
Cn by deleting some arcs of

the form vjvj−1, where j = 1, . . . , n (v0 = vn). Conversely, if Y is obtained

from
←→
Cn by deleting some arcs of the form vjvj−1, then clearly U (Y ) = Cn

and every arc of Y is contained in the cycle
−→
Cn, so Y is strongly connected.

2

We next compute the characteristic polynomial of digraphs in D∗ (Cn) .
Given U ∈ D∗ (Cn) and p a positive integer, we will denote by Sp (U) the
set of p independent 2-cycles of U and |Sp (U)| the number of elements
Sp (U) has. For instance, for the digraph Q8 in Figure 2, |S1 (Q8)| = 4,
|S2 (Q8)| = 6, |S3 (Q8)| = 4 and |S4 (Q8)| = 1.

Theorem 2.3. Let U ∈ D∗ (Cn).

1. If n is odd then

φU (z) = zn +

n−1
2P

k=1
(−1)k |Sk (U)| zn−2k − 1;

2. If n is even then
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φU (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zn +

n
2
−1P

k=1
(−1)k |Sk (U)| zn−2k −

³
1−

¯̄̄
Sn
2
(U)

¯̄̄´
if n ≡ 0(mod4);

zn +

n
2
−1P

k=1
(−1)k |Sk (U)| zn−2k −

³
1 +

¯̄̄
Sn
2
(U)

¯̄̄´
if n ≡ 2(mod4).

Proof. Assume that the characteristic polynomial of U is φU (z) =
nP

k=0
akz

n−k, where a0 = 1. Then by Sachs Theorem [2], aj =
P

L∈Lj
(−1)p(L)

for every 1 ≤ j ≤ n, where Lj is the set of linear subdigraphs with j vertices
and p (L) is the number of components L has. Since U ∈ D∗ (Cn) has only

cycles of length 2 and
−→
Cn, we can compute the linear subdigraphs of U as

follows:
1. If n is odd then

Lk (U) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if k is odd, 1 ≤ k ≤ n− 2

S k
2
(U) if k is even, 2 ≤ k ≤ n− 1½−→
Cn

¾
if k = n.

(2.1)

Clearly aj = 0 for all j odd, 1 ≤ j ≤ n− 2 and an = (−1)
p

³−→
Cn

´
= −1.

When j ≡ 2(mod4) then j
2 is odd while j ≡ 0(mod4) implies j

2 is even.
Hence

aj =
X
L∈Lj

(−1)c(L) =

⎧⎨⎩ −
¯̄̄
S j
2
(U)

¯̄̄
if j ≡ 2(mod4)¯̄̄

S j
2
(U)

¯̄̄
if j ≡ 0(mod4)

(2.2)

and consequently

φU (z) =

n−1
2P

k=0
(−1)k |Sk (U)| zn−2k − 1.

2. If n is even then

Lk (U) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if k = 1, 3, 5, . . . , n− 1

Sk
2
(U) if k = 2, 4, 6, . . . , n− 2

Sn
2
(U) ∪

½−→
Cn

¾
if k = n.

(2.3)

Again aj = 0 for all j odd, 1 ≤ j ≤ n− 1. Similarly, when j is even and
2 ≤ j ≤ n− 2 then aj is given by (2.2). Finally,

an =

⎧⎨⎩ −1−
¯̄̄
Sn
2
(U)

¯̄̄
if n ≡ 2(mod4)

−1 +
¯̄̄
Sn
2
(U)

¯̄̄
if n ≡ 0(mod4)

and the result follows. 2
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Now we can determine the digraphs in D∗ (Cn) which belong to Ωn.

For n even, let Qn be the digraph obtained from
−→
Cn by adding the arcs

vivi−1 for all i even (2 ≤ i ≤ n − 2) (see Fig. 2). Clearly by Lemma 2.2,
Qn ∈ D∗ (Cn) for all positive even integer n.

Theorem 2.4. Let n be a positive integer.

1. If n is odd then no digraph in D∗ (Cn) belongs to Ωn;

2. If n ≡ 2(mod4) then all digraphs in D∗ (Cn) belong to Ωn. Moreover,

the cycle
−→
Cn has the minimal energy and

←→
Cn has the maximal energy

over the set D∗ (Cn);

3. If n ≡ 0(mod4) then a digraph U ∈ D∗ (Cn) belongs to Ωn if and
only if U = Qn or U is obtained from Qn by adding some arcs of the
form vjvj−1, where j = 1, . . . , n (v0 = vn). For these digraphs, the
minimal energy is attained in Qn and the maximal energy is attained

in
←→
Cn .

Proof. 1. Note that if n is odd and U ∈ D∗ (Cn) ∩ Ωn then φU (0) = 0
and by part 1 of Theorem 2.3, φU (0) = −1, a contradiction. Hence no
digraph in D∗ (Cn) belongs to Ωn.

2. If n ≡ 2(mod4) and U ∈ D∗ (Cn) then by part 2 of Theorem 2.3

φU (z) = zn +

n
2
−1P

k=1
(−1)k |Sk (U)| zn−2k −

³
1 +

¯̄̄
Sn
2
(U)

¯̄̄´
which clearly satisfies (1.2). Assume that U 6= −→Cn. Then by Lemma 2.2,
there exists an arc of the form vjvj−1 in U , for some j = 1, . . . , n (v0 = vn).
Let U 0 be the digraph obtained from U by deleting the arc vjvj−1. Then
clearly U 0 ∈ D∗ (Cn) and Lk (U 0) ⊆ Lk (U) for all k ≥ 0. Hence |Sk (U 0)| ≤
|Sk (U)| for all k = 1, . . . , n2 . In other words, U

0 ≤ U . Consequently,
starting from any digraph V ∈ D∗ (Cn), we can step by step delete an arc
of the form vjvj−1 to obtain a decreasing sequence of digraphs in D∗ (Cn)

that ends in
−→
Cn. Similarly, we construct an increasing sequence of digraphs

in D∗ (Cn) by adding arcs that ends in
←→
Cn . Since the energy is increasing

with respect to this quasi-order relation by Theorem 2.1, the result follows.
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3. If n ≡ 0(mod4) and W ∈ D∗ (Cn) then the characteristic polynomial
of W is given by

φW (z) = zn +

n
2
−1P

k=1
(−1)k |Sk (W )| zn−2k −

³
1−

¯̄̄
Sn
2
(W )

¯̄̄´

Note that when n ≡ 0(mod4) then n
2 −1 is odd and so W satisfies (1.2)

if and only if −
³
1−

¯̄̄
Sn
2
(W )

¯̄̄´
≥ 0, which is equivalent to Sn

2
(W ) 6= ∅.

But clearly Sn
2
(W ) 6= ∅ if and only if W = Qn or W is obtained from

Qn by adding some arcs of the form vjvj−1, where j = 1, . . . , n (v0 = vn).
Finally if Z is obtained from Qn by adding some arcs of the form vjvj−1,
we proceed as in part 2 to delete arcs of the form vjvj−1 until reaching Qn.

Similarly, adding arcs of this form to Z will end in
←→
Cn . The result follows

again by the increasing property of the energy given in Theorem 2.1. 2
As we mentioned in the introduction, ∆n ⊂ Ωn, where ∆n is the set of

Marisol Martínez
fig2
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digraphs with n vertices and every cycle has length ≡ 2(mod4) [7]. Note
that Theorem 2.4 gives plenty of examples of digraphs in Ωn which are not
in ∆n.

Example 2.5. Q4k ∈ Ω4k\∆4k for every k ≥ 1 and so does every digraph
obtained from Q4k by adding arcs of the form vjvj−1, where j = 1, . . . , 4k
(v0 = v4k). For instance, Q8 and the derived digraphs shown in Figure 3.

As we can see in Theorem 2.4, when n is odd no digraph in D∗ (Cn)
belongs to Ωn. However, in this case we still can find the extremal values
of the energy over D∗ (Cn).

Theorem 2.6. If n is odd then
−→
Cn has the minimal energy and

←→
Cn has

the maximal energy over the set D∗ (Cn).

Proof. Let U ∈ D∗ (Cn). Then by Theorem 2.3

φU (z) = zn +

n−1
2P

k=1
(−1)k |Sk (U)| zn−2k − 1;

and so using directly formula (1.1) we deduce that

E (U) = 2

π

∞Z
0

1

t2
ln |γ (t)| dt

(2.4)

where

|γ (t)| =
¯̄̄
tnφU

³
i
t

´¯̄̄
=

¯̄̄̄
¯̄tn
⎛⎝³ i

t

´n
+

n−1
2P

k=1
(−1)k |Sk (U)|

³
i
t

´n−2k
− 1

⎞⎠¯̄̄̄¯̄
=

¯̄̄̄
¯̄tn − in

⎛⎝1 + n−1
2P

k=1
|Sk (U)| t2k

⎞⎠¯̄̄̄¯̄
=

vuuuutt2n +

⎛⎜⎝1 +
n−1
2X

k=1

|Sk (U)| t2k

⎞⎟⎠
2

(2.5)

Hence substituting (2.5) in (2.4) we easily deduce that if U,U 0 ∈ D∗ (Cn)
are such that |Sk (U)| ≤ |Sk (U 0)| for all k = 1, . . . , n−12 then E (U) ≤ E (U 0).
In particular,

−→
Cn has the minimal energy and

←→
Cn has the maximal energy

over the set D∗ (Cn). 2
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