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Abstract

The energy of a digraph is defined as £ (D) = > |Re(zi)|, where
k=1

21,.-.,2n are the eigenvalues of the adjacency matriz of D. This is
a generalization of the concept of energy introduced by I. Gutman in
1978 [3]. When the characteristic polynomial of a digraph D is of the

form i
(0.1) ép (2) = g (1) by, (D) 2"~ 2F
where by (D) = 1 and by, (D)k:)o for all k, we show that
(0.2) (D) = % 7%21" LS br (D) 2k | dt

0 k=0

This expression for the energy has many applications in the study of
extremal values of the energy in special classes of digraphs. In this
paper we consider the set D* (Cy,) of all strongly connected digraphs
whose underlying graph is the cycle C,,, and characterize those whose
characteristic polynomial is of the form (0.1). As a consequence, we
find the extremal values of the energy based on (0.2).
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1. Introduction

A directed graph (or just digraph) D consists of a non-empty finite set V
of elements called vertices and a finite set A of ordered pairs of distinct
vertices called arcs. Two vertices are called adjacent if they are connected
by an arc. If there is an arc from vertex u to vertex v we indicate this
by writing uv. A digraph D is symmetric if uv € A then vu € A, where
u,v € V. A one to one correspondence between graphs and symmetric

digraphs is given by G?, where ‘G has the same vertex set as the graph
G, and each edge uv of G is replaced by a pair of symmetric arcs uv and vu.
On the other hand, given a digraph D we denote by U (D) the underlying
graph of D defined as the graph with the same set of vertices as D, and
there is an edge between two vertices u and v of U (D) if and only if uv or
vu is an arc of D.

The adjacency matrix of a digraph D with n vertices {v1,...,v,} is
defined as the n x n matrix A = (a;j) where
1 if v;v; is an arc of D
0 if not

The characteristic polynomial of D is the characteristic polynomial of
A and we denoted by ¢p (z). The eigenvalues z1,...z, of A are called
the eigenvalues of the digraph D. Since A is not necessarily a symmetric
matrix, the eigenvalues of D can be complex numbers. The energy of a

digraph D is defined as £(D) = > |Re(zx)| [6], a generalization of the
k=1

aij =

energy of a graph introduced by Gutman in 1978 [3] (see also [4] for more
details on this concept and its applications to chemistry). Since Coulson’s
integral formula holds for the energy of a digraph then

(1.1) £(D) = %/tl?znmt)mt
0

where v (t) = t"¢p (%) (see ([5] and [6]). When the characteristic polyno-
mial of a digraph D can be expressed as

5]
(1.2) 6p (2) = Y (=) by (D) 2"

k=0

where bg (D) =1 and b, (D) > 0 for all k, we show in Theorem 2.1 that
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2]

E(D) = EO b (D)t dt

BRI

oo
[ &In
0

Consequently, if D1 and D4 are digraphs with characteristic polynomials
expressed as (1.2), then the energy is increasing with respect to the quasi-
order relation D1 < Dy defined as by, (D) < by, (D2) for all k. This property
is essential in order to find extemal values of the energy in special classes
of digraphs. So the natural question is: which digraphs satisfy (1.2)7

Let us call €, the set of digraphs with n vertices such that the char-
acteristic polynomial is of the form (1.2). It is well known that the set
of bipartite graphs (i.e. bipartite symmetric digraphs) with n vertices is
contained in §2,. This is not true for general bipartite digraphs. For exam-

ple, if C_>’4 is the directed cycle of 4 vertices then <z56> (2) = 2* — 1 does not

alternate signs of the coefficients as in (1.2). It was shown in [7] that the
set A, consisting of digraphs with n vertices and such that every cycle has
length = 2(mod4) is contained in €,,. However it is still an open problem
to determine exactly which digraphs belong to €2,.

Our interest in this work is to give some insight in this problem. Specif-
ically, we consider the set D* (C,,) of strongly connected digraphs whose
underlying graph is the cycle C;,,. We first characterize such digraphs and
then compute its characteristic polynomial (Lemma 2.2 and Theorem 2.3).
From this expression of the characteristic polynomial we characterize the
digraphs of D* (C,,) which belong to €, and then we find the extremal
values of the energy (Theorems 2.4 and 2.6).

2. Energy of strongly connected digraphs whose underlying
graph is a cycle

Let us define a quasi-order relation over €2,, as follows: if D; and Dy have
characteristic polynomials

n

3]
op, (2) = > (=1)" by (D;) 2" =2k

where by (D;) = 1 and by (D;) > 0 for all k£ (i = 1,2), then D1 < Dy if and
only if by (D1) < bg (D) for all k. If further by (D7) < by (D2) for some k
then Dy < Ds. We first show that the energy is increasing with respect to
this quasi-order relation.
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Theorem 2.1. If D € Q,, then E(D)=2 [ %in {2 by (D)t
0

Figure 1: Cycles and directed cycles

In particular, the energy is increasing over €2, with respect to the quasi-
order relation <.

Proof. From (1.1) E(D)=2 [ Lin|y(t)|dt
0

where 7 (t) = t"¢p (%)
Since D € €, we deduce that

. L -\ n—2k
B = ["ep () =" (=) (D) (=
1 (2) o (3)] = X cornm (§)
15]
= Zbk(D)t%
k=0
and so .
E(D) = 2 [ Lln|y ()| dt = 2 [ %in LQka(D)t% dt
0 0 =

It follows easily from this expression that the energy is increasing over
), with respect to the quasi-order relation <. O

As we mentioned in the introduction, the set of symmetric bipartite
digraphs with n vertices is contained in €2,, but for bipartite digraphs in
general this is not true. For instance, consider the cycle C, on n vertices,
i.e. the vertex of Cy, is V (Cy) = {v1,...,v,} and the edge set of C,, is


Marisol Martínez
fig1
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E (C)) = {vive,v203, ..., Uyp_1Vp, Uyv1 . Denote by C_>'n the directed cycle

and (C—'n> the symmetric digraph of C,, (see Fig. 1). Clearly 6’2 is a strongly
connected bipartite digraph when n is even, and its characteristic poly-
nomial is gbC_> (z) = 2™ — 1. Then for every n which is a multiple of 4,

Cp ¢ Q.

We will investigate which strongly connected digraphs whose underlying
graph is C), belong to €2,,. Let us denote by D (C,,) the set consisting of all
digraphs D such that U (D) = C,,. Moreover, we define

D*(C,) ={U € D(C,) : U is strongly connected}

Lemma 2.2. A digraph U belongs to D* (C,,) if and only if U = <C—'n) or

U is obtained from (C_}: by deleting some arcs of the form vjvj_1, where
j=1,....,n (vo = vy).

Proof.  Assume that U € D* (C,,). Since U (D) = C,,, the only possible

directed cycles in U are 2-cycles or C_)'n ItU # <C—'n> then there exists an arc
uv of U such that vu is not an arc of U, in other words, uv does not belong

to a 2-cycle. Since U is strongly connected then C—)'n must be a cycle of U
(which contains uv) and so U is obtained from <C—'n> by deleting some arcs of
the form v;jv;j_1, where j = 1,...,n (vg = vy,). Conversely, if Y is obtained
from <C—’n> by deleting some arcs of the form v;v;_1, then clearly U (Y) = C,

hlliy
and every arc of Y is contained in the cycle C,,, so Y is strongly connected.
O

We next compute the characteristic polynomial of digraphs in D* (C,,) .
Given U € D*(C),) and p a positive integer, we will denote by S, (U) the
set of p independent 2-cycles of U and |S, (U)| the number of elements
Sp (U) has. For instance, for the digraph Qg in Figure 2, |S1 (Qg)| = 4,

|S2 (Qs)] = 6, |55 (@s)| = 4 and |S4 (Qs)| = 1.
Theorem 2.3. Let U € D* (C,).
1. If n is odd then
n—1
n =N k n—2k
v (2) = 2" + I;_:l (=1)" Sk (U)] 2 —1;

2. If n is even then
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n_y
2 5 (1S ()] 2 — (1-
¢u (2) = i1
4 (D IS @) = (14|83 @)]) i = 2modd).
=1

Sz (U)D if mn=0(modd);

Proof. Assume that the characteristic polynomial of U is ¢y (2) =
n

> agz"*, where ap = 1. Then by Sachs Theorem [2], a; = 3 (—1)p(L)
k=0 Lel

;
for every 1 < j < n, where L; is the set of linear subdigraphs with j vertices
and p (L) is the number of components L has. Since U € D* (C},) has only
cycles of length 2 and C_>n, we can compute the linear subdigraphs of U as
follows:

1. If n is odd then

0 if kisodd,1<k<n-—2
Sk (U) if kiseven,2<k<n-1
2

—
{C’n} if k= n.
. | (@)
Clearly aj = 0 for all j odd, 1 <j <n -2 and a, = (—1) =—1.

When j = 2(mod4) then % is odd while j = 0(mod4) implies % is even.
Hence

22)  ay= > (1)) —{

LEﬁj

(2.1) Ly (U) =

—}S%(U)} if j=2(mod4)
’S%—(U)’ if §=0(modd)

and consequently

n—1

o (2) = 3 (=1)F |8 (U)| 272 — 1.

2. If n is even then

0 if k=1,3,5,...,n—1
(2.3) Ly (U) = Sg(U) if k=2,4,6,...,n—2
Sg(U)U{Cn} if k= n.

Again a; = 0 for all j odd, 1 < j <n— 1. Similarly, when j is even and
2 < j < n—2 then a; is given by (2.2). Finally,
(U)| if n=2(mod4)
Sn (U)| if n=0(mod4)

and the result follows. O
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Now we can determine the digraphs in D* (C),) which belong to 2.

For n even, let ), be the digraph obtained from C_>n by adding the arcs
vivi—1 for all ¢ even (2 < i < n — 2) (see Fig. 2). Clearly by Lemma 2.2,
Qn € D*(C,) for all positive even integer n.

Theorem 2.4. Let n be a positive integer.

1. If n is odd then no digraph in D* (C,,) belongs to Qy;

2. If n = 2(mod4) then all digraphs in D* (C,,) belong to ,,. Moreover,
the cycle C_>’n has the minimal energy and <C—’n> has the maximal energy
over the set D* (Cy,);

3. If n = 0(mod4) then a digraph U € D*(C,,) belongs to Q, if and
only if U = @, or U is obtained from @, by adding some arcs of the

form vjvj_1, where j = 1,...,n (vo = v,). For these digraphs, the

minimal energy is attained in (),, and the maximal energy is attained
<

in C,.

Proof. 1. Note that if n is odd and U € D* (C},) N Qy, then ¢y (0) =0
and by part 1 of Theorem 2.3, ¢y (0) = —1, a contradiction. Hence no
digraph in D* (C,,) belongs to 2.

2. If n =2(mod4) and U € D* (Cy,) then by part 2 of Theorem 2.3

b () =2+ 5 (18 O)] % — (1+ |83 @)
k=1

which clearly satisfies (1.2). Assume that U # C_>’n Then by Lemma 2.2,
there exists an arc of the form v;v;_1 in U, for some j =1,...,n (vg = vy).
Let U’ be the digraph obtained from U by deleting the arc vjv;—1. Then
clearly U’ € D* (Cy,) and Ly, (U') C Ly (U) for all k£ > 0. Hence |Sy (U")| <
|Sk (U)| for all k = 1,...,%. In other words, U' < U. Consequently,
starting from any digraph V' € D* (C,,), we can step by step delete an arc
of the form v;v;_1 to obtain a decreasing sequence of digraphs in D* (C,,)

that ends in C_>’n Similarly, we construct an increasing sequence of digraphs

in D* (Cy,) by adding arcs that ends in <C—’n> Since the energy is increasing
with respect to this quasi-order relation by Theorem 2.1, the result follows.



402 Juan Monsalve and Juan Rada

Qs Qs Qs
Figure 2: Digraphs in D* (C),) N, when n is even

3. If n = 0(mod4) and W € D* (C,,) then the characteristic polynomial
of W is given by

b () =+ 5 (~1F i (W) 22— (1-[sz W)])
=1

SO

525 48— 527 LR TN P
Fom7 TS

£ = 7.2232 =2 77648 £ 80T £ = DEAGS

Figure 3: Digraphs in £25\As

Note that when n = 0(mod4) then § —1 is odd and so W satisfies (1.2)
if and only if — (1 - ‘5’% (W)D > 0, which is equivalent to Sz (W) # 0.
But clearly Sz (W) # 0 if and only if W = @, or W is obtained from
@Qn by adding some arcs of the form v;v;_1, where j =1,...,n (vg = vy).
Finally if Z is obtained from @,, by adding some arcs of the form v;v;_1,
we proceed as in part 2 to delete arcs of the form v;v;_1 until reaching Q.

Similarly, adding arcs of this form to Z will end in <C—’n) The result follows
again by the increasing property of the energy given in Theorem 2.1. O
As we mentioned in the introduction, A,, C €2, where A, is the set of


Marisol Martínez
fig2


Marisol Martínez
fig3


Energy of strongly connected digraphs whose underlying graph ... 403

digraphs with n vertices and every cycle has length = 2(mod4) [7]. Note
that Theorem 2.4 gives plenty of examples of digraphs in €2, which are not
in A,

Example 2.5. Q1 € Qu1\Ayy for every k > 1 and so does every digraph
obtained from Qg4 by adding arcs of the form v;v;_1, where j = 1,...,4k
(vo = vgi). For instance, Qg and the derived digraphs shown in Figure 3.

As we can see in Theorem 2.4, when n is odd no digraph in D* (C,,)
belongs to €2,. However, in this case we still can find the extremal values
of the energy over D* (Cy,).

Theorem 2.6. If n is odd then C_>n has the minimal energy and (0—7: has
the maximal energy over the set D* (Cy,).

Proof. Let U € D*(C),). Then by Theorem 2.3
1

ou (2) = 2" + kgl (—1)F |y (U)] 22 — 1.

and so using directl_y formula (1.1) we deduce that

£(U) = %/tl?mh(mdt
0
(2.4)

where

@) = [trev (2)

anl
A (1 + 3 |Sk (U)|t2k)‘
k=1

n—1

(2.5) = [+ [ 14+ |5k (U)] 12
k=1

Hence substituting (2.5) in (2.4) we easily deduce that if U, U’ € D* (C},)
are such that S (U)| < Sy (U’)| forallk = 1,..., 252 then £ (U) < E(U').

In particular, C—)'n has the minimal energy and <C—’n> has the maximal energy
over the set D* (Cy,). O
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