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1. Introduction

The importance of suitable measures of distance between probability distri-
butions arises because of the role they play in the problems of inference and
discrimination. The concept of distance between two probability distribu-
tions was initially developed by Mahalanobis [9]. Since then various types
of distance measures have been developed in the literature, see Burbea and
Rao[3] and Rao [14]. Many of the currently used econometric tests, such as
the likelihood ratio, the score and Wald tests, can in fact be shown to be
in terms of appropriate distance measures. A concept closely related to the
one of distance measures is that of divergence measures based on the idea
of information-theoretic entropy first introduced in communication theory
by Shannon [15] and later by Wiener [17] in Cybernetics. The origin of the
term entropy, however, goes back to the work of Clausius [5] and Boltzman
[2] in thermodynamics. Although it is well-known that the two concepts
are related, here we consider Shannon’s concept of information-theoretic
entropy. (see, [16])

Let I be an interval in R and x := (x1, ..., xn),y := (x1, ..., xn) ∈ In.
For a given function φ defined on an interval I, the φ entropy of x is defined
as follows: Hn,φ(x) = −

Pn
i=1 φ(xi). For two vectors x and y, the Jensen

difference in term of φ entropy is defined as follows:

Jn,φ(x,y) = Hn,φ

µ
x+ y

2

¶
− 1
2
[Hn,φ(x) +Hn,φ(y)] .(1.1)

Among several divergence measures defined in the statistical literature
to reflect the fact that some probability distributions are closer together
than other, and consequently, that it may be easier to distinguish between
the distribution of one pair than between those of the others. An important
measure of divergence is Jn,φ defined in (1.1) also known as J-divergence [4].
This divergence has some interesting properties (see [4] and [6, p. 16]). For
applications of this divergence see [8, 13, 14]. Another important measure
of divergence is K-divergence introduced by Burbea and Rao [4] . This
measure is defined as:

Kn,φ(x,y) =
nX
i=1

(xi − yi)

µ
φ(xi)

xi
− φ(yi)

yi

¶
,(1.2)

where function φ is on an interval I not containing zero such that φ(x)
x is

increasing function and x,y ∈ In.
In [4] there is given an order relation between J−divergence andK−divergence
measures.
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Theorem 1.1. For any x,y ∈ Rn
+

4Jn,φ(x,y) ≥ Kn,φ(x,y)(1.3)

if and only if φ(x)
x is convex for x ∈ R+ and that the equality occurs if and

only if x = y.

In [1] we considered generalization ofK−divergence (2.1) and proved its
exponentially convexity, log-convexity by using a particular class of convex
functions. Also mean value theorems are proved by using this generaliza-
tion. In this paper we give an order relation between J−divergence and
generalized K−divergence. Also results related to this new order relation
are given which appear as generalizations of results given in [1, 7].

We construct class of m−exponentially convex functions introducing by
non-negative difference of new order relation. It is noted that many classes
related to convex functions are consequences of m−exponentially convex
functions such as positive functions, log-convex functions and exponentially
convex functions. Some new classes of relative convex functions are given
in [11].

2. Main results

A generalization of K−divergence is defined as follows:
Definition 2.1. [1] Let I be an interval inR, x,y ∈ In and p := (p1, ..., pn) ∈
(0, 1]n. Also let f, h be real valued functions on interval I such that h(x) 6= 0
for all x ∈ I. We define T−divergence, denoted by Tn,f (x,y;p) as follows:

Tn,f (x,y;p) =
nX
i=1

pi(h(xi)− h(yi))

µ
f(xi)

h(xi)
− f(yi)

h(yi)

¶
.(2.1)

Let us note that if f
h is increasing functions on I, then Tn,f (x,y;p) is

non-negative.
If h is convex in Jensen sense then, in the following theorem we have

an order relation between J−divergence and generalized K−divergence.

Theorem 2.2. Let x,y ∈ In, where I is some interval in R and h be
positive J-convex function on I. If f

h is J-convex function and p ∈ (0, 1]n,
then the following inequality holds

4Jn,φ(x,y) ≥ Tn,f (x,y;p),(2.2)

equality occurs if and only if p = 1 and x = y.
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Proof. This statement is equivalent to the specialized statement with
n = 1, therefore we prove (2.2) for n = 1.

As f
h is J-convex and h is positive therefore we have 2h

³
x+y
2

´ ³
f(x)
h(x) +

f(y)
h(y)

´
−

4f
³
x+y
2

´
≥ 0. Using J-convexity of function h we get

(h(x)+h(y))
³
f(x)
h(x) +

f(y)
h(y)

´
− 4f

³
x+y
2

´
≥ 0.

After rearranging terms and using that 0 < p1 ≤ 1 we have
4
³
1
2(f(x) + f(y))− f

³
x+y
2

´´
− p1(h(x) − h(y))

³
f(x)
h(x) −

f(y)
h(y)

´
≥ 0, that is

4J1,φ(x, y) ≥ T1,f (x, y; p) 2

Remark 2.3. If we set h(x) = x, pi = 1 (i = 1, .., n) in (2.2) we get (1.3).

Now we give results related to difference of J−divergence and general-
ized K−divergence measures. Following lemma is important to give next
results.

Lemma 2.4. Let f
h ∈ C2(I), I is compact interval in R and h(x) 6= 0 for

all x ∈ I. Also let m and M be such that

m ≤
µ
f(x)

h(x)

¶00
≤M ∀x ∈ I.(2.3)

Consider the functions φ1, φ2 defined as

φ1(x) =
Mx2h(x)

2
− f(x),

and

φ2(x) = f(x)− mx2h(x)

2
,

then φi
h , for i = 1, 2, are convex on I.

Proof. Since µ
φ1(x)

h(x)

¶00
=M −

µ
f(x)

h(x)

¶00
≥ 0, ∀x ∈ I,

this gives φ1
h is convex function on I. Similarly we have that φ2

h is convex
function on I too. 2

For further generalized results in the following, we give teh definition of
new generalized divergence measure.
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Definition 2.5. Let I be an interval in R, x,y ∈ In and p ∈ (0, 1]n. For
real valued functions f, h defined on I, we define,D−divergenceDn,f (x,y,p)
as:

Dn,f (x,y;p) = 4Jn,f (x,y)− Tn,f (x,y;p).(2.4)

If h is positive convex in Jensen sense and f
h is convex function in Jensen

sense then the divergence defined in (2.4) is non-negative.

Theorem 2.6. Let I be a compact interval inR, x,y ∈ In and p ∈ (0, 1]n.
If f

h ∈ C2(I) such that h(x) 6= 0 for all x ∈ I, then there exists ξ ∈ I such
that the following equality is valid

Dn,f (x,y;p) =
h2(ξ)f 00(ξ)−2h(ξ)h0(ξ)f 0(ξ)+f(ξ)(2h0(ξ)−h(ξ)h00(ξ))

h3(ξ)
×Pn

i=1

½
(x3i + y3i )− 1

4(xi + yi)
3 − pi

2 (h(xi)− h(yi))

µ
x3i

h(xi)
− y3i

h(xi)

¶¾
.

Proof. As f
h ∈ C2(I), I is compact interval, we suppose that

min
x∈I

µ
f(x)

h(x)

¶00
= m and max

x∈I

µ
f(x)

h(x)

¶00
=M.

If we set f = φ1 in (2.2) we have
Pn

i=1

h
4
n
1
2(φ1(xi) + φ1(yi))− φ1(

xi+yi
2 )

o
−pi(h(xi)− h(yi))

³
φ1(xi)
h(xi)

− φ1(yi)
h(yi)

´i
≥ 0.

Using definition of φ1 from Lemma 2.4 we getPn
i=1

∙
4

½
1
2

µ
M

x3i
2 +M

y3i
2 − f(xi)− f(yi)

¶
− M

2

³
xi+yi
2

´3
+ f

³
xi+yi
2

´¾
∙
−pi(h(xi)− h(yi))

µ
M
2

µ
x3i

h(xi)
− y3i

h(yi)

¶
− f(xi)

h(xi)
+ f(yi)

h(yi)

¶¸
≥ 0,

which gives us the inequality

Dn,f (x,y;p) ≤M
nX
i=1

"
(x3i + y3i )−

1

4
(xi + yi)

3 − pi(h(xi)− h(yi))

Ã
x3i

h(xi)
− y3i

h(yi)

!#
.

(2.5)
Now if we set f = φ2 in (1.3) and use its definition from Lemma 2.4,

we get

Dn,f (x,y;p) ≥ m
nX
i=1

"
(x3i + y3i )−

1

4
(xi + yi)

3 − pi(h(xi)− h(yi))

Ã
x3i

h(xi)
− y3i

h(yi)

!#
.

(2.6)

By using the fact m ≤
³
f
h

´00
≤ M , inequalities (2.5) and (2.6), there

exists ξ ∈ I such that (2.6) holds. 2
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Corollary 2.7. If we put h(x) = x and pi = 1, for i = 1, ..., n in (2.6),
then we get [1, Theorem 2.3].

Theorem 2.8. Let I be a compact interval inR, x,y ∈ In and p ∈ (0, 1]n.
If fh ,

g
h ∈ C2(I) and h(x) 6= 0 for all x ∈ I, then there exists ξ ∈ I such that

the following equality is valid:

Dn,f (x,y;p)

Dn,g(x,y;p)
=

h2(ξ)f 00(ξ)− 2h(ξ)h0(ξ)f 0(ξ) + f(ξ)(2h0(ξ)− h(ξ)h00(ξ))

g2(ξ)g00(ξ)− 2g(ξ)g0(ξ)g0(ξ) + g(ξ)(2g0(ξ)− g(ξ)g00(ξ))
(2.7)
provided denominators are not zero.

Proof. Let we set k = c1f − c2g, where c1 := Dn,g(x,y;p) and c2 :=
Dn,f (x,y;p). Then

k
h ∈ C2(I) and using Theorem 2.6, with f = k, we

have
0=
³
c1

h2(ξ)f 00(ξ)−2h(ξ)h0(ξ)f 0(ξ)+f(ξ)(2h0(ξ)−h(ξ)h00(ξ))
h3(ξ)

−c2 h
2(ξ)g00(ξ)−2h(ξ)h0(ξ)g0(ξ)+g(ξ)(2h0(ξ)−h(ξ)h00(ξ))

h3(ξ)

´
×Pn

i=1

½
(x3i + y3i )− 1

4(xi + yi)
3 − pi

2 (h(xi)− h(yi))

µ
x3i

h(xi)
− y3i

h(xi)

¶¾
.

From which we get

c2
c1
=

h2(ξ)f 00(ξ)− 2h(ξ)h0(ξ)f 0(ξ) + f(ξ)(2h0(ξ)− h(ξ)h00(ξ))

h2(ξ)g00(ξ)− 2h(ξ)h0(ξ)g0(ξ) + g(ξ)(2h0(ξ)− h(ξ)h00(ξ))
.(2.8)

After putting values of c1 and c2, we get (2.7). 2
Theorem 2.7 enables us to define new mean. If we set

H(ξ) =
h2(ξ)f 00(ξ)− 2h(ξ)h0(ξ)f 0(ξ) + f(ξ)(2h0(ξ)− h(ξ)h00(ξ))

h2(ξ)g00(ξ)− 2h(ξ)h0(ξ)g0(ξ) + g(ξ)(2h0(ξ)− h(ξ)h00(ξ))
.(2.9)

and suppose that H is invertible, then

ξ = H−1
Ã
Dn,f (x,y;p)

Dn,g(x,y;p)

!

is a new mean of two real numbers.

Corollary 2.9. If we put h(x) = x and pi = 1 for i = 1, ..., n in (2.7) and
(2.9), then we get [1, Theorem 2.4] and [1, Corollary 2.7] respectively.
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Lemma 2.10. Let r ∈ R and ψr : (0,∞) → R be the class of functions
defined as

ψr(x) =

⎧⎪⎨⎪⎩
xrh(x)
r(r−1) , r 6= 0, 1;
xh(x) log x, r = 1;
−h(x) log x, r = 0.

(2.10)

Then ψr
h is convex on (0,∞) for each r ∈ R.

Proof. Sinceµ
ψr(x)

h(x)

¶00
= xr−2 > 0,∀x ∈ (0,∞) and r ∈ R,

therefore the given functions are convex on (0,∞). 2
Using above class of functions in Theorem 2.6, we get the following

result.
Let ψr with assumptions in Theorem 2.6, we have

Dn,ψp(x,y;p)

Dn,ψr(x,y;p)
= ξp−r, p 6= r

for some ξ ∈ I ⊂ (0,∞) such that Dn,ψs(x,y,p) 6= 0, s = p, r and so we
have another mean

ξ =

Ã
Dn,ψp(x,y;p)

Dn,ψr(x,y;p)

! 1
p−r

.

3. m-Exponential convexity, Cauchy means and their mono-
tonicity

We start this section by giving some definitions and notions which are used
frequently in the results (see [10]). Throughout this section I is an interval
in R.

Definition 3.1. A function f : I → R is m-exponentially convex in the
Jensen sense on I, if

mX
i,j=1

ξiξjf

µ
xi + xj
2

¶
≥ 0

holds for all choices ξi ∈ R and xi ∈ I, i = 1, ...,m.
A function f : I −→ R is m-exponentially convex if it is m-exponentially
convex in the Jensen sense and continuous on I.
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Remark 3.2. It is clear from the definition that 1-exponentially convex
functions in the Jensen sense are in fact nonnegative functions. Also, m-
exponentially convex functions in the Jensen sense are k-exponentially con-
vex in the Jensen sense for every k ∈ N, k ≤ m.

By using some linear algebra and definition of positive semi-definite
matrices, we have the following proposition.

Proposition 3.3. If f is anm-exponentially convex function in the Jensen
sense then the matrix ∙

f

µ
xi + xj
2

¶¸k
i,j=1

is a positive semi-definite matrix for all k ∈ N, k ≤ m. In particular,

det

∙
f

µ
xi + xj
2

¶¸k
i,j=1

≥ 0

for all k ∈N, k ≤ m.

Definition 3.4. A function f : I → R is exponentially convex in the
Jensen sense on I if it is m−exponentially convex in the Jensen sense for
all m ∈N.
A function f : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous on I.

Lemma 3.5. It is known (and easy to show) that f : I → R+ is log-convex
in the Jensen sense if and only if

l2f(t) + 2lmf

µ
t+ r

2

¶
+m2f(r) ≥ 0

holds for each l,m ∈ R and r, t ∈ I.

It follows that a positive function is log-convex in the Jensen sense if
and only if it is 2-exponentially convex in the Jensen sense. Also, using
basic convexity theory it follows that a positive function is log-convex if
and only if it is 2-exponentially convex.

The following lemma is equivalent to the definition of convex function
[12, page 2].

Lemma 3.6. If x1, x2, x3 ∈ I are such that x1 < x2 < x3, then the function
f : I → R is convex if and only if inequality

(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3) ≥ 0

holds.
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Theorem 3.7. Let x and y be positive n-tuples, p ∈ (0, 1]n and ψr be a
function defined in Lemma 2.10. Then r 7→ Dn,ψr(x,y;p) ism−exponentially
convex.

Proof. Consider the function f define as

f(x) =
mX

i,j=1

uiujψrij (x)

for x > 0, ui ∈ R and rij =
ri+rj
2 . Then

f(x)

h(x)
=

mX
i,j=1

uiuj
ψrij (x)

h(x)

µ
f(x)

h(x)

¶00
=

mX
i,j=1

uiujx
rij−2 =

Ã
mX
i=1

uix
ri−1
2

!2
≥ 0, ∀x > 0.

that is f(x)
h(x) is convex function for all x > 0, using f(x) defined above in

(2.2) we have

nX
i=1

4

½
1

2
(f(xi) + f(yi))− f(

xi + yi
2

)

¾
−pi(h(xi)−h(yi))

µ
f(xi)

h(xi)
− f(yi)

h(yi)

¶
≥ 0,

using value of f(x) we obtain

mX
i,j=1

uiujDn,ψtij
(x,y;p) ≥ 0.(3.1)

This implies r 7→ Dn,ψr(x,y;p) is n−exponentially convex in Jensen
sense. Also we have limr→0Dn,ψr(x,y;p) = Dn,ψ0(x,y;p) and

limr→1Dn,ψr(x,y;p) = Dn,ψ1(x,y;p), that is, Dn,ψr(x,y;p) is continuous
for all r ∈ R. This gives r 7→ Dn,ψr(x,y;p) is m−exponentially convex. 2

Remark 3.8. It is also interesed to note that by setting pi = 1, hi(x) =
h(x) = x for i = 1, ..., n in above theorem, we obtain m−exponential con-
vexity of D−divergence given in [4]. Log-convexity and exponential con-
vexity of D−divergence proved in [4] followed from the following results.

Corollary 3.9. Let x and y be distinct positive n-tuples, p ∈ (0, 1]n and
ψr be a function defined in Lemma 2.10. Then r 7→ Dn,ψr(x,y;p) is expo-
nentially convex.
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Proof. It is an immediate consequence of the Theorem 3.7. 2

Corollary 3.10. Let x and y be distinct positive n-tuples, p ∈ (0, 1]n
and ψr be a function defined in Lemma 2.10. Then r 7→ Dn,ψr(x,y;p) is
2−exponentially convex and thus log-convex function. Also for r, s, t ∈ R
such that r < s < t, we have

[Dn,ψs(x,y;p)]
t−r ≤ [Dn,ψr(x,y;p)]

t−s[Dn,ψt(x,y;p)]
s−r.(3.2)

Proof. Since x and y be distinct positive n-tuples, thereforeDn,ψr(x,y;p)
is positive. Also from Theorem 3.7, it is 2−exponentially convex and by
Lemma 3.5, we have r 7→ Dn,ψr(x,y;p) is log-convex.

Now for r, s, t ∈ R such that r < s < t and f(r) = Dn,ψr(x,y;p) in
Lemma 3.6, we have

(t−r) logDn,ψs(x,y;p) ≤ (t−s) logDn,ψr(x,y;p)+(s−r) logDn,ψt(x,y;p).

This is equivalent to inequality (3.2). 2

Theorem 3.11. Let x and y be positive n-tuples, p ∈ (0, 1]n and ψr be
a function defined in Lemma 2.10. Then for ri ∈ R, i = 1, ...,m, the

matrix A =

"
Dn,ψ ri+rj

2

(x,y;p)

#k
i,j=1

is a positive semi definite matrix. In

particular

det

"
Dn,ψ pi+pj

2

(x,y;p)

#k
i,j=1

≥ 0 ∀k = 1, ...,m.

Proof. Since r 7→ Dn,ψr(x,y;p) is n−exponentially convex function,
therefore by Proposition 3.3, we have the required result. 2

Definition 3.12. Let x and y be two positive n-tuples. For r, s ∈ R we
define generalized mean Ms,r(x,y) defined as

Ms,r =

Ã
Dn,ψs(x,y;p)

Dn,ψr(x,y;p)

! 1
s−r

, s 6= r,(3.3)

where Dn,ψp(x,y;p) 6= 0 for p = r, s.
Other cases can be obtained by taking limits as: Ms,0(x,y) =
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½
−(s(s−1))−1

Pn

i=1
{4(xi+yi2 )s+1.h(

xi+yi
2 )−2(xs+1

i
.h(xi)+y

s+1
i

.h(yi))+pi(h(xi)−(yi))(x
s
i
−ys

i
)}Pn

i=1
{2(xi+yi) log

xi+yi
2 .h(

xi+yi
2 )−2(xi log xi.h(xi)+yi log yi.h(yi))+pi(h(xi)−h(yi))(log xi−log yi)}

¾ 1
s

,

s 6= 0, 1
M1,0(x,y) =½

−
Pn

i=1
{(xi+yi)

2 log(
xi+yi
2 ).h(

xi+yi
2 )−2(x2

i
log xi.h(xi)+y

2
i
log yi.h(yi))+(h(xi)−h(yi))(xi log xi−yi log yi)}Pn

i=1
{2(xi+yi) log

xi+yi
2 .h(

xi+yi
2 )−2(xi log xi.h(xi)+yi log yi.h(yi))+(h(xi)−h(yi))(log xi−log yi)}

¾
,

Ms,s(x,y) = exp½Pn

i=1
{4(xi+yi2 )s+1 log(

xi+yi
2 ).h(

xi+yi
2 )−2(xs+1

i
log xi.h(xi)+y

s+1
i

log yi.h(yi))+(h(xi)−h(yi))(x
s
i
log xi−y

s
i
log yi)}Pn

i=1
{4(xi+yi2 )s+1h(

xi+yi
2 )−2(xs+1

i
h(xi)+y

s+1
i

.h(yi))+h((xi)−h(yi))(xsi−y
s
i
)}

− 2s−1
s(s−1)

ª
, s 6= 0, 1

M0,0(x,y) = exp½Pn

i=1
{2(xi+yi) log

2(
xi+yi
2 ).h(

xi+yi
2 )−2(xi log

2 xi.h(xi)+yi log
2 yi.h(yi))+(h(xi)−h(yi))(log

2 xi−log
2 yi)}

2
Pn

i=1
{2(xi+yi) log(

xi+yi
2 ).h(

xi+yi
2 )−2(xi log xi.h(xi)+yi log yi.h(yi))+(h(xi)−h(yi))(log xi−log yi)}

+ 1

¾
M1,1(x,y) = exp½Pn

i=1
{(xi+yi)

2 log2(
xi+yi
2 ).h(

xi+yi
2 )−2(x2

i
log2 xi.h(xi)+y

2
i
log2 yi.h(yi))+(h(xi)−h(yi))(xi log

2 xi−yi log
2 yi)}

2
Pn

i=1
{(xi+yi)2 log(

xi+yi
2 ).h(

xi+yi
2 )−2(x2

i
log xi.h(xi)+y

2
i
log yi.h(yi))+(h(xi)−h(yi))(xi log xi−yi log yi)}

+ 1

¾
Theorem 3.13. For p, r, s, t ∈ R such that r ≤ s and p ≤ t we have

Mp,r(x,y) ≤Mt,s(x,y).

Proof. The following inequality holds for convex function ϕ see in [12,
p. 4],

ϕ(x2)− ϕ(x1)

x2 − x1
≤ ϕ(y2)− ϕ(y1)

y2 − y1
,(3.4)

where x1 ≤ y1, x2 ≤ y2, x1 6= x2, y1 6= y2.

Since r 7→ Dn,ψr(x,y; r) is log-convex, we can put in (3.4):
ϕ(r) = logDn,ψr(x,y;p), x1 = p, x2 = r, y1 = t, y2 = s. We get for p 6=
r , t 6= s

logDn,ψp(x,y;p)− logDn,ψr(x,y;p)

p− r
≤ logDn,ψt(x,y;p)− logDn,ψs(x,y;p)

t− s
,

therefore we have

Ã
Dn,ψp(x,y;p)

Dn,ψr(x,y;p)

! 1
p−r

≤
Ã
Dn,ψt(x,y;p)

Dn,ψs(x,y;p)

! 1
t−s

.(3.5)

From (3.5) we get our result for p 6= r, t 6= s and for p = r, t = s ; p 6=
r, t = s ; p = r , t 6= s we can consider limiting cases. 2

Remark 3.14. If we put h(x) = x and pi = 1 for i = 1, ..., n in above
means, then we get means defined in [1] and above theorem gives [1, The-
orem 2.11] respectively.
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