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Abstract

Let E be a vector valued sequence space with β-dual EβY .We con-
sider sufficient conditions on E for the series in a pointwise bounded
subset of EβY to be uniformly convergent over certain subsets of E.
The conditions involve gliding hump assumptions on the multiplier
space E. Applications to matrix mappings between vector valued se-
quence spaces are given.
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In the papers [Sw6],[Sw7] gliding hump assumptions were used to es-
tablish uniform convergence results for pointwise bounded subsets of the
β-dual of vector valued sequence spaces. Similar gliding hump properties
were used in [Sw3] to establish Orlicz-Pettis Theorems for multiplier con-
vergent series with respect to strong topologies on locally convex spaces
and spaces of continuous linear operators. In [CL] Li and Chen used other
assumptions on the space of multipliers to establish similar Orlicz-Pettis re-
sults for strong topologies. In this paper we show that the assumptions on
the multiplier space employed in [CL] can be used to establish uniform con-
vergence results for pointwise bounded subsets of β-duals similar to those
given in [Sw6],[Sw7].

We begin by fixing the notation and terminology. Throughout X,Y will
be Hausdorff locally convex spaces with L(X,Y ) the space of all continuous
linear operators from X into Y . E will be a vector space of X-valued
sequences which contains c00(X), the space of all X-valued sequences which
are eventually 0. If x is any sequence (scalar or vector), the jth coordinate
of x is xj so x = {xj}; if z ∈ X and j ∈ N, the sequence with z in the jth

coordinate and 0 in the other coordinates will be denoted by ej ⊗ z. The
β-dual of E with respect to Y , EβY , is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞X
j=1

Tjxj converges for every x = {xj} ∈ E}.

If T = {Tj} ∈ EβY and x = {xj} ∈ E, we write

T · x =
∞X
j=1

Tjxj .

The weakest topology on E such that all of the linear maps x→ T ·x from
E into Y are continuous for all T ∈ EβY will be denoted by w(E,EβY ).

We next introduce the conditions which will be employed to obtain our
main results. If x = {xj} is a sequence (scalar or vector), and t = {tj}
is a scalar sequence, the coordinate product of x and t will be denoted by
tx = {tjxj}. The space E is c0-factorable if whenever u ∈ E, there exist
t ∈ c0 and v ∈ E such that u = tv. For example, lp (0 < p < ∞), c0
and cs are c0-factorable; see [Sw4] for this and other examples. The space
E is monotone if whenever x ∈ E and I ⊂ N, then χIx ∈ E, where χI
denotes the characteristic function of I. For example, lp (0 < p ≤ ∞), c0
are monotone.

We will also impose a gliding hump assumption in our main results. Let
F be a family of subsets of E which contains the finite subsets. An interval
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in N is a set of the form I = {j ∈ N : m ≤ j ≤ n} for m ≤ n, m, n ∈ N.
A sequence of intervals {Ij} is increasing if max Ij < min Ij+1.

Definition 1. The spaceE has the signed F-gliding hump property (signed
F-GHP) if for every F ∈ F whenever {xj} ⊂ F and {Ij} is an increasing
sequence of intervals, there exist a sequence of signs {sj} and a subsequence
{nj} such that the coordinate sum of the series

P∞
j=1 sjχInjx

nj belongs to

E. If all of the signs {sj} can be chosen equal to 1, then E has the F-gliding
hump property (F-GHP).

When F is the family of all finite subsets, the signed F-GHP (F-GHP)
is the signed weak gliding hump property [signed-WGHP] (weak gliding
hump property [WGHP]) which has been utilized in [St], [No]. When E
has a vector topology and F is the family of all bounded subsets of E,
the signed F-GHP (F-GHP) is the signed strong gliding hump property
[signed-SGHP](strong gliding hump property [SGHP]) which has been uti-
lized in [LS2]. Further examples can be found in [Sw5].

We record the preliminary results which will be used in the proofs of
the main results. First, a matrix theorem of Antosik and Mikusinski.

Theorem 2. (Antosik-Mikusinski) Let {xij : i, j ∈ N} ⊂ X. If (1)
limi xij exists for every j ∈ N and (2) for every increasing sequence of
positive integers {mj} there is a subsequence {nj} of {mj} such that
the series

P∞
j=1 xinj converges and limi

P∞
j=1 xinj exists, then limi xii = 0

(diagonal[xij ] = {xii}→ 0).

Stronger versions of the Antosik-Mikusinski Matrix Theorem can be
found in [Sw2],[Sw4]. A matrix [xij ] satisfying the conditions (1) and (2)
is called a K-matrix.

Next, we state an interesting result of Li and Wang ([LW]) which is
central to our proofs.

Lemma 3. (Li/Wang) Let Z be a vector space and K ⊂ Z a convex set
which contains 0. If x1, ..., xn ∈ K and M > 0 is such that

M
X
j∈∆

xj ∈ K for every ∆ ⊂ {1, ..., n},

then
nX

j=1

sjxj ∈ K for every 0 ≤ sj ≤M, j = 1, ..., n.
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Finally, we need a lemma concerning uniform convergence.

Lemma 4. Let A ⊂ EβY and B ⊂ E. If the series
P∞

j=1 Tjxj do not
converge uniformly for T ∈ A and x ∈ B, then there exist a balanced
neighborhood of 0,V , in Y , {T k} ⊂ A, {xk} ⊂ B and an increasing sequence
of intervals {Ik} such that

P
l∈Ik T

k
l x

k
l /∈ V for all k.

For the proof, see [Sw6] Lemma3, [Sw4] Lemma 2.15.
Now we can establish our first main result.

Theorem 5. Assume E is c0-factorable, monotone and has signed F-GHP.
If A ⊂ EβY is pointwise bounded and B ∈ F , then the series P∞

j=1 Tjxj
converge uniformly for T ∈ A, x ∈ B.

Proof. If the conclusion fails to hold, there exist a symmetric, convex
neighborhood of 0 in Y , an increasing sequence of intervals {Ik}, T k ∈ A
and xk ∈ B such that

P
l∈Ik T

k
l x

k
l /∈ V for every k ∈ N (Lemma 4). Since E

has signed F-GHP, by passing to a subsequence if necessary, we may assume
x =

P∞
j=1 sjχIjx

j ∈ E with signs sj . Then
P

l∈Ij T
j
l xl = sj

P
l∈Ij T

j
l x

j
l /∈ V

. Since E is c0-factorable, x = tu with t ∈ c0 and u ∈ E and since E is
monotone, we may assume t ≥ 0. Set rj = max{tl : l ∈ Ij} so rj > 0 and

rj → 0. Then
P

l∈Ij tlT
j
l ul /∈ V . Lemma 3 implies there exists ∆j ⊂ Ij

such that
(&) rj

X
l∈∆j

T j
l ul /∈ V.

Consider the matrix

M = [mij ] = [ri
X
l∈∆j

T i
l ul] = [riT

i · χ∆ju].

We show M satisfies the conditions of the Antosik-Mikusinski Theorem 2.
First, the columns ofM converge to 0 since the {T i} are pointwise bounded
and ri → 0. For condition (2) set v =

P∞
j=1 χ∆ju and note v ∈ E since E

is monotone. Then

∞X
j=1

mij =
∞X
j=1

riT
i · χ∆ju = riT

i · v → 0

since {T i} is pointwise bounded and ri → 0. Since the same argument
applies to any subsequence, by Theorem 2 the diagonal of M converges to
0. But, this contradicts (&).
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A similar result was established in Theorem 4 of [Sw6] under the as-
sumptions that the space E satisfies the infinite gliding hump property
(∞-GHP) and has F-GHP (see definition 2 of [Sw7] or [Sw4] for the def-
inition of the infinite gliding hump property (∞-GHP) and examples of
spaces which have this property). Li and Chen ([CL]) have given examples
which show that the conditions, infinite gliding hump property and c0-
factorable/monotone are independent of one another. Example 5 of [Sw6]
shows that the conclusion of Theorem 5 fails to hold if E does not have the
infinite gliding hump property or is c0-factorable/monotone.

Corollaries 8 and 10 of [Sw6] give characterizations of pointwise bounded
subsets of EβY and subsets of EβY which are uniformly bounded on mem-
bers of F under the assumption that E has the infinite gliding hump prop-
erty and signed F-GHP, i.e., a uniform boundedness principle for β-duals.
From Theorem 5 these results likewise hold if E is c0-factorable and mono-
tone and give Uniform Boundedness results for such spaces.

We next establish the analogue of Theorem 5 of [Sw7] under the as-
sumption that E is c0-factorable and monotone.

A vector valued sequence space E is a K-space if E has a vector topology
under which the coordinate maps x = {xj} → xj are continuous from E
into X for every j.

Definition 6. The K-space E has the zero gliding hump property (0-GHP)
if for every null sequence {xk} ⊂ E and for every increasing sequence of
intervals {Ik}, there is a subsequence {nk} such that the coordinate sum of
the series

P∞
j=1 χInjx

nj ∈ E.

The notion of a space having 0-GHP was introduced by Lee Peng
Yee.([LPY]). Examples of spaces with 0-GHP are given in Appendices B
and C of [Sw4]. For example, if X is a normed space, then c0(X) and l

p(X)
(0 < p ≤ ∞) have 0-GHP.

We require a lemma analogous to Lemma 4.

Lemma 7. Let E be a K-space with A ⊂ EβY and xk → 0 in E. Assume

(∗) for every x ∈ E, the series
∞X
j=1

Tjxj converge uniformly for T ∈ A.

If the series
P∞

j=1 Tjx
k
j do not converge uniformly for T ∈ A and k ∈ N,

then there exist a symmetric neighborhood of 0,V , in Y , Tk ∈ A and a
subsequence {nk} and an increasing sequence of intervals {Ik} such thatP

l∈Ik T
k
l x

nk
l /∈ V .
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See Lemma 3 of [Sw7] for a proof.

Concerning condition (*), we have

Proposition 8. Assume that E is c0-factorable and monotone. If A ⊂
EβY is pointwise bounded on E, then condition (∗) holds.

Proof. If the conclusion fails to hold, there exist a symmetric neighbor-
hood , V , of 0 in Y , T k ∈ A and an increasing sequence of intervals {Ik}
such that

(#)
X
l∈Ik

T k
l xl /∈ V.

Since E is c0-factorable, x = tu with t ∈ c0, u ∈ E and since E is monotone
we may assume t ≥ 0. Then Pl∈Ik tlT

k
l ul /∈ V . Put rk = max{tl : l ∈ Ik}

and note rk > 0 and rk → 0. By the Li/Wang Lemma 3 there exists
∆k ⊂ Ik such that

(&) rk
X
l∈∆k

T k
l ul /∈ V.

Define the matrix M by

M = [mij ] = [ri
X
l∈∆j

T i
l ul] = [riT

i · χ∆ju].

We claim that E is a K-matrix so we can apply the Antosik-Mikusinski
Matrix Theorem. First, the columns of M converge to 0 since {T i · x} and
ri → 0. Next, v =

P∞
j=1 χ∆ju ∈ E since E is monotone. Then

∞X
j=1

mij = ri

∞X
j=1

T i · χ∆ju = riT
i · v → 0

since {T i · v} is bounded and ri → 0. Since the same argument can be
applied to any subsequence,M is aK-matrix and by the Antosik-Mikusinski
Matrix Theorem 2 the diagonal of M converges to 0. But, this contradicts
(&).

It is shown in [Sw4],2.32 that condition (*) holds when E has ∞-GHP.

Theorem 9. Assume E is c0-factorable, monotone and has 0-GHP. If A ⊂
EβY is pointwise bounded and xk → 0 in E, then the series

P∞
j=1 Tjxj

converge uniformly for T ∈ A, k ∈N.
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Proof. Condition (*) in Lemma 7 is satisfied by Proposition 8. Let the
notation be as in Lemma 7. The 0-GHP implies there exists a subsequence
{mk} of {nk} and an increasing sequence of intervals {Ik} such that x =P∞

k=1 χIkx
mk ∈ E. To avoid double subscripts assume mk = nk soX

l∈Ik
T k
l x

nk
l =

X
l∈Ik

T k
l xl /∈ V.

Since E is c0-factorable, x = tu with t ∈ c0 and u ∈ E and since E is
monotone, we may assume t ≥ 0. Hence,

P
l∈Ik tlT

k
l ul /∈ V . Put rk =

max{tl : l ∈ Ik} so rk > 0 and rk → 0. By Lemma 3 there exists ∆k ⊂ Ik
such that

(#) rk
X
l∈∆k

T k
l ul /∈ V.

Set
M = [mij ] = [ri

X
l∈∆j

T i
l ul].

We show M satisfies the conditions of the Antosik-Mikusinski Theorem 2.
First the columns of M converge to 0 since {T i} is pointwise bounded and
ri → 0. For condition (2) set v =

P∞
j=1 χ∆ju and note v ∈ E since E is

monotone. Then

∞X
j=1

mij =
∞X
j=1

riT
i · χ∆ju = riT

i · v → 0

since {T i} is pointwise bounded and ri → 0. Since the same argument
applies to any subsequence, by Theorem 2 the diagonal of M converges to
0. But, this contradicts (#).

A similar result was established in Theorem 5 of [Sw7] under the as-
sumptions that the space E has the infinite gliding hump property and
0-GHP.

From Theorem 9 we can obtain a sequential equicontinuity result for
pointwise bounded subsets of EβY . The pair (X,Y ) has the sequential
uniform boundedness property (SUB) if every pointwise bounded subset
B ⊂ L(X,Y ) is sequentially equicontinuous. For example, if X is a com-
plete metric linear space or a metrizable barrelled space, (X,Y ) has SUB
([Ko]39.5(1), [Ro]2.2.1,[Wi]9.3.4).

Theorem 10. Assume that E is c0-factorable and monotone, has 0-GHP
and (X,Y ) has SUB. If A ⊂ EβY is pointwise bounded on E and xk → 0
in E, then T · xk → 0 uniformly for T ∈ A.
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Proof. This follows from Theorem 9 and Theorem 6 of [Sw5].
A sequential continuity result for the bilinear map

Θ : EβY ×E → Y, Θ(T, x) = T · x,

follows directly from Theorem 10 and the equicontinuity Theorem 7 of
[Sw7]. Let w(EβY , E) be the weakest topology on EβY such that the linear
maps T → T · x from EβY into Y are continuous for all x ∈ E and let τE
be the topology of E.

Proposition 11. Assume that E is c0-factorable and monotone, has 0-
GHP [or has ∞-GHP and 0-GHP] and (X,Y ) has SUB. The bilinear map
Θ is w(EβY , E)× τE sequentially continuous.

We next indicate some applications of the uniform convergence results
to matrix mappings from E into l∞(Y ), the space of all bounded Y val-
ued sequences. We begin with some observations about matrix mappings
between sequence spaces. Let A = [Aij ] be an infinite matrix of linear op-
erators with Aij ∈ L(X,Y ). Let F be a vector space of Y valued sequences
which contains c00(Y ) and is a K-space. The matrix A maps E into F if
the series

P∞
j=1Aijxj converge for every x = {xj} ∈ E and

Ax = {
∞X
j=1

Aijxj}i ∈ F ;

if A maps E into F , we write

A : E → F.

Let Ai be the ith row of A so Ax = {Ai · x} and Ai ∈ EβY for each i. We
consider maps associated with A. Define Θk : E → F by

Θk(x) = {A1 · x, ..., Ak · x, 0, 0, ...}

and Fn : E → F by

Fn(x) = {
nX

j=1

Aijxj}i.

Henceforth, we assume E is a K-space and A : E → F .

Lemma 12. Assume E has the signed-SGHP. If B ⊂ E is bounded, then
for each i {P∞

j=1Aijxj : x ∈ B} is bounded in Y .
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Proof. By the signed-SGHP, the series
P∞

j=1Aijxj converge uniformly
for x ∈ B ([Sw4]11.9). Let U be a balanced neighborhood of 0 in Y and let
V be a balanced neighborhood such that V + V ⊂ U . There exists N such
that

P∞
j=N Aijxj ∈ V for all x ∈ B. Since E is a K-space, {xj : x ∈ B} is

bounded in X for every j so there exists t > 1 such that
PN−1

j=1 Aijxj ∈ tV
for x ∈ B. Then

∞X
j=1

Aijxj =
N−1X
j=1

Aijxj +
∞X

j=N

Aijxj ∈ tV + V ⊂ tU

for x ∈ B
We say that F has the injection property I if the coordinate injections

Ij : Y → F, y → ej ⊗ y,

are bounded. Most familiar K-spaces have the injection property.

Corollary 13. Assume E has signed SGHP and F has property I. Then
Θk : E → F is bounded.

Proof. This follows directly from Lemma 12 and the definition of prop-
erty I.

The space F is an AK-space if for each y = {yj} ∈ F ,

y =
∞X
j=1

ej ⊗ yj ,

where the series converges in F . For example, c00(Y ), c0(Y ), and lp(Y )
(0 < p <∞) are AK-spaces.

Lemma 14. If F is an AK-space, Θk → A pointwise on E.

We want to establish a result which assures the boundedness of the ma-
trix mapping A. For this we will apply Lemma 12 and a Banach-Steinhaus
Theorem for sequentially continuous linear operators. The most natural
such result holds for A spaces; A spaces are the most natural domains for
which the uniform boundedness conclusion in the Uniform Boundedness
Principle holds (see [LS1] or 4.3.1 of [Sw2]). This result states that a point-
wise bounded family of sequentially continuous linear operators from an
A space into a topological vector space is uniformly bounded on bounded
subsets of the A space. In particular, the limit of a pointwise convergent
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sequence of sequentially continuous linear operators from an A space into a
topological vector space is bounded and is uniformly bounded on bounded
subsets of the domain space; a Banach-Steinhaus result. We do not give
the definition of an A space as this would be too great a diversion but, for
example, any sequentially complete locally convex space is an A space (see
[LS1] or [Sw2]3.3.8 and 3.4 for other examples). From Lemma 12 and this
Banach-Steinhaus result we can obtain

Proposition 15. Assume E is an A space with signed-SGHP and 0-GHP
and F is an AK-space with property I. Then A is bounded and A ∪ {Θk}
is uniformly bounded on bounded subsets of E.

Proof. By the 0-GHP each Ai is sequentially continuous ([Sw2]12.5.2)
so the result follows from Lemma 14 and the description of the Banach-
Steinhaus Theorem above.

A similar result can be obtained from Lemma 14 and the standard
Banach-Steinhaus Theorem for continuous linear operators with domain a
barrelled space.

Proposition 16. AssumeE has signed SGHP and is barrelled and bornolog-
ical. Assume F is an AK-space which has property I. Then A is continuous
and A ∪ {Θk} is uniformly bounded on bounded subsets of E.

Proof. Since E is bornological, each Ai is continuous by Lemma 12.
Since E is barrelled, the result follows from the Banach-Steinhaus Theorem
for barrelled spaces ([Wi]9.3.4,[Sw1]24.11) and Lemma 14.

Under the assumptions of Propositions 15 and 16 it follows that Ls(E,F )
is an AK-space, where Ls(E,F ) is L(E,F ) with the topology of pointwise
convergence on E.

We next consider matrix maps A : E → l∞(Y ), where l∞(Y ) is the
vector space of all bounded Y valued sequences.

Lemma 17. Assume A : E → l∞(Y ). Then

(a) for every j, {Aij : i ∈ N} ⊂ L(X,Y ) is pointwise bounded onX.

Proof. For every z ∈ X, {Aijz : i ∈ N} = {Ai·(ej⊗z) : i ∈ N} ∈ l∞(Y ).

Corollary 18. If X is an A space, then Fn is bounded for each n.
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Proof. By the Uniform Boundedness Principle for A spaces (described
above, [Sw2]4.3.1), {Aij : i ∈ N} is uniformly bounded on bounded subsets
of X.

We give necessary and sufficient conditions for a matrix A to map E
into l∞(Y ).

Proposition 19. Assume E is c0-factorable/monotone or has∞-GHP and
A : E → l∞(Y ). Then

(b) for each x ∈ E the series
∞X
j=1

Aijxj converge uniformly for i ∈ N.

Proof. {Ai : i ∈ N} is pointwise bounded on E so the result follows from
Proposition 8 and 2.32 of [Sw4] (this theorem is stated for scalar multipliers
but the proof is the same for vector valued multipliers).

Conditions (a) and (b) give necessary conditions for A : E → l∞(Y ).
We show they are sufficient.

Proposition 20. If (a) and (b) hold, then A : E → l∞(Y ).

Proof. Let x ∈ E. Let U be a balanced neighborhood of 0 in Y and
pick V to be a balanced neighborhood such that V + V ⊂ U . By (b) there
exists N such that

P∞
j=N Aijxj ∈ V . Condition (a) implies there exists

t > 1 such that
PN−1

j=1 Aijxj ∈ tV . Therefore,

∞X
j=1

Aijxj =
∞X

j=N

Aijxj +
N−1X
j=1

Aijxj ∈ V + tV ⊂ tU

and {Ai · x : i ∈ N} is bounded.
Note that if for each x ∈ E the series

P∞
j=1Aijxj converge uniformly

for i ∈ N, then Fn → A pointwise on E. Thus, from Proposition 8 and
Theorem 2.32 of [Sw4], if A : E → l∞(Y ), then {Ai} is pointwise bounded
on E and we have

Proposition 21. If E is c0-factorable/monotone or has ∞-GHP and A :
E → l∞(Y ), then Fn → A pointwise on E.

We next consider conditions for A to map E to c(Y ), the space of Y
valued convergent sequences.
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Proof.

Proposition 22. If A : E → c(Y ), then

(c) for each j ∈ N, z ∈ X, lim
i
Aijz exists.

Proof. We have Ai · (ej ⊗ z) = Aijz.
Associated with condition (c) we have

(d) for each j ∈ N, z ∈ X, {Aijz : i ∈ N} is Cauchy.

Lemma 23. Conditions (b) and (d) imply that for each x ∈ E the se-
quence {Ai · x : i ∈N} is Cauchy.

Proof. Let U be a balanced neighborhood of 0 in Y and pick V to be a
balanced neighborhood such that V + V + V ⊂ U . Condition (b) implies
there exists N such that

P∞
j=N Aijxj ∈ V for all i. By condition (d) there

exists k such that p, q ≥ k implies
PN−1

j=1 (Apj − Aqj)xj ∈ V . If p, q ≥ k,
then

Ap ·x−Aq ·x =
N−1X
j=1

(Apj−Aqj)xj+
∞X

j=N

Apjxj−
∞X

j=N

Aqjxj ∈ V +V +V ⊂ U.

Lemma 23 gives

Corollary 24. If Y is sequentially complete, then conditions (b) and (c)
imply A : E → c(Y ).

Next, we consider boundedness and sequential continuity of matrix
maps A : E → l∞(Y ). The locally convex topology on l∞(Y ) is given
by the semi-norms

p0({yj}) = sup{p(yj) : j ∈ N},

where p runs through the family of all continuous semi-norms defining the
topology of Y . We first establish necessary conditions.

Proposition 25. If A : E → l∞(Y ) is bounded and E has property I,
then

(i) for each j ∈N and B ⊂ X bounded, the set{Aijz : i ∈N, z ∈ B}

is bounded.
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Proof. {Aijz : i ∈ N, z ∈ B} = {Ai · (ej⊗z) : i ∈ N, z ∈ B} is bounded.

Proposition 26. Assume E is c0-factorable/monotone or has∞-GHP and
has signed-SGHP and A : E → l∞(Y ). Then

(ii) if B ⊂ E is bounded,
∞X
j=1

Aijxj converge uniformly fori ∈ N, x ∈ B.

Proof. This follows from Theorem 5 or Theorem 4 of [Sw6].
We now show conditions (i) and (ii) are sufficient for a matrix A to be

a bounded map from E into l∞(Y ).

Proposition 27. Conditions (i) and (ii) imply that A : E → l∞(Y ) is
bounded.

Proof. Let B ⊂ E be bounded and U a balanced neighborhood of 0 in
Y . Pick a balanced neighborhood V such that V + V ⊂ U . Condition (ii)
implies that there exists N such that

P∞
j=N Aijxj ∈ V for i ∈ N, x ∈ B.

Since E is a K-space, for each j, {xj : x ∈ B} is bounded so by condition (i)
there exists t > 1 such that

PN−1
j=1 Aijxj ∈ tV for i ∈N, x ∈ B. Therefore,

if i ∈ N, then

Ai · x =
N−1X
j=1

Aijxj +
∞X

j=N

Aijxj ∈ tV + V ⊂ tU

so {Ai · x : i ∈N, x ∈ B} is bounded.

Corollary 28. Assume E has signed-SGHP and is c0-factorable/monotone
or has∞-GHP and A : E → l∞(Y ). If X is an A space, then A is bounded.

Proof. Lemma 17 implies (a) holds and then (i) holds by the A space
assumption. Condition (ii) holds by Proposition 26. The result follows
from Proposition 27.

Corollary 28 can be considered to be an automatic continuity/boundedness
result in the sense that algebraic conditions imply a continuity/boundedness
conclusion. Theorem 12.5.7 of [Sw2] also gives sufficient conditions for a
matrix map A : E → l∞(Y ) to be bounded; this result assumes E has
0-GHP and the pair (X,Y ) has the uniform boundedness property. The
results above connect uniform convergence of series with boundedness of
the matrix maps.
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We can also obtain an automatic sequential continuity result for matrix
maps A : E → l∞(Y ).

Proposition 29. Assume E has 0-GHP and is c0-factorable/monotone or
has ∞-GHP, (X,Y ) has SUB and A : E → l∞(Y ). Then A is sequentially
continuous.

Proof. Let xk → 0 in E. Since {Ai} is pointwise bounded on E, the
series

P∞
j=1Aijxj converge uniformly for i.k ∈ N (Theorem 9 or Theorem

5 of [Sw7]). The result follows from Theorem 6 of [Sw7].
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