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Abstract

The sequence space BVσ was introduced and studied by Mursaleen
[9]. In this paper we extend BVσ to BVσ(M,p, q, r) on a seminormed
complex linear space by using orlicz function. We give various prop-
erties and some inclusion relations on this space.
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1. Introduction

Let ∞, c and c0 be respectively the Banach spaces of bounded, conver-
gent and null sequences x = (xk) with (xk) ∈ R or C the usual norm
kxk = supk |xk|, where k ∈N = 1, 2, 3..., the positive integers. Let σ be an
injection of the set of positive integers N into itself having no finite orbit
and T be the operator defined on ∞ by T ((xn)

∞
n=1) = (xσ(n))

∞
n=1.

A positive linear functional φ with kφk = 1 is called a σ-mean or an
invariant mean if φ(x) = φ(Tx) for all x ∈ ∞.

A sequence x is said to be σ-convergent, denoted by x ∈ Vσ, if φ(x)
takes the same value, called σ − limx, for all σ-means φ.(Schaefer [14])

Vσ =

(
x = (xn) :

∞X
m=1

tm,n(x) = L uniformly in n, L = σ − limx

)
.

Where m ≥ 0, n ≥ 0

tm,n(x) =
xn + xσ(n) + .....+ xσm(n)

m+ 1
, and t−1,n = 0.

Where σm(n) denotes the m - iterative of σ at n. In particular, if σ is
the translation a σ-mean is often called a Banach limit and Vσ reduces to
f , the set of almost convergent sequence [5]. Subsequently invariant means
have been studied by Ahmad and Mursaleen [1], Mursaleen [8], Rami [12]
and many others.

The concept of paranormed is closely related to linear metric spaces.
It is generalization of that of absolute value. Let X be a linear space. A
function g : X → R is called paranorme, if

(P1) g(x) ≥ 0, for all x ∈ X,

(P2) g(−x) = g(x), for all x ∈ X,
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(P3) g(x+ y) ≤ g(x) + g(y), for all x, y ∈ X,

(P4) if λn is a sequence of scalar with λn → λ (n → ∞) and (xn) is a
sequence of vector with g(xn−x)→ 0 (n→∞) then g(λnxn−λx)→
0 (n→∞).

A paranormed g for which g(x) = 0 implies x = 0 is called a total
paranorm on X and pair (X, g) is called a totally paranormed space. It
is well known that the metric of any linear metric space is given by total
paranorm (cf [15, Theorem 10.4.2, p-183]).

A map M : R→ [0,+∞] is called to be an orlicz function if M is even,
convex left continuous on R+, continuous at zero, convex M(0) = 0 and
M(u)→∞ as u→∞.

If M takes the value zero only at zero we write M > 0 and if M takes
only finite value we will write M <∞. [2,3,6,7,10,13]

W. Orlicz [11] used the idea of orlicz function to construct the space
(LM) Lindenstrauss and Tzafriri [4] use the idea of Orlicz function and
defined the sequence space M such as

M =

(
x = (xi) :

∞X
i=1

M
³ |xi|

ρ

´
<∞, for some ρ > 0

)
.

The space M with the norm kxk = inf
½
ρ > 0 :

P∞
k=1M

µ
|xk|
ρ

¶
≤ 1

¾
becomes a Banach space which is called an Orlicz sequence space.The space

M is closely related to the sequence space p, which is an Orlicz sequence
spaces with M(x) = xp for 1 ≤ p ≤ ∞.

The ∆2-condition is equivalent toM(Lx) ≤ KLM(x), for all x ≥ 0 and
for L > 1.

An Orlicz function M can be represented in the following integral from

M(x) =

Z x

0
η(t)dt,

where η is known as the kernal ofM is right differentiable for t ≥ 0, η(0) =
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0, η(t) > 0, η is non- decreasing and η(t) → ∞ as t → ∞. Note that an
Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

Let E be a sequence space. Then E is called

(i) A sequence space E is said to be symmetric if (xn) ∈ E implies
(xπ(n)) ∈ E, where π(n) is a permutation of the elements of N,

(ii) Solid (or normal), if (αkxk) ∈ E, whenever (xk) ∈ E for all sequences
of scalar (αk) with |αk| ≤ 1 for all k ∈ N.

Lemma 1.1. A sequence space E is solid implies E is monotone.

Mursaleen [9] defined the sequence space.

BVσ =

(
x ∈ ∞ :

X
m

|φm,n(x)| <∞ uniformly in n

)
,

Where

φm,n(x) = tm,n(x)− tm−1,n(x)

assuming

tm,n(x) = 0, for m = −1.

A straight forward calculation shows that

φm,n =

(
1

m(m+1)

Pm
j=1 j(xσj(n) − xσj−1(n)) (m ≥ 1)

xn (m = 0).
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Note that for any sequence x, y and scalar λ we have

φm,n(x+ y) = φm,n(x) + φm,n(y) and φm,n(λx) = λφm,n(x).

2. Main Results

Let M be an Orlicz function, p = (pm) be any sequence of strictly positive
real numbers, r ≥ 0 and (X,q) be a seminorm space over the field C of
complex number with seminorm q. Now we define the following sequence
spaces,

BVσ(M,p, q, r) =

(
x = (xk) :

∞X
m=1

1

mr

"
M

Ã
q
³ |φm,n(x)|

ρ

´!#pm

<∞, uniformly in n and for som ρ > 0

)
.

For M(x) = x, we get

BVσ(p, q, r) =

(
x = (xk) :

∞X
m=1

1

mr

"Ã
q
³
|φm,n(x)|

´!#pm

<∞, uniformly in n and for som ρ > 0

)
.

For pm = 1 for all m, we get

BVσ(M,q, r) =

(
x = (xk) :

∞X
m=1

1

mr

"
M

Ã
q
³ |φm,n(x)|

ρ

´!#

<∞, uniformly in n and for som ρ > 0

)
.
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For r = 0, we get

BVσ(M,p, q) =

(
x = (xk) :

∞X
m=1

"
M

Ã
q
³ |φm,n(x)|

ρ

´!#pm

<∞, uniformly in n and for som ρ > 0

)
.

For M(x) = x and r = 0 we get

BVσ(p, q) =

(
x = (xk) :

∞X
m=1

"Ã
q
³
|φm,n(x)|

´!#pm

<∞, uniformly in n and for som ρ > 0

)
.

For pm = 1 for all m and r = 0 we get

BVσ(M, q) =

(
x = (xk) :

∞X
m=1

"
M

Ã
q
³ |φm,n(x)|

ρ

´!#

<∞, uniformly in n and for som ρ > 0

)
.

For M(x) = x, pm = 1 for all m , r = 0 and q(x) = |x| we get

BVσ =

(
x = (xk) :

∞X
m=1

|φm,n(x)|

<∞, uniformly in n and for som ρ > 0

)
.
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Theorem 2.1. The sequence space BVσ(M,p, q, r) is a linear space
over the field C of complex numbers.

Proof. Let x, y ∈ BVσ(M,p, q, r) and α, β ∈ C. Then there exist posi-
tive numbers
ρ1 and ρ2 such that

∞X
m=1

1

mr

"
M

Ã
q
³ |φm,n(x)|

ρ1

´!#pm
<∞

and

∞X
m=1

1

mr

"
M

Ã
q
³ |φm,n(y)|

ρ2

´!#pm
<∞ uniformly in n.

Define ρ3 = max

µ
2|α|ρ1, 2|β|ρ2

¶
. Since M is non-decreasing and con-

vex we have

∞X
m=1

1

mr

"
M

Ã
q

Ã
|αφm,n(x) + βφm,n(y)|

ρ3

!!#pm

≤
∞X

m=1

1

mr

"
M

Ã
q

Ã
|αφm,n(x)|

ρ3
+
|βφm,n(y)|

ρ3

!!#pm

≤
∞X

m=1

1

mr

1

2

"
M

Ã
q
³ |φm,n(x)|

ρ3

´!
+M

Ã
q
³ |βφm,n(y)|

ρ3

´!#
<∞ uniformly in n.

This proves that BVσ(M,p, q, r) is a linear space over the field C of com-
plex numbers.
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Theorem 2.2. For any Orlicz function M and a bounded sequence
p = (pm) of strictly positive real numbers, BVσ(M,p, q, r) is a paramormed
(need not be total paranormed) space with

g(x) = inf
n≥1

(
ρpn/k :

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(x)|

ρ

´!#pm!1/K
≤ 1,

uniformly in n

)
.

Where K = max

µ
1, sup pm

¶

Proof. It is clear that g(x) = g(−x). Since M(0) = 0, we get

inf

½
ρpn/K

¾
= 0 for x = 0

By using Theorem 1 , for α = β = 1, we get

g(x+ y) ≤ g(x) + g(y)

For the continuity of scalar multiplication let l 6= 0 be any complex
number. Then by definition we have

g(lx) = inf
n≥1

(
ρpn/k :

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(lx)|

ρ

´!#pm!1/K
≤ 1,

uniformly in n

)

g(lx) = inf
n≥1

(Ã
s|l|
!pn/k

:

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(lx)|

(s|l|)
´!#pm!1/K

≤ 1,
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uniformly in n

)

Where s = ρ
|l| . Since |l|pn ≤ max

³
1, |l|H

´
, we have

g(lx) ≤ max
µ
1, |l|H

¶
inf
n≥1

(
spn/k :

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(x)|

s

´!#pm!1/K
≤ 1,

uniformly in n

)

= max

µ
1, |l|H

¶
g(x)

and therefore g(lx) converges to zero when g(x) converges to zero in
BVσ(M,p, q, r).

Now let x be fixed element in BVσ(M,p, q, r).Then there exists ρ > 0
such that

g(x) = inf
n≥1

(
ρpn/k :

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(x)|

ρ

´!#pm!1/K
≤ 1,

uniformly in n

)

Now

g(lx) = inf
n≥1

(
ρpn/k :

Ã ∞X
m=1

m−r
"
M

Ã
q
³ |φm,n(lx)|

ρ

´!#pm!1/K
≤ 1,

uniformly in n

)
→ 0

as l→ 0.
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This completes the proof.

Theorem 2.3. Suppose that 0 < pm ≤ tm < ∞ for each m ∈ N and
r ≥ 0. Then

(a) BVσ(M,p, q) ⊆ BVσ(M, t, q),

(b) BVσ(M, q) ⊆ BVσ(M, q, r).

Proof.(i) suppose that x ∈ BVσ(M,p, q). This implies that"
M

Ã
q
³ |φi,n(x)|

ρ

´!#pm
≤ 1 for sufficiently large values of i, say that

i ≥ m0 for some fixed m0 ∈ N. Since M is non- decreasing, we have

∞X
m=m0

"
M
³
q
³ |φi,n(x)|

ρ

´´#tm
≤

∞X
m=m0

"
M

Ã
q
³ |φi,n(x)|

ρ

´!#pm
<∞.

Hence x ∈ BVσ(M, t, q).

The proof (ii) is trivial.

The following result is consequence of the above result.

Corollary 1. If 0 < pm ≤ 1 for eachm, thenBVσ(M,p, q) ⊆ BVσ(M, q).
If pm ≥ 1 for all m, then BVσ(M, q) ⊆ BVσ(M,p, q).

Theorem 2.4. The sequence space BVσ(M,p, q, r) is solid.

Proof. Let x ∈ BVσ(M,p, q, r). This implies that

∞X
m=1

m−r
"
M

Ã
q
³ |φk,n(x)|

ρ

´!#pm
<∞.
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Let (αm) be sequence of scalars such that |αm| ≤ 1 for all m ∈ N. Then
the result follows from the following inequality.

∞X
m=1

m−r
"
M

Ã
q
³ |αmφk,n(x)|

ρ

´!#pm
≤

∞X
m=1

m−r
"
M

Ã
q
³ |φk,n(x)|

ρ

´!#pm
<∞.

Hence αx ∈ BVσ(M,p, q, r) for all sequences of scalar (αm) with |αm| ≤
1 for all m ∈ N, whenever x ∈ BVσ(M,p, q, r).

From Theorem 4 and Lemma (1.1) we have:

Corollary 2. The sequence spaces BVσ(M,p, q, r) is monotone.

Theorem 2.5. Let M1 and M2 be Orlicz functions satisfying ∆2-
condition
and r, r1, r2 ≥ 0. Then we have

(i) If r > 1 then BVσ(M1, p, q, r) ⊆ BVσ(MoM1, p, q, r),

(ii) BVσ(M1, p, q, r) ∩BVσ(M2, p, q, r) ⊆ BVσ(M1 +M2, p, q, r),

(iii) If r1 ≤ r2 then BVσ(M,p, q, r1) ⊆ BVσ(M,p, q, r2).

Proof. (i).Since M is continuous at 0 from right, for > 0 there exist
0 < δ < 1 such that 0 ≤ c ≤ δ implies M(c) < . If we define

I1 =

(
m ∈N :M1

Ã
q
³ |φm,n(x)|

ρ

´!
≤ δ for som ρ > 0

)
,

I2 =

(
m ∈N :M1

Ã
q
³ |φm,n(x)|

ρ

´!
> δ for som ρ > 0

)
.
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then, when M1

Ã
q
³
|φm,n(x)|

ρ

´!
> δ, we get

M

"
M1

Ã
q
³ |φm,n(x)|

ρ

´!#
≤
Ã
2M(1)

δ

!"
M1

Ã
q
³ |φm,n(x)|

ρ

´!#
.

Hence for x ∈ BVσ(M1, p, q, r) and r > 1

∞X
m=1

m−r
"
MoM1

Ã
q
³ |φm,n(x)|

ρ

´!#pm

=
∞X

m∈I1
m−r

"
MoM1

Ã
q
³ |φm,n(x)|

ρ

´!#pm
+

∞X
m∈I2

m−r
"
MoM1

³
q
³ |φm,n(x)|

ρ

´!#pm

≤
m∈I2X
m∈I1

m−r
" #pm

+
∞X

m∈I2

Ã
2M(1)

δ

!"
M1

Ã
q
³ |φm,n(x)|

ρ

´!#pm

≤ max
³

h, H
´ ∞X
m=1

m−r +max

("
2M(1)

δ

#h
,

"
2M(1)

δ

#H)

where 0 < h = inf pm ≤ pm ≤ H = supm pm <∞.

(ii) The proof follows from the following inequality:

m−r
"
(M1 +M2)

Ã
q

Ã
|φm,n(x)|

ρ

!!#pm
≤ Cm−r

"
M1

Ã
q

Ã
|φm,n(x)|

ρ

!!#pm
+

Cm−r
"
M2

Ã
q

Ã
|φm,n(x)|

ρ

!!#pm
.

(iii) The proof is straight forward.

Corollary 3. Let M be an Orlicz function satisfying ∆2- condition.
Then we have

(i) If r > 1 then BVσ(p, q, r) ⊆ BVσ(M,p, q, r),
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(ii) BVσ(M,p, q) ⊆ BVσ(M,p, q, r),

(iii) BVσ(p, q) ⊆ BVσ(p, q, r),

(iv) BVσ(M, q) ⊆ BVσ(M, q, r).

The proof is straight forward.
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