Proyecciones Journal of Mathematics Vol. 32, N^o 3, pp. 267-280, September 2013. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172013000300006

On some seminormed sequence spaces defined by Orlicz function

M. Aiyub University of Bahrain, India Received : September 2012. Accepted : May 2013

Abstract

The sequence space BV_{σ} was introduced and studied by Mursaleen [9]. In this paper we extend BV_{σ} to $BV_{\sigma}(M, p, q, r)$ on a seminormed complex linear space by using orlicz function. We give various properties and some inclusion relations on this space.

1. Introduction

Let ℓ_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with $(x_k) \in \mathbf{R}$ or \mathbf{C} the usual norm $||x|| = \sup_k |x_k|$, where $k \in \mathbf{N} = 1, 2, 3...$, the positive integers. Let σ be an injection of the set of positive integers \mathbf{N} into itself having no finite orbit and T be the operator defined on ℓ_{∞} by $T((x_n)_{n=1}^{\infty}) = (x_{\sigma(n)})_{n=1}^{\infty}$.

A positive linear functional ϕ with $\|\phi\| = 1$ is called a σ -mean or an invariant mean if $\phi(x) = \phi(Tx)$ for all $x \in \ell_{\infty}$.

A sequence x is said to be σ -convergent, denoted by $x \in V_{\sigma}$, if $\phi(x)$ takes the same value, called $\sigma - \lim x$, for all σ -means ϕ .(Schaefer [14])

$$V_{\sigma} = \left\{ x = (x_n) : \sum_{m=1}^{\infty} t_{m,n}(x) = L \text{ uniformly in } n, \ L = \sigma - \lim x \right\}.$$

Where $m \ge 0, n \ge 0$

$$t_{m,n}(x) = \frac{x_n + x_{\sigma(n)} + \dots + x_{\sigma^m(n)}}{m+1}, \text{ and } t_{-1,n} = 0.$$

Where $\sigma^m(n)$ denotes the m - iterative of σ at n. In particular, if σ is the translation a σ -mean is often called a Banach limit and V_{σ} reduces to f, the set of almost convergent sequence [5]. Subsequently invariant means have been studied by Ahmad and Mursaleen [1], Mursaleen [8], Rami [12] and many others.

The concept of paranormed is closely related to linear metric spaces. It is generalization of that of absolute value. Let X be a linear space. A function $g: X \to R$ is called paranorme, if

- $(P1) g(x) \ge 0$, for all $x \in X$,
- (P2) g(-x) = g(x), for all $x \in X$,

- (P3) $g(x+y) \le g(x) + g(y)$, for all $x, y \in X$,
- (P4) if λ_n is a sequence of scalar with $\lambda_n \to \lambda$ $(n \to \infty)$ and (x_n) is a sequence of vector with $g(x_n x) \to 0$ $(n \to \infty)$ then $g(\lambda_n x_n \lambda x) \to 0$ $(n \to \infty)$.

A paranormed g for which g(x) = 0 implies x = 0 is called a total paranorm on X and pair (X, g) is called a totally paranormed space. It is well known that the metric of any linear metric space is given by total paranorm (cf [15, Theorem 10.4.2, p-183]).

A map $M : R \to [0, +\infty]$ is called to be an orlicz function if M is even, convex left continuous on R_+ , continuous at zero, convex M(0) = 0 and $M(u) \to \infty$ as $u \to \infty$.

If M takes the value zero only at zero we write M > 0 and if M takes only finite value we will write $M < \infty$. [2,3,6,7,10,13]

W. Orlicz [11] used the idea of orlicz function to construct the space (L^M) Lindenstrauss and Tzafriri [4] use the idea of Orlicz function and defined the sequence space ℓ_M such as

$$\ell_M = \left\{ x = (x_i) : \sum_{i=1}^{\infty} M\left(\frac{|x_i|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M with the norm $||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$ becomes a Banach space which is called an Orlicz sequence space. The space ℓ_M is closely related to the sequence space ℓ_p , which is an Orlicz sequence spaces with $M(x) = x^p$ for $1 \le p \le \infty$.

The Δ_2 -condition is equivalent to $M(Lx) \leq KLM(x)$, for all $x \geq 0$ and for L > 1.

An Orlicz function M can be represented in the following integral from

$$M(x) = \int_0^x \eta(t) dt,$$

where η is known as the kernal of M is right differentiable for $t \ge 0$, $\eta(0) =$

0, $\eta(t) > 0$, η is non- decreasing and $\eta(t) \to \infty$ as $t \to \infty$. Note that an Orlicz function satisfies the inequality

$$M(\lambda x) \leq \lambda M(x)$$
 for all λ with $0 < \lambda < 1$.

Let E be a sequence space. Then E is called

- (i) A sequence space E is said to be symmetric if $(x_n) \in E$ implies $(x_{\pi(n)}) \in E$, where $\pi(n)$ is a permutation of the elements of **N**,
- (*ii*) Solid (or normal), if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ for all sequences of scalar (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbf{N}$.

Lemma 1.1. A sequence space E is solid implies E is monotone.

Mursaleen [9] defined the sequence space.

$$BV_{\sigma} = \bigg\{ x \in \ell_{\infty} : \sum_{m} |\phi_{m,n}(x)| < \infty \text{ uniformly in } n \bigg\},\$$

Where

$$\phi_{m,n}(x) = t_{m,n}(x) - t_{m-1,n}(x)$$

assuming

$$t_{m,n}(x) = 0$$
, for $m = -1$.

A straight forward calculation shows that

$$\phi_{m,n} = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{\sigma^{j}(n)} - x_{\sigma^{j-1}(n)}) & (m \ge 1) \\ x_{n} & (m = 0). \end{cases}$$

Note that for any sequence x, y and scalar λ we have

$$\phi_{m,n}(x+y) = \phi_{m,n}(x) + \phi_{m,n}(y)$$
 and $\phi_{m,n}(\lambda x) = \lambda \phi_{m,n}(x)$.

2. Main Results

Let M be an Orlicz function, $p = (p_m)$ be any sequence of strictly positive real numbers, $r \ge 0$ and (X,q) be a seminorm space over the field **C** of complex number with seminorm q. Now we define the following sequence spaces,

$$BV_{\sigma}(M, p, q, r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m} < \infty, \text{ uniformly in } n \text{ and for som } \rho > 0 \right\}.$$

For M(x) = x, we get

$$BV_{\sigma}(p,q,r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[\left(q \left(|\phi_{m,n}(x)| \right) \right) \right]^{p_m} < \infty, \text{ uniformly in } n \text{ and for som } \rho > 0 \right\}.$$

For $p_m = 1$ for all m, we get

$$BV_{\sigma}(M,q,r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]$$

< \infty, uniformly in n and for som \(\rho > 0\) \right\}.

For r = 0, we get

$$BV_{\sigma}(M, p, q) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m} < \infty, \text{ uniformly in } n \text{ and for som } \rho > 0 \right\}.$$

For M(x) = x and r = 0 we get

$$BV_{\sigma}(p,q) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \left[\left(q\left(|\phi_{m,n}(x)| \right) \right) \right]^{p_m} < \infty, \text{ uniformly in } n \text{ and for som } \rho > 0 \right\}.$$

For $p_m = 1$ for all m and r = 0 we get

$$BV_{\sigma}(M,q) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]$$

< \phi, uniformly in n and for som \(\rho > 0\) \right\}.

For M(x) = x, $p_m = 1$ for all m, r = 0 and q(x) = |x| we get

$$BV_{\sigma} = \left\{ x = (x_k) : \sum_{m=1}^{\infty} |\phi_{m,n}(x)| < \infty, \text{ uniformly in } n \text{ and for som } \rho > 0 \right\}.$$

Theorem 2.1. The sequence space $BV_{\sigma}(M, p, q, r)$ is a linear space over the field **C** of complex numbers.

Proof. Let $x, y \in BV_{\sigma}(M, p, q, r)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho_1}\right)\right) \right]^{p_m} < \infty$$

and

$$\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(q\left(\frac{|\phi_{m,n}(y)|}{\rho_2}\right)\right) \right]^{p_m} < \infty \text{ uniformly in } n.$$

Define $\rho_3 = \max\left(2|\alpha|\rho_1, 2|\beta|\rho_2\right)$. Since *M* is non-decreasing and convex we have

$$\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(q\left(\frac{|\alpha\phi_{m,n}(x) + \beta\phi_{m,n}(y)|}{\rho_3}\right) \right) \right]^{p_m}$$

$$\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(q \left(\frac{|\alpha \phi_{m,n}(x)|}{\rho_3} + \frac{|\beta \phi_{m,n}(y)|}{\rho_3} \right) \right) \right]^{p_m}$$

$$\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \frac{1}{2} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho_3}\right)\right) + M\left(q\left(\frac{|\beta\phi_{m,n}(y)|}{\rho_3}\right)\right) \right] < \infty \text{ uniformly in } n.$$

This proves that $BV_{\sigma}(M, p, q, r)$ is a linear space over the field **C** of complex numbers.

M. Aiyub

Theorem 2.2. For any Orlicz function M and a bounded sequence $p = (p_m)$ of strictly positive real numbers, $BV_{\sigma}(M, p, q, r)$ is a paramormed (need not be total paranormed) space with

$$g(x) = \inf_{n \ge 1} \left\{ \rho^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right) \right) \right]^{p_m} \right)^{1/K} \le 1,$$

uniformly in $n \right\}.$

Where $K = \max\left(1, \sup p_m\right)$

Proof. It is clear that g(x) = g(-x). Since M(0) = 0, we get

$$\inf\left\{\rho^{p_n/K}\right\} = 0 \quad \text{for } x = 0$$

By using Theorem 1 , for $\alpha = \beta = 1$, we get

$$g(x+y) \le g(x) + g(y)$$

For the continuity of scalar multiplication let $l \neq 0$ be any complex number. Then by definition we have

$$g(lx) = \inf_{n \ge 1} \left\{ \rho^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{m,n}(lx)|}{\rho}\right) \right) \right]^{p_m} \right)^{1/K} \le 1,$$

uniformly in $n \right\}$

$$g(lx) = \inf_{n \ge 1} \left\{ \left(s|l| \right)^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{m,n}(lx)|}{(s|l|)}\right) \right) \right]^{p_m} \right)^{1/K} \le 1,$$

uniformly in
$$n$$

Where $s = \frac{\rho}{|l|}$. Since $|l|^{p_n} \le \max\left(1, |l|^H\right)$, we have $g(lx) \le \max\left(1, |l|^H\right) \inf_{n\ge 1} \left\{s^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{m,n}(x)|}{s}\right)\right)\right]^{p_m}\right)^{1/K} \le 1,$ uniformly in $n\right\}$ $= \max\left(1, |l|^H\right)g(x)$

and therefore g(lx) converges to zero when g(x) converges to zero in $BV_{\sigma}(M, p, q, r)$.

Now let x be fixed element in $BV_{\sigma}(M, p, q, r)$. Then there exists $\rho > 0$ such that

$$g(x) = \inf_{n \ge 1} \left\{ \rho^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M \left(q \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right) \right]^{p_m} \right)^{1/K} \le 1,$$

uniformly in $n \right\}$

Now

$$g(lx) = \inf_{n \ge 1} \left\{ \rho^{p_n/k} : \left(\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{m,n}(lx)|}{\rho}\right) \right) \right]^{p_m} \right)^{1/K} \le 1,$$

uniformly in $n \right\} \to 0$

as $l \to 0$.

This completes the proof.

Theorem 2.3. Suppose that $0 < p_m \leq t_m < \infty$ for each $m \in \mathbf{N}$ and $r \geq 0$. Then

- (a) $BV_{\sigma}(M, p, q) \subseteq BV_{\sigma}(M, t, q),$
- (b) $BV_{\sigma}(M,q) \subseteq BV_{\sigma}(M,q,r).$

Proof.(i) suppose that $x \in BV_{\sigma}(M, p, q)$. This implies that

 $\left[M\left(q\left(\frac{|\phi_{i,n}(x)|}{\rho}\right)\right)\right]^{p_m} \leq 1 \text{ for sufficiently large values of } i, \text{ say that } i \geq m_0 \text{ for some fixed } m_0 \in \mathbf{N}.$ Since M is non- decreasing, we have

$$\sum_{m=m_0}^{\infty} \left[M\left(q\left(\frac{|\phi_{i,n}(x)|}{\rho}\right)\right) \right]^{t_m} \le \sum_{m=m_0}^{\infty} \left[M\left(q\left(\frac{|\phi_{i,n}(x)|}{\rho}\right)\right) \right]^{p_m} < \infty.$$

Hence $x \in BV_{\sigma}(M, t, q)$.

The proof (ii) is trivial.

The following result is consequence of the above result.

Corollary 1. If $0 < p_m \leq 1$ for each m, then $BV_{\sigma}(M, p, q) \subseteq BV_{\sigma}(M, q)$. If $p_m \geq 1$ for all m, then $BV_{\sigma}(M, q) \subseteq BV_{\sigma}(M, p, q)$.

Theorem 2.4. The sequence space $BV_{\sigma}(M, p, q, r)$ is solid.

Proof. Let $x \in BV_{\sigma}(M, p, q, r)$. This implies that

$$\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{k,n}(x)|}{\rho}\right)\right) \right]^{p_m} < \infty.$$

Let (α_m) be sequence of scalars such that $|\alpha_m| \leq 1$ for all $m \in \mathbb{N}$. Then the result follows from the following inequality.

$$\sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\alpha_m \phi_{k,n}(x)|}{\rho}\right)\right) \right]^{p_m} \le \sum_{m=1}^{\infty} m^{-r} \left[M\left(q\left(\frac{|\phi_{k,n}(x)|}{\rho}\right)\right) \right]^{p_m} < \infty.$$

Hence $\alpha x \in BV_{\sigma}(M, p, q, r)$ for all sequences of scalar (α_m) with $|\alpha_m| \leq 1$ for all $m \in \mathbf{N}$, whenever $x \in BV_{\sigma}(M, p, q, r)$.

From Theorem 4 and Lemma (1.1) we have:

Corollary 2. The sequence spaces $BV_{\sigma}(M, p, q, r)$ is monotone.

Theorem 2.5. Let M_1 and M_2 be Orlicz functions satisfying Δ_2 condition

and $r, r_1, r_2 \ge 0$. Then we have

- (i) If r > 1 then $BV_{\sigma}(M_1, p, q, r) \subseteq BV_{\sigma}(MoM_1, p, q, r)$,
- (*ii*) $BV_{\sigma}(M_1, p, q, r) \cap BV_{\sigma}(M_2, p, q, r) \subseteq BV_{\sigma}(M_1 + M_2, p, q, r),$
- (*iii*) If $r_1 \leq r_2$ then $BV_{\sigma}(M, p, q, r_1) \subseteq BV_{\sigma}(M, p, q, r_2)$.

Proof. (i).Since M is continuous at 0 from right, for $\epsilon > 0$ there exist $0 < \delta < 1$ such that $0 \le c \le \delta$ implies $M(c) < \epsilon$. If we define

$$I_{1} = \left\{ m \in \mathbf{N} : M_{1}\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \le \delta \text{ for som } \rho > 0 \right\},$$
$$I_{2} = \left\{ m \in \mathbf{N} : M_{1}\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \ge \delta \text{ for som } \rho > 0 \right\}.$$

M. Aiyub

then, when
$$M_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) > \delta$$
, we get
 $M\left[M_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right)\right] \le \left(\frac{2M(1)}{\delta}\right)\left[M_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right)\right].$

Hence for $x \in BV_{\sigma}(M_1, p, q, r)$ and r > 1

$$\sum_{m=1}^{\infty} m^{-r} \left[MoM_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m}$$

$$= \sum_{m\in I_1}^{\infty} m^{-r} \left[MoM_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m} + \sum_{m\in I_2}^{\infty} m^{-r} \left[MoM_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m}$$

$$\leq \sum_{m\in I_1}^{m\in I_2} m^{-r} \left[\epsilon\right]^{p_m} + \sum_{m\in I_2}^{\infty} \left(\frac{2M(1)}{\delta}\right) \left[M_1\left(q\left(\frac{|\phi_{m,n}(x)|}{\rho}\right)\right) \right]^{p_m}$$

$$\leq \max\left(\epsilon^h, \epsilon^H\right) \sum_{m=1}^{\infty} m^{-r} + \max\left\{ \left[\frac{2M(1)}{\delta}\right]^h, \left[\frac{2M(1)}{\delta}\right]^H \right\}$$

where $0 < h = \inf p_m \le p_m \le H = \sup_m p_m < \infty$.

(ii) The proof follows from the following inequality:

$$m^{-r} \left[(M_1 + M_2) \left(q \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right) \right]^{p_m} \le Cm^{-r} \left[M_1 \left(q \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right) \right]^{p_m} + Cm^{-r} \left[M_2 \left(q \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right) \right]^{p_m}.$$

(*iii*) The proof is straight forward.

Corollary 3. Let M be an Orlicz function satisfying Δ_2 - condition. Then we have

(i) If r > 1 then $BV_{\sigma}(p,q,r) \subseteq BV_{\sigma}(M,p,q,r)$,

- (*ii*) $BV_{\sigma}(M, p, q) \subseteq BV_{\sigma}(M, p, q, r),$
- (*iii*) $BV_{\sigma}(p,q) \subseteq BV_{\sigma}(p,q,r),$
- (iv) $BV_{\sigma}(M,q) \subseteq BV_{\sigma}(M,q,r).$

The proof is straight forward.

Acknowledgement: The author thanks the referee(s) for their valuable suggestions that improved the presentation of the paper.

References

- Z. U. Ahmad and M. Mursaleen, An application of banach limits, Proc. Amer. Math. Soc. 103, pp. 244-246, (1983).
- [2] S. T. Chem, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).
- [3] M. A. Krasnoselskii and Rutickii, Ya. B, Convex Functions and Orlicz Spaces, (Gooningen: P.Nordhoff Ltd.) (1961)(translation)
- [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10, pp. 379-390, (1971).
- [5] G. G. Lorenz, A contribution to the theory of divergent sequences, Acta Math. 80, pp. 167-190, (1948).
- [6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft), (1995).
- [7] L. Maligranda, Orlicz Space and Interpolation, Seminar in Math.5 Campinas (1989).
- [8] M. Mursaleen, Matrix Transformation Between some new sequence spaces, Houston J. Math., 9, pp. 505-509, (1983).
- [9] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34, pp. 77-86, (1983).
- [10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (Springer-Verlag)(1983).

- [11] W. Orlicz, Über Raume (L^M) , Bulletin International del' Académie Polonaise de Sciences et des Letters, Série A, pp. 93-107, (1936).
- [12] R. A. Raimi, Invariant means and invariant matrix method of summability, Duke Math. J., 30, pp. 81-94, (1963).
- [13] M. M. Rao and Z.D.Ren, Theory of Orlicz spaces (New york, Basel, Hong Kong: Marcal Dekker Inc.) (1991)
- [14] P. Schafer, Infinite matrices and invariant means Proc. Ammer. Math. Soc. 36, pp. 104-110, (1972).
- [15] A. Wilansky, Summability through FunctionAlalysis, North-Holland Mathematical Studies, 85 (1984)
- [16] K.Yosidak, Functional Analysis, Springer- Verlag, Berlian- Heidelberg Newyork., (1971)

M. Aiyub

Department of Mathematics, University of Bahrain, P. O. Box-32038, Kingdom of Bahrain e-mail : maiyub2002@gmail.com