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Abstract

The sequence space BV, was introduced and studied by Mursaleen
[9]. In this paper we extend BV, to BV,(M,p,q,7) on a seminormed
complex linear space by using orlicz function. We give various prop-
erties and some inclusion relations on this space.
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1. Introduction

Let £, ¢ and ¢y be respectively the Banach spaces of bounded, conver-
gent and null sequences z = (x) with (zx) € R or C the usual norm
||z|| = supy, |zx|, where k € N = 1,2, 3..., the positive integers. Let o be an
injection of the set of positive integers N into itself having no finite orbit
and T be the operator defined on loo by T'((2n)521) = (To(n))nei-

A positive linear functional ¢ with ||¢|| = 1 is called a o-mean or an
invariant mean if ¢(x) = ¢(T'z) for all = € (.

A sequence z is said to be o-convergent, denoted by x € V,, if ¢(x)
takes the same value, called o — lim z, for all o-means ¢.(Schaefer [14])

Vo = {:E = (zp) : Z tmn(z) = L uniformly inn, L =0 — lima:}.
m=1

Where m >0, n >0

n A To(m) + oo + Tom
tmn(z) = In T Fo(n) ’ (n), and t_1, =0.

Where ¢™(n) denotes the m - iterative of o at n. In particular, if o is
the translation a o-mean is often called a Banach limit and V, reduces to
f, the set of almost convergent sequence [5]. Subsequently invariant means
have been studied by Ahmad and Mursaleen [1], Mursaleen [8], Rami [12]
and many others.

The concept of paranormed is closely related to linear metric spaces.
It is generalization of that of absolute value. Let X be a linear space. A
function ¢ : X — R is called paranorme, if

(P1) g(z) >0, forallz e X,

(P2) g(—z) =g(x), forall z e X,



On some seminormed sequence spaces defined by Orlicz function 269

(P3) gz +y) <g(x)+g(y), foralzyecX,

(P4) if A\, is a sequence of scalar with A, — A (n — o0) and (z,) is a
sequence of vector with g(z, —z) — 0 (n — o0) then g(A,x, — Ax) —
0 (n — o0).

A paranormed g for which g(z) = 0 implies z = 0 is called a total
paranorm on X and pair (X,g) is called a totally paranormed space. It
is well known that the metric of any linear metric space is given by total
paranorm (cf [15, Theorem 10.4.2, p-183]).

A map M : R — [0,400] is called to be an orlicz function if M is even,
convex left continuous on Ry, continuous at zero, convex M (0) = 0 and
M(u) — oo as u — 0.

If M takes the value zero only at zero we write M > 0 and if M takes
only finite value we will write M < co. [2,3,6,7,10,13]

W. Orlicz [11] used the idea of orlicz function to construct the space
(LM) Lindenstrauss and Tzafriri [4] use the idea of Orlicz function and
defined the sequence space s such as

Uy = {a: = (x;) : ZM(%) < oo, for some p > 0}.
i=1

The space £j; with the norm ||z|| = inf {p >0:372, M("%“) < 1}

becomes a Banach space which is called an Orlicz sequence space.The space
Ly is closely related to the sequence space £, which is an Orlicz sequence
spaces with M (xz) = P for 1 < p < oo.

The Ag-condition is equivalent to M (Lz) < KLM (x), for all x > 0 and
for L > 1.

An Orlicz function M can be represented in the following integral from

where 7 is known as the kernal of M is right differentiable for ¢ > 0, n(0) =
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0, n(t) > 0, n is non- decreasing and n(t) — oo as t — oo. Note that an
Orlicz function satisfies the inequality

M(Ax) < AM (z) for all A with 0 < A < 1.

Let E be a sequence space. Then F is called

(1) A sequence space E is said to be symmetric if (x,) € E implies
(Tr(n)) € E, where m(n) is a permutation of the elements of N,

(i7) Solid (or normal), if (axy) € E, whenever (xy) € E for all sequences
of scalar (ay) with |ag| <1 for all k£ € N.

Lemma 1.1. A sequence space F is solid implies F is monotone.

Mursaleen [9] defined the sequence space.
BV, = {x €l Z |m.n(x)] < co uniformly in n},
m

Where

(bm,n(w) = tm,n(w) - tmfl,n(w)

assuming

tmm(z) =0, for m = —1.

A straight forward calculation shows that

G = D) et J(Zoi(n) = Toi-i(m) (M2 1)
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Note that for any sequence z,y and scalar A we have

G (T +Y) = dmn(®) + dmn(y) and  dpn(AT) = Apmn ().

2. Main Results

Let M be an Orlicz function, p = (pp,) be any sequence of strictly positive
real numbers, r > 0 and (X,q) be a seminorm space over the field C of
complex number with seminorm ¢q. Now we define the following sequence
spaces,

° Pm
pratinan = (e =tei: £ (=5 )

m=1

< 00, uniformly in n and for som p > O}.

For M (zx) = z, we get

BVs(p,q,7) = {w = (z1) ; i % KQ(\ém,n(w)l))] m

< 00, uniformly in n and for som p > O}.

For p,, = 1 for all m, we get

BVU(M>Q7T) = {-'L' - (i[fk) : i % lM(q(_‘¢mvn($)|)>]

m=1 p

< 00, uniformly in n and for som p > O}.
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For r =0, we get

BV, (M. p.q) = {x @)y [M@(M)ﬂ m
m=1

P

< 00, uniformly in n and for som p > O}.

For M(xz) =x and 7 = 0 we get

BV (p.q) = {xz (k) : i l<Q(’¢m7n(x)‘>>] m

m=1

< 00, uniformly in n and for som p > ()}.

For p,, = 1 for all m and r = 0 we get

BV (M.q) = {x — (@) Y [M G(M))]

p

< 00, uniformly in n and for som p > O}.
For M(z) =, pm =1forallm, r=0and ¢(x)=|z| we get

BV, = {$ = (zg) : Z |¢m,n($)|
m=1

< 00, uniformly in n and for som p > O}.
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Theorem 2.1. The sequence space BV,(M,p,q,r) is a linear space
over the field C of complex numbers.

Proof. Let z,y € BV,(M,p,q,r) and o, € C. Then there exist posi-
tive numbers
p1 and py such that

and

o0 Pm
Z L [M (q(w)ﬂ < 0o uniformly in n.
m” P2

Define p3 = max <2]a] p1, 2|5 ,02). Since M is non-decreasing and con-

YA I (SIS

3

vex we have

P3 P3

S lM<q<|a¢m,n<x>| . |ﬁ¢m,n<y>|>>r’”

< i %% [M <q(M)>+M (q(w)> < oo uniformly in n.

P3 p3

This proves that BV, (M, p,q,r) is a linear space over the field C of com-
plex numbers.
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Theorem 2.2. For any Orlicz function M and a bounded sequence
p = (pm) of strictly positive real numbers, BV, (M, p, q,r) is a paramormed
(need not be total paranormed) space with

%) pm\ 1/K
glz) = inf {ppn/’“: <mZ:1m [M(q(il(bm’;(x)'))] ) <1,

uniformly in n}

Where K = max <1, SUPPm>

Proof. It is clear that g(x) = g(—x). Since M (0) = 0, we get

inf{p”"/K}:0 forx =0

By using Theorem 1 , for a« = 8 =1, we get

gz +y) < g(x) +9(y)

For the continuity of scalar multiplication let [ # 0 be any complex
number. Then by definition we have

o) Pm l/K
o=t (S b))

uniformly in n}

Dn/k 00 pmy\ 1/K
o=ail) (B b)) e
- m=1
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uniformly in n}

Where s = -ﬁ Since |I|P» < max (1, |l|H), we have

0o Pm /
g(lr) < max (1, |l|H) ér;t; {sp”/k N ( Z m~" [M(g(M))] >1 " <1,
- m=1

uniformly in n}

= max (1, |l|H>g(x)

and therefore g(lz) converges to zero when g(z) converges to zero in
BVs(M,p,q,r).

Now let x be fixed element in BV, (M, p,q,r).Then there exists p > 0
such that

o (&, S (@] )]\
o) =t {7 (S (o) ) )

uniformly in n}

Now

%) pm\ 1/K
-l (Sl )
- m=1

uniformly in n} — 0

as | — 0.
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This completes the proof.

Theorem 2.3. Suppose that 0 < p,, < t,, < oo for each m € N and
r > 0. Then

(a) BVy(M,p,q) C BVy(M,t,q),
(b) BV,(M,q) C BV,(M,q,r).

Proof.(i) suppose that x € BV, (M, p,q). This implies that

Pm
[M (q(%@)') < 1 for sufficiently large values of ¢, say that

1 > my for some fixed mg € N. Since M is non- decreasing, we have

] < £ o) o

Hence z € BV, (M, t,q).
The proof (i7) is trivial.

The following result is consequence of the above result.

Corollary 1. If 0 < p,, < 1 for each m, then BV, (M, p,q) C BV,(M,q).
If pp, > 1 for all m, then BV, (M, q) C BV,(M,p,q).

Theorem 2.4. The sequence space BV, (M, p,q,r) is solid.
Proof. Let x € BV,(M,p,q,r). This implies that

)

m=1

pm
< Q.
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Let (aun) be sequence of scalars such that |ay,| < 1 for all m € N. Then
the result follows from the following inequality.

Pm

i i [M<q(|am¢k7n($)|)>

m=1 p

< mi::lm—r [M<Q(M)>

P

Hence ax € BV,(M,p, q,r) for all sequences of scalar (a,,) with |a,,| <
1 for all m € N, whenever x € BV,(M,p,q,r).

From Theorem 4 and Lemma (1.1) we have:
Corollary 2. The sequence spaces BV, (M, p,q,r) is monotone.

Theorem 2.5. Let M; and Ms be Orlicz functions satisfying As-
condition
and r,7r1,r2 > 0. Then we have

(i) If r > 1 then BV,(Mi,p,q,7) C BV,(MoMi,p,q,r),
(“) BVU(Mlvpa Q7r) N BVO’(M%p)%T) - BVU(Ml + MQap)%r)v
(“Z) If ry <o then BVJ(M7P7 Q7T1) C BVU(M7P7Q7T2)'

Proof. (i).Since M is continuous at 0 from right, for ¢ > 0 there exist
0 < 0 < 1 such that 0 < ¢ < § implies M(c) < e. If we define

I = {mEN:M1<q(M>> < for somp>0},

Ir = {mEN:M1<q(M>> > ¢ for somp>()}.
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then, when M; (q(l‘z’m‘iw)) >, we get
o) ()]
Hence for z € BV, (M, p,q,r) and r > 1
mX::lm_r [MoMl (q(_‘qu;(w)’))]
S [M()Ml (Q(Wm,_;(fvﬂ)ﬂ I [MoMl(q(wm,;(x)\))] .

mel; mels
2 P2 fon(1 (@)Y
<ol e 5 (5 o)

o0 av()]" Tamm)1”
Smax(eh,eH)ZmT—l-maX{[ 6( )1 ,l 5( )1 }

m=1

where 0 < h = inf p,, < py, < H = sup,,, pm < 0.

(74) The proof follows from the following inequality:

ot )} < o o)
p p
o2
p

(7i1) The proof is straight forward.

Pm

m~" +

Corollary 3. Let M be an Orlicz function satisfying As- condition.
Then we have

(¢) If r > 1 then BV,(p,q,7) € BV,(M,p,q,r),



(i)
(id)
(iv)
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BV,(M,p,q) C BVy(M,p,q,r),
BV,(p,q) € BV,(p,q,r),
BV,(M,q) C BV,(M,q,r).

The proof is straight forward.

Acknowledgement: The author thanks the referee(s) for their valu-
able suggestions that improved the presentation of the paper.
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