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Abstract

We propose a simple method for constructing an asymptotic of an
eigenvalue for the Klein—Gordon equation in the presence of a shallow
potential well, reducing the initial problem to an integral equation and
then by applying the method of Neumann series to solve it.
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260 Ana M. Maŕın, Rubén D. Ort́ız and Joel A. Rodriguez

1. Introduction

In [5], we find the Klein—Gordon equation

Φtt −∆Φ+m2Φ = 0, m > 0,

where ∆ is the Laplacian in dimension n, perturbed by a potential U =
U(x) to

Φtt −∆Φ+m2Φ+ UΦ = 0.(1.1)

We look for the solution of the equation Phi in the form

Φ = exp(iωt)Ψ(x),(1.2)

where ω is the frequency. If we replace PhiSi in Phi, then we obtain the
equation

(−∆+m2 + U)Ψ = EΨ, E = ω2.(1.3)

When m = 0, we have the Schrödinger equation

(−∆+ U)Ψ = EΨ,(1.4)

that in the case when U describes a shallow potential well (i.e., U =
εV (x), V (x) ∈ C∞0 (R

n), ε→ 0), it has one eigenvalue E0 = −β2, β ∈ R be-
low the essential spectrum [0,∞) with

R
Rn V (x)dx ≤ 0 and the dimension

n of the configuration space is 1 or 2. This was established for n = 1 and
in the radially symmetric case for n = 2 in the famous book of Landau and
Lifshitz [4] and it was demonstrated in the general case in dimension 2 by
Simon [6]. Close results to the limit behavior of the resolvent can be found
in [1], [3]. In [8], a different method was used for obtaining the asymptotics
of the eigenfunctions.

It is based on a construction of eigenfunctions. It happens that this
construction is elemental, when we pass to the momentum representation.
Also, this method is efficient for the Schrödinger and Klein—Gordon equa-
tion.

The latter problems were studied by several authors (we mention, for
example, [2, 3, 4, 5, 6, 7]).

2. Mathematical formulation

The mathematical formulation of the problem under consideration is as
follows. We look for non trivial solutions Φ ∈ L2(R), of the problem

− Φxx(x) +m2Φ(x) + εV (x)Φ(x) = EΦ(x)(2.1)
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where ε→ 0 and V is such that
R∞
−∞ V (x)dx ≤ 0 and V has compact sup-

port, then V (x) = 0 for |x| > R with R sufficiently big. Given that the
operator of multiplication by a function of compact support is compact in
L2, the continuous spectrum of (2.1) coincides with the continuous spec-
trum of the non perturbed equation (ε = 0) and the last is the interval
[m2,∞). We prove the following theorem.

Theorem 2.1. If
R∞
−∞ V (x)dx < 0. Then the problem (2.1) has an eigen-

value

E = −β2 +m2 +O(ε3),(2.2)

where

β = −ε
2

Z ∞
−∞

V (x)dx+
ε2

32π

Z
Γ

Z ∞
−∞

Z ∞
−∞

V (s)V (t)ei(s−t)ζdtds
dζ

ζ
+O(ε3)

(2.3)

is the solution of the secular equation for β (5.8). The contour Γ is defined
by the equation (5.2).

3. Heuristic considerations

Denoting the Fourier transform by

Ṽ (p) = (2π)−1/2
Z
R
e−ipxV (x)dx.(3.1)

As in [8], the formulas that appear in the Theorem 2.1 are based on the
following heuristic reasoning: For E = −β2 +m2, the solution of (2.1) for
|x| > R is given by Φ(x) ∼ e−β|x|.We obtain a function that is ˝almost con-
stant˝, when β → 0. Since being ˝almost constant˝, its Fourier transform
is a sequence of delta type when β → 0.

Hence, Φ̃(p) ∼ Ṽ (p)/(p2 + β2). Therefore the Fourier transform of Φ is
approximately equal to

Φ̃(p) =
A(p)

p2 + β2
.(3.2)
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4. Reduction to an integral equation

Taking the Fourier transform in the equation L1, we obtain
Φ̃(p)

¡
p2 + β2

¢
= − ε√

2π

R∞
−∞W (p, p0)Φ̃(p0)dp0

at p ∈ (−∞,∞). Here W (p, p0) is given by
W(p,p’)= eV (p− p0), where the tilde denotes the Fourier transform.

5. Demonstration of the Theorem 2.1

Proof. Taking E = −β2 +m2, β → 0+, we look for a solution of the
equation (4) in the form

Φ̃(p) =
A(p)

p2 + β2
.(5.1)

Substituting (5.1) in (4), we obtain A(p)= - ε√
2π
R∞
−∞W (p,p0) A(p0)

(p02+β2)
dp0.

Denoting Ω the space of analytic functions on B1 and continuous on B1
with the standard norm of the supreme, kϕk = supz∈B1 ϕ(z) for all ϕ ∈ Ω.
Here B1 ≡ {z ∈ C, |=z| < 1}.

The zeros of the expression p02 + β2 are ±zβ, where zβ = iβ.
We change the contour of integration in the complex plane such that

the zero z = zβ is bounded away from it. Suppose that A(z) belongs to Ω
(then we prove that this is in fact the case) and introduce the contour

Γ := (−∞,−1] ∪ {p+ iq : p2 + q2 = 1, q > 0} ∪ [1,∞).(5.2)

If β < 1/2, then zβ is located below Γ. By the Cauchy residue theorem,
equation (5) takes the form

β

Ã
−A(p)

√
2π − ε

Z
Γ

W (p, ζ)A(ζ)dζ

ζ2 + β2

!
= πεW (p, zβ)A(zβ).(5.3)

Define the operator Tβ : Ω→ Ω by the formula

[Tβϕ(ζ)](z) =
1√
2π

Z
Γ

W (z, ζ)ϕ(ζ)dζ

ζ2 + β2
, z ∈ Ω.(5.4)

[Tβϕ(ζ)](z) ∈ Ω (the integrand is analytic) and Tβ is well-defined.
[Tβϕ(ζ)](z) is analytic in β : |β/ζ| < 1 for z ∈ Γ and

1

ζ2 + β2
=
1

ζ2

∞X
m=0

(−1)m
ζ2m

β2m.(5.5)
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Furthermore, Tβ is bounded. In fact, kTβϕk = supz∈B1

¯̄̄̄
¯ 1√
2π

R
Γ
W (z,ζ)ϕ(ζ)dζ

ζ2+β2

¯̄̄̄
¯

≤ 1√
2π
supz∈B1

R
Γ
|W (z,ζ)ϕ(ζ)dζ|

|ζ2+β2| ≤ Ckϕk√
2π

R
Γ

|dζ|
|ζ2+β2| for some constant C. Hence,

εkTβk < 1 for ε sufficiently small. Now from equation (5.3) we have

−
√
2πβ[(1 + εTβ)A(ζ)](z) = πεW (z, zβ)A(zβ).(5.6)

Given that εTβ is a contraction operator, we can invert the operator
(1 + εTβ,ζ→z)

A(z) = −
r
π

2

ε

β
[(1 + εTβ,ζ→z)

−1W (ζ, zβ)](z).(5.7)

We have a uniformly convergent series of analytic functions in z on B1.
Hence A(z) is analytic in z ∈ B1. Suppose A(zβ) = 1, as we can prove
it later. Evaluating at z = zβ, from equation (5.7) we obtain the secular
equation for β:

β = −
r
π

2
ε[(1 + εTβ,ζ→z)

−1W (ζ, zβ)](zβ).(5.8)

Consider the function

F (β, ε) = β +

r
π

2
ε[(1 + εTβ,ζ→z)

−1W (ζ, zβ)](zβ).(5.9)

Substituting the Neumann series instead of (1 + εTβ)
−1 in equation (5.9),

we obtain

F (β, ε) = β +

r
π

2
ε
∞X
l=0

(−1)lεl[T l
β,ζ→zW (ζ, zβ)](zβ).(5.10)

[T l
β,ζ→zW (ζ, zβ)](zβ) is analytic in β. Then the function F (β, ε) is analytic

in each argument, and by Hartogs’ theorem, it is analytic in C2. Also,
F (0, 0) = 0, [∂βF ](0, 0) = 1. By the implicit function theorem, the solution
β(ε) for β of the secular equation (5.8) there exists and is unique. We have
[∂εF ](0, 0) = (π/2)

1/2W (0, 0), [∂2β,εF ](0, 0) = 0, [∂
2
βF ](0, 0) = 0,

[∂2εF ](0, 0) = −
1

2

Z
Γ

W (0, ζ)W (ζ, 0)dζ

2ζ
.(5.11)

So we have up to the second order terms the expansion

F (β, ε) = β + ε

r
π

2
W (0, 0)− ε2

4

Z
Γ

W (0, ζ)W (ζ, 0)dζ

2ζ
+ · · · .(5.12)
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The secular equation (5.8) is equivalent to F (β, ε) = 0, i.e., we obtain bet.
Also, from equation Ab and bet we have A(zβ) = 1. Theorem 2.1 is proved.
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