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Abstract

We propose a simple method for constructing an asymptotic of an
etgenvalue for the Klein—Gordon equation in the presence of a shallow
potential well, reducing the initial problem to an integral equation and
then by applying the method of Neumann series to solve it.
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1. Introduction

In [5], we find the Klein-Gordon equation
Oy — AP +m?® =0, m>0,

where A is the Laplacian in dimension n, perturbed by a potential U =
U(z) to
(1.1) Oy — AD +m2d+UD = 0.

We look for the solution of the equation Phi in the form

(1.2) & = exp(iwt)¥(x),

where w is the frequency. If we replace PhiSi in Phi, then we obtain the
equation

(1.3) (~A+m?+U)¥ =FEV, FE=uw
When m = 0, we have the Schrodinger equation
(1.4) (-A+0U)¥ = EV,

that in the case when U describes a shallow potential well (i.e., U =
eV(z),V(z) € C(R"), e — 0), it has one eigenvalue Ey = —3%, 3 € R be-
low the essential spectrum [0, 00) with [z, V(2)dx < 0 and the dimension
n of the configuration space is 1 or 2. This was established for n = 1 and
in the radially symmetric case for n = 2 in the famous book of Landau and
Lifshitz [4] and it was demonstrated in the general case in dimension 2 by
Simon [6]. Close results to the limit behavior of the resolvent can be found
in [1], [3]. In [8], a different method was used for obtaining the asymptotics
of the eigenfunctions.

It is based on a construction of eigenfunctions. It happens that this
construction is elemental, when we pass to the momentum representation.
Also, this method is efficient for the Schrédinger and Klein—Gordon equa-
tion.

The latter problems were studied by several authors (we mention, for
example, [2, 3, 4, 5, 6, 7]).

2. Mathematical formulation

The mathematical formulation of the problem under consideration is as
follows. We look for non trivial solutions ® € L?(R), of the problem

(2.1) — B, (2) + mP(2) + eV (2)D(z) = ED(x)
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where € — 0 and V is such that [°0 V(z)dz < 0 and V has compact sup-
port, then V(z) = 0 for |z| > R with R sufficiently big. Given that the
operator of multiplication by a function of compact support is compact in
L?, the continuous spectrum of (2.1) coincides with the continuous spec-
trum of the non perturbed equation (¢ = 0) and the last is the interval

[m?2, 00). We prove the following theorem.

Theorem 2.1. If [° V(xz)dz < 0. Then the problem (2.1) has an eigen-
value

(2.2) E=—-p%+m?+0(e%),
where

oo 2 oo oo ) d
p=-5 A "~ Vi@ydz + ?;7 /F /7 - /7 ) V(S)V(t)ez(s_t)cdtds?g + 0%

(2.3)

is the solution of the secular equation for 5 (5.8). The contour I is defined
by the equation (5.2).

3. Heuristic considerations

Denoting the Fourier transform by

(3.1) V(p) = (2m) /2 /R =PV (2)da.

As in [8], the formulas that appear in the Theorem 2.1 are based on the
following heuristic reasoning: For E = — 3% + m?2, the solution of (2.1) for
|z| > R is given by ®(x) ~ ePl#l. We obtain a function that is “almost con-
stant”, when  — 0. Since being “almost constant”, its Fourier transform
is a sequence of delta type when 3 — 0.

Hence, ®(p) ~ V(p)/(p? + B?). Therefore the Fourier transform of ® is
approximately equal to

(3-2) ®(p) = 57
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4. Reduction to an integral equation

Taking the Fourier transform in the equation L1, we obtain
B(p) (1P +5%) = — = [%% W(p,#) B0 )dpf
at p € (—oo,00). Here W(p, p') is given by
W(p,p’)= YN/(p —p'), where the tilde denotes the Fourier transform.

5. Demonstration of the Theorem 2.1

Proof. Taking F = —f3% +m?, B — 0+, we look for a solution of the
equation (4) in the form
= _Alp)

(5.1) d(p) = poaEL

Substituting (5.1) in (4), we obtain A(p)= -

Var [Z wip ,p)( .

Denoting ) the space of analytic functions on B; and continuous on B
with the standard norm of the supreme, ||¢|| = sup,cp, ¢(z) for all ¢ € Q.
Here By = {z € C,|3z| < 1}.

The zeros of the expression p’ 24 (32 are +25, where zg = if3.

We change the contour of integration in the complex plane such that
the zero z = 23 is bounded away from it. Suppose that A(z) belongs to

(then we prove that this is in fact the case) and introduce the contour
(5.2) [ = (—o0,—1]U{p+ig:p*+¢*=1,¢>0}U[l,00).

If B < 1/2, then z3 is located below I'. By the Cauchy residue theorem,
equation (5) takes the form

d
(5.3) ( (p)V2m — / fﬁg)ﬂ = 1eW (p, 23) A(25).
Define the operator Tj : 2 — € by the formula
d
(5.4) To(@)e) = o= [T L co

[Tp(¢)](2) € 2 (the integrand is analytic) and T3 is well-defined.
[T¢(C)](2) is analytic in 8 : |5/¢] < 1 for z € I' and

(5.5) C2+ ke Z " gam,

m=0

C2m
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f )e(Q)d¢
7 e s

< \/—supzeBl Jr Wiz \Cz) (l)dd < CHSDH fr ‘<2|C_lf/|32 for some constant C'. Hence,
el|Ts|| < 1 for e sufficiently small. Now from equation (5.3) we have

Furthermore, T is bounded. In fact, ||Ts¢p| = sup,cp,

(5.6) —V2mB[(1 + £T5)A(Q))(2) = meW (2, 25) A(zp).

Given that €T is a contraction operator, we can invert the operator
(1 + ETg’Cﬂz)

6.1 AE) = 310+ eTa ) WG 20)(2)

We have a uniformly convergent series of analytic functions in z on Bj.
Hence A(z) is analytic in z € By. Suppose A(zg) = 1, as we can prove
it later. Evaluating at z = zg, from equation (5.7) we obtain the secular
equation for 3:

65) 5= =[5l eTp) WG )] )

Consider the function

6.9 0=+ 5ol eTpe ) WG )] (es).

Substituting the Neumann series instead of (1 + ¢75)~! in equation (5.9),
we obtain

B10) P9 =545 NV WGl

[TACHZW(C, 23)](2g) is analytic in 5. Then the function F(f,¢) is analytic
in each argument, and by Hartogs’ theorem, it is analytic in C2. Also,
F(0,0) =0, [0F](0,0) = 1. By the implicit function theorem, the solution
B(e) for B of the secular equation (5.8) there exists and is unique. We have
[0-F](0,0) = (/2)Y/2W(0,0), [83 . F](0,0) = 0, [82F](0,0) = 0,

(5.11) [02F)(0,0) = —%/F W(o,g)zg@,o)dg

So we have up to the second order terms the expansion

(5.12) F(B,e) =3 +5\/§W(070) B %/F W(O,C)‘Q’Z(C,O)dg‘ .
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The secular equation (5.8) is equivalent to F'(3,¢) = 0, i.e., we obtain bet.
Also, from equation Ab and bet we have A(z3) = 1. Theorem 2.1 is proved.

a

Acknowledgements

The authors express their gratitude to CONACYT-México, Programa
de Mejoramiento del Profesorado (PROMEP)-México and Universidad de
Cartagena for financial support.

[1]

2]

3]

8]

References

Albeverio, S., Gesztesy, F., Hgegh-Krohn, R., and Holden, H. : Solv-
able Models in Quantum Mechanics, Springer—Verlag, New York,
(1988).

Chadam, J. M. : The asymptotic behavior of the Klein-Gordon equa-
tion with external potential, J. Math. Anal. Appl., 31, pp. 334-348,
(1970).

Gadyl’shin, R. : Local perturbations of the Schrodinger operator on
the axis, Theo. Math. Phys., 132, pp. 976-982, (2002).

underwater ridge.

Landau, L. D., and Lifshitz, E. M. : Quantum mechanics, Pergamon,
London, (1958).

Schonbek, T. P. : On Inverse Scattering for the Klein-Gordon Equa-
tion, Transactions of the American Mathematical Society, 166, pp.
101-123, (1972).

Simon, B. : The bound state of weakly coupled Schrédinger operator
in one and two dimensions, Ann. Phys., 97, pp. 279-288, (1976).

Synge, J. L. : A Klein-Gordon Model Particle, Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sci-
ences, Vol. 283, No. 1392, pp. 14-17, (1965).

Zhevandrov, P., and Merzon, A. : Asymptotics of eigenfunctions
in shallow potential wells and related problems, Amer. Math. Soc.
Transl, Ser. 2. 208 (53), pp. 235-284, (2003).



Asymptotics for Klein—Gordon equation

Ana M. Marin,

Universidad de Cartagena,

Facultad de Ciencias Exactas y Naturales,

Sede Piedra de Bolivar, Avenida del Consulado,
Cartagena de Indias,

Bolivar,

Colombia

e-mail : amarinr@Qunicartagena.edu.co

Rubén D. Ortiz,

Universidad de Cartagena,

Facultad de Ciencias Exactas y Naturales,
Sede Piedra de Bolivar,

Avenida del Consulado,

Cartagena de Indias,

Bolivar,

Colombia

e-mail : rortizoQunicartagena.edu.co

and

Joel A. Rodriguez—Ceballos
Instituto Tecnologico de Morelia,
Michoacan,

Mexico

e-mail : joel@ifm.umich.mx

265





