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Abstract

In this paper, we investigate the instability of solutions to a cer-
tain class of nonlinear vector functional differential equations of the
eighth order with n-deviating arguments. We employ the Lyapunov-
Krasovskii functional approach and base on the Krasovskii criteria to
prove two new theorems on the topic. Our results improve certain
results in the literature from scalar functional differential equations to
their vectorial forms.
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1. Introduction

The instability analysis of differential equations of the eighth order has
received considerable attention in the last two decades. In the literature,
the Lyapunov technique has been utilized to study the instability of the
solutions of differential equations of the eighth order (Bereketoğlu [2], Iyase
[4], Tunç [6, 7, 8, 9, 10] and C. Tunç and E. Tunç [11]). Some respective
contributions on the topic can be summarized as the following:

First, in 1991, using the Lyapunov technique, Bereketoğlu [2] estab-
lished certain conditions to the instability of the zero solution of the eighth
order scalar differential equation without delay

x(8) + a2x
(6) + a3x

(5) + a4x
(4) + f5(x, x

0, ..., x(7))x000

+f6(x
0)x00 + f7(x, x

0, ..., x(7))x0 + f8(x) = 0.

Later, in 1996, using the same method, Iyase [4] proved a theorem on
the nonexistence of nontrivial periodic solutions to the nonlinear scalar
differential equation of the eighth order without delay:

x(8)+a1x
(7)+a2x

(6)+a3x
(5)+a4x

(4)+a5x
000+f6(x

0)x00+f7(x)x
0+f8(x) = 0.

Recently, Tunç [8, 9, 10] discussed the instability of the zero solution of
the eighth order scalar nonlinear differential equations with delay

x(8) + a2x
(6) + a3x

(5) + a4x
(4) + f5(x, x(t− r), x0, ..., x(7)(t− r))x000

+f6(x
0)x00 + f7(x, x(t− r), x0, ..., , x(7)(t− r))x0 + f8(x(t− r)) = 0,

x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5x
000 + f6(x

0)x00

+f7(x)x
0 + f8(x, x(t− r), x0, ..., x(7)(t− r)) = 0

and

x(8) + a2x
(6) + a3x

(5) + a4x
(4) + f5(x, ..., x(t− τn), ..., x

(7), ..., x(7)(t− τn))x
000

+f6(x
0)x00 + f7(x, ..., x(t− τn), ..., x

(7), ..., x(7)(t− τn))x
0

+
nP
i=1

hi(x(t− τi)) = 0,

(1.1)
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x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5x
000 + g6(x

0)x00

+g7(x, ..., x(t− τn), x
0, ..., x0(t− τn))

+g8(x, ..., x(t− τn), ..., x
(7), ..., x(7)(t− τn)) = 0,

(1.2)

respectively.
In this paper, we consider the eighth order nonlinear functional vector

differential equations with n-deviating arguments, τi, (i = 1, 2, ..., n) :

X(8) + A2X
(6) +A3X

(5) +A4X
(4)

+F5(X,X(t− τ1), ...,X(t− τn), ...,X
(7), ...,X(7)(t− τn))X

000

+F6(X
0)X 00

+F7(X,X(t− τ1), ...,X(t− τn), ...,X
(7), ...,X(7)(t− τn))X

0

+
nP
i=1

Hi(X(t− τi)) = 0

(1.3)

and

X(8) + A1X
(7) +A2X

(6) +A3X
(5) +A4X

(4) +A5X
000 +G6(X

0)X 00

+ G7(X,X(t− τ1), ...,X(t− τn), ...,X
0, ...,X 0(t− τn))

+ G8(X,X(t− τ1), ...,X(t− τn), ...,X
(7), ...,X(7)(t− τn)) = 0,

(1.4)

respectively.
Let X = X1, X

0 = X2, ..., X
(7) = X8. We can write Eq. (1.3) and Eq.

(1.4) in the system form
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X 0
i = Xi+1, (i = 1, 2, ..., 7),

X 0
8 = −A2X7 −A3X6 −A4X5
−F5(X1, ...,X1(t− τn), ...,X8, ...,X8(t− τn))X4
−F6(X2)X3 − F7(X1, ...,X1(t− τn), ...,X8, ...,X8(t− τn))X2

−
nP
i=1

Hi(X1) +
nP
i=1

tR
t−τi

JHi(X1(s))X2(s)ds

(1.5)

and

X 0
i = Xi+1, (i = 1, 2, ..., 7),

X 0
8 = −A1X8 −A2X7 −A3X6 −A4X5 −A5X4 −G6(X2)X3

−G7(X1, ...,X1(t− τn),X2, ...,X2(t− τn))
−G8(X1, ...,X1(t− τn), ...,X8, ...,X8(t− τn)),

(1.6)

respectively, where τi are certain positive constants, the fixed delays,
t− τi ≥ 0, A1, ..., A5 are constant n× n− symmetric matrices, the primes
in Eq. (1.3) and Eq. (1.4) denote differentiation with respect to t, t ∈
<+, <+ = [0,∞); F5, F6, F7 and G6 are continuous n × n− symmetric
matrix functions for the arguments displayed explicitly, Hi : <n → <n,
G7 : <2n(n+1) → <n, G8 : <8n(n+1) → <n, G7(X1, ...,X1(t − τn), 0,X2(t −
τ1), ...,X2(t− τn)) = 0, G8(0,X1(t− τ1), ...,X8(t− τn)) = 0 and Hi(0) = 0,
Hi, G7 and G8 are continuous for all of their respective arguments. The
Jacobian matrices of Hi(X) are given by

JH1(X) =

Ã
∂h1i
∂xj

!
, ..., JHn(X) =

Ã
∂hni
∂xj

!
(i, j = 1, 2, ..., n),

where (x1, ..., xn) and (h1i), ..., (hni) are the components of X and Hi, re-
spectively. It is also assumed that the Jacobian matrices JHi(X) exist and
are continuous. The existence and uniqueness of the solutions of Eq. (1.3)
and Eq. (1.4) are assumed (see È l’sgol’ts ([3], pp.14, 15). Throughout
what follows X1(t), ...,X8(t) are abbreviated as X1, ...,X8, respectively.
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Consider the linear constant coefficient differential equation of the eighth
order

x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5x
000 + a6x

00 + a7x
0 + a8x = 0

(1.7)

and its auxiliary equation

ψ(λ) ≡ λ8 + a1λ
7 + ...+ a7λ+ a8 = 0.(1.8)

If β is an arbitrary real number, then the real part of ψ(iβ) is given by
φ(β) = β8 − a2β

6 + a4β
4 − a6β

2 + a8.
It is also known that if a2 ≤ 0, a4 ≥ 0, a6 ≤ 0, a8 > 0

in which case φ(β) > 0, then the auxiliary equation cannot have any purely
imaginary root whatever. It therefore follows from general theory that
Eq. (1.7) does not has a periodic solution except x = 0. An analogous
consideration of the imaginary part of ψ(iβ) also leads to conditions on a1,
a3, a5 and a7 for the nonexistence of any periodic solution of Eq. (1.7)
other than x = 0.

Besides, if a1 = 0 a8 6= 0,
then the sum of the roots of (1.8) equals zero and each of them is different
from zero, respectively. Furthermore, a necessary and sufficient condition
for (1.8), with a1 = 0, to have a purely imaginary root λ = iβ (β real) is
that the following two equations

a3β
4 − a5β

2 + a7 = 0(1.9)

and

β8 − a2β
6 + a4β

4 − a6β
2 + a8 = 0

are simultaneously satisfied. If a3 6= 0, the left hand side of Eq. (1.9) can
be rewritten in the form

a3
³
β2 − a5

2a3

´2
+ a7 − a25

4a3
.

Therefore, if

a3 6= 0,
Ã
a7 −

a25
4a3

!
sgna3 > 0,(1.10)

then the estimate (1.9) cannot be satisfied, and Eq. (1.8) would not have
any purely imaginary root whatever. Hence, Eq. (1.8) has at the least one
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root λ0 = α0 + iβ0, (α0, β0 real) with α0 > 0 provided that a1 = 0, a8 6= 0
and (1.10) hold.

The aim of this paper is to give the extensions of these results to Eq.
(1.3) and Eq. (1.4). We extend the results obtained in the scalar cases for
Eq. (1.1) and Eq. (1.2) to vector delay differential equations, Eq. (1.3)
and Eq. (1.4).

Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

kφk = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : kφk < H}.

If x : [−r, A)→ <n is continuous, 0 < A ≤ ∞, then, for each t in [0, A),
xt in C is defined by

xt(s) = x(t+ s), −r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous
differential system with finite delay

ẋ = F (xt), F (0) = 0, xt = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0,

where F : G → <n is continuous and maps closed and bounded sets into
bounded sets. It follows from these conditions on F that each initial value
problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This
solution will be denoted by x(φ)(.) so that x0(φ) = φ.

Definition 1.1. The zero solution, x = 0, of ẋ = F (xt) is stable if for each
ε > 0 there exists δ = δ(ε) > 0 such that kφk < δ implies that |x(φ)(t)| < ε
for all t ≥ 0. The zero solution is said to be unstable if it is not stable.
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2. Main results

We need the following lemma.

Lemma 2.1. (Bellman [1]) Let A be a real symmetric n×n− matrix and

a0 ≥ λi(A) ≥ a > 0, (i = 1, 2, ..., n),

where a0 and a are constants, and λi(A) are the eigenvalues of the matrix
A. Then

a0 hX,Xi ≥ hAX,Xi ≥ a hX,Xi

and

a0
2 hX,Xi ≥ hAX,AXi ≥ a2 hX,Xi .

The first main result is the following theorem.

Let τ = max τi, (i = 1, 2, ..., n).

Theorem 2.1. Let all the assumptions imposed to A2, A3, A4, F5, F6, F7
and Hi and

Hi(0) = 0,Hi(X1) 6= 0, (X1 6= 0), |λi(JHi(X1))| ≤ δi, δi > 0, λi(A3(.))) ≥ a3

and
λi(F7(X1, ...,X8(t−τn)))sgna3− 1

4|a3|λi(F5(X1, ...,X8(t−τn)))2 ≥ δ > 0

hold for arbitrary X1, ...,X8(t− τn), where a3(6= 0), δi and δ are constants.
If τ < δ√

n(δ1+...+δn)
, then the zero solution of Eq. (1.3) is unstable.

Proof. Let the function V (.) = V (X1, ...,X8) be defined by

V (.) = − hX2,X8i− hA2X2,X6i− hA3X2,X5i− hA4X2,X4i

−
1R
0
hH1(σX),Xi dσ − ...−

1R
0
hHn(σX),Xi dσ

+ hX3,X7i+ hA2X3,X5i+ hA3X3,X4i− hX4,X6i
+1
2 hA4X3,X3i− 1

2 hA2X4,X4i+ 1
2 hX5,X5i

−
1R
0
hF6(2)X2,X2i dσ.
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We define a Lyapunov functional V1(.) ≡ V1(X1t, ...,X8t) by

V1(.) = V sgna3 −
nX
i=1

λi

0Z
−τi

tZ
t+s

kX2(θ)k2 dθds,

where s is a real variable such that the integrals
0R
−τi

tR
t+s
kX2(θ)k2 dθds are

non-negative, and λi are certain positive constants to be determined later
in the proof.

It follows that

V1(0, 0, 0, 0, 0, 0, 0, 0) = 0.

Let

ε̄ = (0, 0, (ε31, ..., ε3n)sgna3, 0, 0, 0, (1 + |a4|)(ε71, ..., ε7n), 0).

Hence
V1(0, 0, (ε31, ..., ε3n)sgna3, 0, 0, 0, (1 + |a4|)(ε71, ..., ε7n), 0)

≥
³
1 + |a4|+ 1

2a4sgna3
´
kε̄k2 > 0

for all ε̄ (6= 0) so that every neighborhood of the origin in the (X1, ...,X8)−
space contains the points (ξ1, ..., ξ8) such that V1(ξ1, ..., ξ8) > 0.

Let ...

(X1, ...,X8) = (X1(t), ...,X8(t))

be an arbitrary solution of (1.5).

The time derivative of the Lyapunov functional V1(.) with respect to
(1.5) results in
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V̇1(.) = {hA3X4,X4i+ hF5(.)X2,X4i+ hF7(.)X2,X2i}sgna3
− < sgna3X2,

tR
t−τ1

JH1(X1(s))X2(s)ds >

−...− < sgna3X2,
tR

t−τn
JHn(X1(s))X2(s)ds >

− hλ1τ1X2,X2i− ...− hλnτnX2,X2i

+λ1
tR

t−τ1
kX2(θ)k2 dθ + ...+ λn

tR
t−τn

kX2(θ)k2 dθ

≥ |a3|
°°°X4 + 2

−1
¯̄̄
a−13

¯̄̄
F5(.)X2sgna3

°°°2
+ hsgna3F7(.)X2,X2i− < 4−1

¯̄̄
a−13

¯̄̄
F5(.)X2, F5(.)X2 >

− < sgna3X2,
tR

t−τ1
JH1(X1(s))X2(s)ds >

−...− < sgna3X2,
tR

t−τn
JHn(X1(s))X2(s)ds >

− hλ1τ1X2,X2i− hλ2τ2X2,X2i− ...− hλnτnX2,X2i

+λ1
tR

t−τ1
kX2(θ)k2 dθ + ...+ λn

tR
t−τn

kX2(θ)k2 dθ.

Using the assumptions of Theorem 2.1 and the Schwartz inequality, we
have

− < sgna3X2,
tR

t−τ1
JH1(X1(s))X2(s)ds >

≥ − kX2k
°°°°° tR
t−τ1

JH1(X1(s))X2(s)ds

°°°°°
≥ −√nδ1 kX2k

°°°°° tR
t−τ1

X2(s)

°°°°° ds
≥ −√nδ1 kX2k

tR
t−τ1

kX2(s)k ds

≥ −12
√
nδ1τ1 kX2k2 − 1

2

√
nδ1

tR
t−τ1

kX2(s)k2 ds,



254 Cemil Tunç

− < sgna3X2,
tR

t−τ2
JH2(X1(s))X2(s)ds >

≥ − kX2k
°°°°° tR
t−τ2

JH2(X1(s))X2(s)ds

°°°°°
≥ −√nδ2 kX2k

°°°°° tR
t−τ2

X2(s)

°°°°° ds
≥ −√nδ2 kX2k

tR
t−τ2

kX2(s)k ds

≥ −12
√
nδ2τ2 kX2k2 − 1

2

√
nδ2

tR
t−τ2

kX2(s)k2 ds, ...,

− < sgna3X2,
tR

t−τn
JHn(X1(s))X2(s)ds >

≥ − kX2k
°°°°° tR
t−τn

JHn(X1(s))X2(s)ds

°°°°°
≥ −√nδn kX2k

°°°°° tR
t−τn

X2(s)

°°°°° ds
≥ −√nδn kX2k

tR
t−τn

kX2(s)k ds

≥ −12
√
nδnτn kX2k2 − 1

2

√
nδn

tR
t−τn

kX2(s)k2 ds

so that

V̇1(.) ≥ |a3|
°°°X4 + 2

−1
¯̄̄
a−13

¯̄̄
F5(.)X2sgna3

°°°2
+ hsgna3F7(.)X2,X2i− < 4−1

¯̄̄
a−13

¯̄̄
F5(.)X2, F5(.)X2 >

−(λ1 + 1
2

√
nδ1)τ1 kX2k2 − ...− (λn + 1

2

√
nδn)τn kX2k2

+ (λ1 − 1
2

√
nδ1)

tR
t−τ1

kX2(s)k2 ds+ ...+ (λn − 1
2

√
nδn)

tR
t−τn

kX2(s)k2 ds.

Let λi =
1
2

√
nδi and τ = max τi, (i = 1, 2, ..., n). Hence, we obtain

V̇1(.) ≥ hsgna3F7(.)X2,X2i− < 4−1
¯̄̄
a−13

¯̄̄
F5(.)X2, F5(.)X2 >

−√nδ1τ1 kX2k2 − ...−√nδnτn kX2k2
≥ {δ −√n(δ1 + ...+ δn)τ} kX2k2 .
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If τ < δ√
n(δ1+...+δn)

, then, for some positive constant k, we have

V̇1(.) ≥ k kX2k2 > 0.

Finally, V̇1(.) = 0 for all t ≥ 0 necessarily implies that X2 = 0. Hence,
it follows that

X1 = ξ1 (constant vector), X2 = X 0 = 0, ...,X8 = X(7) = 0

for all t ≥ 0 so that

≥ − kX2k

°°°°°°
tZ

t−τ1

JH1(X1(s))X2(s)ds

°°°°°°
Therefore, the estimates V̇1(.) = 0 and (1.5) imply X1 = X2 = ... =

X8 = 0, since Hi(ξ1) = 0 if and only if ξ1 = 0. It now follows that func-
tional V1 thus has all the requisite Krasovskii [5] properties subject to the
conditions of Theorem 2.1. By this discussion, we can conclude that the
zero solution of Eq. (1.3) is unstable.

The proof of Theorem 2.1 is completed. 2

The second main result of this paper is given by the following theorem.

Theorem 2.2. Let all the assumptions imposed to A1, ..., A5, G6, G7 and
G8 and the conditions

λi(A1) ≥ a1 > 0, λi(A2) ≤ a2 < 0, λi(A4) ≥ a4 > 0,
λi(G6(X2)) ≤ 0, hG7(X1, ...,X2(t− τn)),X1i ≥ 0

and

hG8(X1, ...,X8(t− τn)),X1i > 0, (X1 6= 0),

hold for arbitrary X1,X1(t − τ1), ...,X8(t − τn), where a1, a2 and a4 are
certain constants.

Then, the zero solution of Eq. (1.4) is unstable.
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Proof. Let the Lyapunov function V2(.) = V2(X1, ...,X8) be defined by

V2(.) = − hX1,X8i− hA1X1,X7i− hA2X1,X6i− hA3X1,X5i
− hA4X1,X4i− hA5X1,X3i+ hX2,X7i+ hA1X2,X6i
+ hA2X2,X5i+ hA3X2,X4i+ hA4X2,X3i+ 1

2 hA5X2,X2i
− hX3,X6i− hA1X3,X5i− hA2X3,X4i− 1

2 hA3X3,X3i

+ hX4,X5i+ 1
2 hA1X4,X4i− < X1,

1R
0
G6(σX2)X2dσ > .

It follows that
V2(0, 0, 0, 0, 0, 0, 0, 0) = 0.

Let
ε∗ = (ε41, ..., ε4n).

Then

V2(0, 0, 0, ε∗, 0, 0, 0, 0) =
1

2
a1 kε∗k2 > 0

for ε∗ (6= 0) so that every neighborhood of the origin in the (X1,X2, ...,X8)−
space contains points (ρ1, ρ2, ..., ρ8) such that V2(ρ1, ρ2, ..., ρ8) > 0.

Let
(X1, ...,X8) = (X1(t), ...,X8(t))

be an arbitrary solution of (1.6).
By an elementary calculation along the solutions of (1.6), the time

derivative of the function V2 results in

V̇2(.) = hX5,X5i− hA2X4,X4i+ hA4X3,X3i
+ hG7(X1, ...,X8(t− τn)),X1i
+ hG8(X1, ...,X8(t− τn)),X1i

− < X2,
1R
0
G6(σX2)X2dσ > .

Using the assumptions of Theorem 2.2, λi(A2) ≤ a2 < 0, λi(A4) ≥ a4 >
0, λi(G6(x2)) ≤ 0, X1G7(.) ≥ 0 and X1G8(.) > 0, (X1 6= 0), it follows that

V̇2(.) ≥ kX5k2 − a2 kX4k2 + a4 kX3k2
+ hG7(X1, ...,X8(t− r)),X1i >
+ hG8(X1, ...,X8(t− r)),X1i

− < X2,
1R
0
G6(σX2)X2dσ > 0.

Thus, if the assumptions of Theorem 2.2 hold, then V̇2(.) is positive
semi definite.
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On the other hand, V̇2 = 0 for all t ≥ 0 necessarily implies that X1 = 0
and therefore also that

X1 = X = 0,X2 = X 0 = 0, ...,X8 = X(7) = 0

for all t ≥ 0 so that

X1 = X2 = ... = X8 = 0, (t ≥ 0).

On the other hand, noting V̇2(.) = 0 and (1.6), we obtain X1 = X2 =
... = X8 = 0 since G8(ρ1, ..., ρ8(t− τn)) = 0 and G7(ρ1, ..., ρ2(t− τn)) = 0,
if and only if ρ1 = ρ2 = 0. It now follows that the Lyapunov function
V2(.) thus satisfies all the requisite Krasovskii [5] properties subject to the
conditions of Theorem 2. By the above discussion, we conclude that the
zero solution of Eq. (1.6) is unstable.
The proof of Theorem 2 is completed. 2

References

[1] R. Bellman, Introduction to matrix analysis. Reprint of the second
(1970) edition. With a foreword by Gene Golub. Classics in Applied
Mathematics, 19. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, (1997).
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