Proyecciones Journal of Mathematics Vol. 32, N^o 3, pp. 215-234, September 2013. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172013000300002

Connected edge monophonic number of a graph

A. P. Santhakumaran Hindustan University, INDIA P. Titus and P. Balakrishnan University College of Engineering Nagercoil, INDIA Received : April 2012. Accepted : May 2013

Abstract

For a connected graph G of order n, a set S of vertices is called an edge monophonic set of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the edge monophonic number $m_e(G)$ is the minimum cardinality of an edge monophonic set. An edge monophonic set S of G is a connected edge monophonic set if the subgraph induced by S is connected, and the connected edge monophonic number $m_{ce}(G)$ is the minimum cardinality of a connected edge monophonic set of G. Graphs of order n with connected edge monophonic number 2, 3 or n are characterized. It is proved that there is no non-complete graph G of order n > 3 with $m_e(G) = 3$ and $m_{ce}(G) = 3$. It is shown that for integers k, l and n with $4 \leq k \leq l \leq n$, there exists a connected graph G of order n such that $m_e(G) = k$ and $m_{ce}(G) = l$. Also, for integers j, k and l with $4 \leq j \leq k \leq l$, there exists a connected graph G such that $m_e(G) = j, m_{ce}(G) = k$ and $g_{ce}(G) = l$, where $g_{ce}(G)$ is the connected edge geodetic number of a graph G.

Key Words: Monophonic path, edge monophonic number, connected edge monophonic number, connected edge geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and mrespectively. For basic graph theoretic terminology we refer to [4]. For vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest x-y path in G. It is known that the distance is a metric on the vertex set of G. An x-y path of length d(x, y) is called an x-y geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x and y. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete.

A vertex v is a *semi-extreme vertex* of G if the subgraph induced by its neighbors has a full degree vertex in N(v). In particular, every extreme vertex is a semi-extreme vertex and a semi-extreme vertex need not an extreme vertex. For the graph G in Figure 2.1, v_1 and v_3 are an extreme vertices as well as semi-extreme vertices. Also v_2 is a semi-extreme vertex and not an extreme vertex of G.

A set S of vertices is a geodetic set of G if every vertex of G lies on a geodesic joining some pair of vertices in S, and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of G. The geodetic number of a graph was introduced in [1, 5] and further studied in [2, 3, 6]. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem. A set S of vertices in G is called an *edge geodetic set* of G if every edge of G lies on a geodesic joining some pair of vertices in S, and the minimum cardinality of an edge geodetic set is the *edge geodetic number* $g_e(G)$ of G. An edge geodetic set of cardinality $g_e(G)$ is called a g_e -set of G if the subgraph induced by S is connected, and the minimum cardinality of a connected edge geodetic set is the *edge geodetic number* $g_{ce}(G)$ of G. A connected edge geodetic number $g_{ce}(G)$ of G. The edge geodetic set is the *edge geodetic number* $g_{ce}(G)$ of G. A connected edge geodetic number $g_{ce}(G)$ of G. A connected edge geodetic number $g_{ce}(G)$ of G. The edge geodetic number of a graph induced by S is connected edge geodetic number $g_{ce}(G)$ of G. A connected edge geodetic number $g_{ce}(G)$ of G. The edge geodetic number of a graph was introduced and studied in [8, 9].

A chord of a path u_1, u_2, \ldots, u_k in G is an edge $u_i u_j$ with $j \ge i+2$. A u-v path P is called a monophonic path if it is a chordless path. A set S of vertices is a monophonic set if every vertex of G lies on a monophonic path joining some pair of vertices in S, and the minimum cardinality of a monophonic set is the monophonic number m(G) of G. A monophonic set of cardinality m(G) is called an m-set of G. A set S of vertices in G is called an *edge monophonic set* of G if every edge of G lies on a monophonic path joining some pair of vertices in S, and the minimum cardinality of an edge monophonic set is the *edge monophonic number* $m_e(G)$ of G. An edge monophonic set of cardinality $m_e(G)$ is called an m_e -set of G. The edge monophonic number of a graph was introduced and studied in [7].

Theorem 1.1. [7] Every semi-extreme vertex of a connected graph G belongs to each edge monophonic set of G. In particular, if the set S of all semi-extreme vertices of G is an edge monophonic set of G, then S is the unique minimum edge monophonic set of G.

Theorem 1.2. [7] Let G be a connected graph with cut-vertices and S an edge monophonic set of G. If v is a cut-vertex of G, then every component of G - v contains an element of S.

Theorem 1.3. [7] (1) For the complete graph K_n of order $n \ge 2$, $m_e(G) = n$.

(2) For any non-trivial tree T of order n with k endvertices, $m_e(T) = k$.

(3) For any wheel $W_n (n \ge 5)$ of order $n, m_e(W_n) = n - 1$.

2. Connected edge monophonic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A connected edge monophonic set of G is an edge monophonic set S such that the subgraph induced by S is connected. The minimum cardinality of a connected edge monophonic set of G is the connected edge monophonic number of G and is denoted by $m_{ce}(G)$. A connected edge monophonic set of cardinality $m_{ce}(G)$ is called an m_{ce} -set of G.

Example 2.2. For the graph G given in Figure 2.1, it is easily seen that no 4-element subset of vertices is an edge monophonic set. It is clear that $S = \{v_1, v_2, v_3, v_6, v_8\}$ is an edge monophonic set of G so that $m_e(G) = 5$. It is easily seen that no 6-element subset of vertices is a connected edge monophonic set of G. Since $S = \{v_1, v_2, v_3, v_4, v_5, v_6, v_8\}$ is a connected edge monophonic set of G, we have $m_{ce}(G) = 7$.

Note that $S_1 = \{v_1, v_2, v_3, v_4, v_5, v_6, v_{10}\}$ is also a minimum connected edge monophonic set of G. Thus the edge monophonic number and connected edge monophonic number are different.

Theorem 2.3. For any connected graph G of order $n, 2 \leq m_e(G) \leq m_{ce}(G) \leq n$.

Proof. An edge monophonic set needs at least two vertices and so $m_e(G) \geq 2$. Since every connected edge monophonic set is also an edge monophonic set, it follows that $m_e(G) \leq m_{ce}(G)$. Also, since the set of all vertices of G is a connected edge monophonic set of G, $m_{ce}(G) \leq n$. \Box

We observe that for the complete graph K_2 , $m_{ce}(K_2) = m_e(K_2) = 2$ and for the complete graph $K_n (n \ge 3)$, $m_{ce}(G) = m_e(G) = n$. Also, all the inequalities in Theorem 2.3 are strict. For the graph G given in Figure 2.1, $m_e(G) = 5$, $m_{ce}(G) = 7$ and n = 10.

Theorem 2.4. Every semi-extreme vertex of a connected graph G belongs to each connected edge monophonic set of G. In particular, if the set S of all semi-extreme vertices of G is a connected edge monophonic set of G, then S is the unique minimum connected edge monophonic set of G.

Proof. Since every connected edge monophoic set is also an edge monophonic set, the result follows from Theorem 1.1. \Box

Corollary 2.5. For any connected graph G of order n with k semi-extreme vertices, $max\{2,k\} \le m_{ce}(G) \le n$.

Proof. This follows from Theorems 2.3 and 2.4.

Corollary 2.6. For the complete graph K_n $(n \ge 2)$, $m_{ce}(K_n) = n$.

The converse of Corollary 2.6 need not be true. For the graph G given in Figure 2.2, each vertex is a semi-extreme and $S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is an m_{ce} -set of G. Therefore, $m_{ce}(G) = 6$ and G is not a complete graph.

Since every connected edge monophonic set is an edge monophonic set, the next theorem follows from Theorem 1.2.

Theorem 2.7. Let G be a connected graph with cut-vertices and S a connected edge monophonic set of G. If v is a cut-vertex of G, then every component of G - v contains an element of S.

Theorem 2.8. Every cut-vertex of a connected graph G belongs to every connected edge monophonic set of G.

Proof. Let G be a connected graph and S a connected edge monophonic set of G. Let v be a cut-vertex of G and $G_1, G_2, \ldots, G_r (r \ge 2)$ the components of G - v. By Theorem 2.7, S contains at least one vertex from each $G_i(1 \le i \le r)$. Since the subgraph induced by S is connected, it follows that $v \in S$.

Combining Theorems 2.4 and 2.8, we have the following theorem.

Theorem 2.9. Every semi-extreme vertex and every cut-vertex of a connected graph G belong to each connected edge monophonic set of G.

Since every connected edge geodetic set is a connected edge monophonic set, we have the following theorem.

Theorem 2.10. Every semi-extreme vertex and every cut-vertex of a connected graph G belong to each connected edge geodetic set of G.

Corollary 2.11. For any connected graph G of order n with k semiextreme vertices and l cut-vertices, $max\{2, k+l\} \le m_{ce}(G) \le n$.

Proof. This follows from Theorems 2.3 and 2.9

Corollary 2.12. For any tree T of order $n, m_{ce}(T) = n$.

Proof. This follows from Corollary 2.11.

Theorem 2.13. For the complete bipartite graph $G = K_{r,s}$ $(2 \le r \le s)$, $m_{ce}(G) = r + 1$.

Proof. Let $U = \{u_1, u_2, \ldots, u_r\}$ and $W = \{w_1, w_2, \ldots, w_s\}$ be the partite set of G. Let $S = U \cup \{w_1\}$. We prove that S is a minimum connected edge monophonic set of G. Note that any $u \cdot v$ monophonic path in G is of length at most 2. Every edge $u_i w_j$ $(1 \le i \le r, 1 \le j \le s)$ lies on the monophonic path u_i, w_j, u_k for any $k \ne i$, and so S is a connected edge monophonic set of G. Let T be any set of vertices such that |T| < |S|. If $T \subseteq U$ or $T \subseteq W$, then T cannot be a connected edge monophonic set of G. If T is such that T contains vertices from U and W such that $u_i \notin T$ and $w_j \notin T$. Then clearly the edge $u_i w_j$ does not lie on a monophonic path joining two vertices of T so that T is not a connected edge monophonic set. Thus in any case T is not a connected edge monophonic set of G. Hence Sis a minimum connected edge monophonic set so that $m_{ce}(G) = |S| = r+1$.

Theorem 2.14. For any cycle C_n $(n \ge 3)$, $m_{ce}(C_n) = 3$.

Proof. Let $C_n : u_1, u_2, \ldots, u_n, u_1$ be a cycle of order $n \ge 3$. It is clear that no 2-element subset of vertices is a connected edge monophonic set of G. Now, $S = \{u_1, u_2, u_3\}$ is a connected edge monophonic set of G so that $m_{ce}(G) = 3$.

Theorem 2.15. For any connected graph G of order n, $m_{ce}(G) = 2$ if and only if $G = K_2$.

Proof. If $G = K_2$, then $m_{ce}(G) = 2$. Conversely, let $m_{ce}(G) = 2$. Let $S = \{u, v\}$ be a minimum connected edge monophonic set of G. Then uv is an edge. If $G \neq K_2$, then there exists an edge xy different from uv, and the edge xy does not lie on any u-v monophonic path so that S is not a connected edge monophonic set, which is a contradiction. Thus $G = K_2$. \Box

A vertex v in graph G is called an *independent vertex* if the subgraph induced by its neighbors contains no edges.

Theorem 2.16. Let G be a non-complete connected graph of order $n \geq 3$. Then $m_{ce}(G) = 3$ if and only if there exist two independent vertices u and w such that d(u, w) = 2 and every edge of G lies on a u-w monophonic path.

Proof. Let $m_{ce}(G) = 3$ and let $S = \{u, v, w\}$ be a connected edge monophonic set of G. If the subgraph induced by S is complete, then $G \cong K_3$, which is a contradiction. So assume that u and w are non-adjacent in G. It is clear that d(u, w) = 2. Now, we show that u and w are independent vertices of G. Suppose that u is not an independent vertex of G. Then there exist vertices $u_1, u_2 \in N(u)$ such that u_1 and u_2 are adjacent in G. Since S is a connected edge monophonic set, u_1u_2 lies on a u-w monophonic path P. Since u_1 and u_2 are adjacent to u in G, it follows that P is not a monophonic path, which is a contradiction. Thus, u is an independent vertex of G. Similarly, w is an independent vertex of G. Now, since S is a connected edge monophonic set and since the subgraph induced by S is the path P: u, v, w, it follows that every edge of G lies on a u-w monophonic path. Conversely, let u and w be two independent vertices of G such that d(u, w) = 2 and every edge of G lies on a u-w monophonic path. Since G is non-complete, no 2-element subset of G is a connected edge monophonic set of G. Now, let P: u, v, w be a u-w monophonic path. Then $S = \{u, v, w\}$ is a minimum connected edge monophonic set of G so that $m_{ce}(G) = 3$. \Box

Corollary 2.17. If G is a non-complete graph of order $n \ge 3$ with $m_{ce}(G) = 3$, then $m_e(G) = 2$.

Corollary 2.18. There is no non-complete graph G of order $n \ge 3$ with $m_e(G) = 3$ and $m_{ce}(G) = 3$.

Corollary 2.19. Let G be any connected graph of order $n \ge 3$. Then $m_e(G) = m_{ce}(G) = 3$ if and only if $G = K_3$.

Theorem 2.20. Let G be a connected graph of order $n \ge 3$. If G contains exactly one vertex v of degree n - 1, then every vertex of G other than v is a semi-extreme vertex.

Proof. Let v be the unique vertex of degree n-1 and let $w \neq v$ be any vertex in G. Then v is adjacent to all the neighbors of w so that $deg_{\langle N(w) \rangle}(v) = |N(w)| - 1$. Hence w is a semi-extreme vertex of G. \Box

Theorem 2.21. Let G be a connected graph of order $n \ge 3$. If G contains exactly one vertex v of degree n - 1 and v is not a cut-vertex of G, then $m_{ce}(G) = n - 1$. In fact, $S = V - \{v\}$ is the unique minimum connected edge monophonic set of G.

Proof. Let v be the unique vertex of degree n-1. Let $S = V - \{v\}$. Then by Theorem 2.20, S is the set of semi-extreme vertices of G. By Theorem 2.4, every connected edge monophonic set contains S and so $m_{ce}(G) \ge n-1$. Let uv be any edge incident with v. Since v is the only vertex of degree n-1, there exists at least one vertex $w \in N(v)$ such that u and w are nonadjacent. Then uv lies on the monophonic path P: u, v, w with $u, w \in S$. Also, any edge xy not incident with v lies on the x-y monophonic path itself. Thus S is an edge monophonic set of G. Since v is not a cut-vertex of G, the subgraph induced by S is connected so that $m_{ce}(G) \le n-1$. Hence $m_{ce}(G) = n-1$.

Corollary 2.22. For the wheel $W_n = K_1 + C_{n-1}$ $(n \ge 5)$, $m_{ce}(W_n) = n-1$.

The converse of Theorem 2.21 is not true. For the graph G given in Figure 2.3, $S = \{u_1, u_2, u_3, u_4, u_5\}$ is a minimum connected edge monophonic set of G. Therefore, $m_{ce}(G) = 5 = n - 1$ and no vertex has degree n - 1.

Problem 2.23. Characterize graphs G of order n for which $m_{ce}(G) = n - 1$.

Theorem 2.24. Let G be a connected graph of order $n \ge 3$. If G has a cut-vertex of degree n - 1, then $m_{ce}(G) = n$.

Proof. This follows from Theorems 2.20 and 2.9.

The converse of Theorem 2.24 is not true. For the graph G given in Figure 2.4, $S = \{v_1, v_3, v_4, v_5, v_6\}$ is the set of all semi-extreme vertices of G and v_2 is the only cut-vertex of G. Hence by Theorem 2.9, $m_{ce}(G) = 6 = n$. However, G has no cut-vertex of degree n - 1.

Theorem 2.25. Let G be a connected graph of order n. If G has at least two vertices of degree n-1, then every vertex of G is a semi-extreme vertex of G.

Proof. Let $u_1, u_2, \ldots, u_l (l \ge 2)$ be the vertices of degree n - 1. Then each $u_i (1 \le i \le l)$ is adjacent to all other vertices in G. Let u be any vertex in G. If $u \ne u_i (1 \le i \le l)$, then u is adjacent to each u_i so that $deg_{<N(u)>}(u_i) = |N(u)| - 1$. Hence u is a semi-extreme vertex of G. If $u = u_i (1 \le i \le l)$, then u_i is adjacent to $u_j, j \ne i$, and so again $deg_{<N(u)>}(u_j) = |N(u)| - 1$. Hence u is a semi-extreme vertex of G. Thus every vertex of G is a semi-extreme vertex. \Box

Theorem 2.26. For any graph G of order n with at least two vertices of degree n - 1, $m_{ce}(G) = n$.

Proof. This follows from Theorems 2.4 and 2.25. \Box

The converse of Theorem 2.26 is not true. For the graph G given in Figure 2.2, $S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is a minimum connected edge monophonic set of G so that $m_{ce}(G) = 6 = n$ and G has no vertex of degree n-1.

Theorem 2.27. Let G be a connected graph of order n. Then $m_{ce}(G) = n$ if and only if every vertex of G is either a cut-vertex or a semi-extreme vertex.

Proof. Let $m_{ce}(G) = n$. Then S = V is the only connected edge monophonic set of G. Suppose that there exists a vertex u such that u is neither a semi-extreme vertex nor a cut-vertex of G. Since u is not a semi-extreme vertex, for each $v \in N(u)$, there exists a vertex $w \in N(u)$ such that $w \neq v$ and vw is not an edge of G. Now, we show that $S = V - \{u\}$ is an edge monophonic set of G. Let vu be any edge of G. Then vu lies on the monophonic path P: v, u, w. Also, any edge xy not incident with u lies on the x-y monophonic path itself. Hence S is an edge monophonic set of G. Since u is not a cut-vertex of G, the subgraph induced by S is connected. Therefore, S is a connected edge monophonic set of G so that $m_{ce}(G) \leq n - 1$, which is a contradiction. Hence every vertex of G is either a semi-extreme vertex or a cut-vertex. The converse follows from Theorem 2.9.

Corollary 2.28. For the graph $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \ge 2$, of order $n \ge 3$, $m_{ce}(G) = n$.

3. Realisation Results

In view of Corollary 2.18, we have the following realization result.

Theorem 3.1. For integers k, l and n with $4 \le k \le l \le n$, there exists a connected graph G of order n such that $m_e(G) = k$ and $m_{ce}(G) = l$.

Proof. Case 1. $4 \leq k = l = n$. Then, for the compete graph $G = K_n$ of order n, by Theorem 1.3 and Corollary 2.6, we have $m_e(G) = m_{ce}(G) = n$. Case 2. $4 \leq k < l = n$. Let G be a tree of order n with k endvertices. Then by Theorem 1.3 and Corollary 2.12, $m_e(G) = k$ and $m_{ce}(G) = n = l$. Case 3. $4 \leq k < l < n$. Let $P_{l-k+3} : u_1, u_2, \ldots, u_{l-k+3}$ be a path of order l - k + 3. Let H be the graph formed by taking n - l + 1 new vertices $w_1, w_2, \ldots, w_{n-l+1}$, and joining each $w_i(1 \leq i \leq n - l + 1)$ with the vertices u_1 and u_3 in P_{l-k+3} ; and also joining the vertex w_1 to the vertex u_2 in

 P_{l-k+3} . Now, let G be the graph obtained from H by adding k-4 new vertices $y_1, y_2, \ldots, y_{k-4}$ and joining each $y_i (1 \le i \le k-4)$ with the vertices u_2 and w_1 in H. The graph G has order n and is shown in Figure 3.1.

Let $S = \{w_1, y_1, y_2, \ldots, y_{k-4}, u_2, u_{l-k+3}\}$ be the set of semi-extreme vertices of G. Then S is not an edge monophonic set of G. Since $S \cup \{u_1\}$ is an edge monophonic set of G, by Theorem 1.1, $m_e(G) = k$. Now, T = $S \cup \{u_3, u_4, \ldots, u_{l-k+2}\}$ is the set of semi-extreme vertices and cut-vertices of G. It is clear that T is not a connected edge monophonic set of G. Since $T \cup \{u_1\}$ is a connected edge monophonic set of G, by Theorem 2.9, $m_{ce}(G) = l$.

Case 4. $4 \leq k = l < n$. First let n = k + 1. Let G be a wheel with k + 1 vertices. Then by Theorem 1.3 and Corollary 2.22, we have $m_e(G) = m_{ce}(G) = k$. Next if n > k + 1, then we construct a graph G as follows : Let $P_3 : u_1, u_2, u_3$ be a path of order 3. Let H be the graph formed by taking n - k + 1 new vertices $w_1, w_2, \ldots, w_{n-k+1}$, and joining each $w_i(1 \leq i \leq n - k + 1)$ with the vertices u_1 and u_3 in P_3 ; and also joining the vertex w_1 to the vertex u_2 in P_3 . Now, let G be the graph obtained from H by adding k - 4 new vertices $y_1, y_2, \ldots, y_{k-4}$ and joining each $y_i(1 \leq i \leq k - 4)$ with the vertices u_2 and w_1 in H. The graph G has order n and is shown in Figure 3.2. Let $S = \{w_1, y_1, y_2, \ldots, y_{k-4}, u_2\}$ be the set of

semi-extreme vertices of G. Then for any vertex y in G, $S \cup \{y\}$ is not an edge monophonic set of G. Since $S \cup \{u_1, u_3\}$ is an edge monophonic set as well as connected edge monophonic set of G, it follows from Theorems 1.1 and 2.4 that $m_e(G) = m_{ce}(G) = k$.

Figure 3.2

Theorem 3.2. For integers k, l and n with $k < l \le n$ and k = 2, 3, there exists a connected graph G of order n such that $m_e(G) = k$ and $m_{ce}(G) = l$.

Proof. Case 1. k = 2. If l = n, then let G be a path P_n of order n. Hence by Theorems 1.3 and 2.9, $m_e(G) = 2, m_{ce}(G) = n = l$. If l < n, then we construct a graph G as follows: Let $P_l : u_1, u_2, \ldots, u_l$ be a path of order l. Let G be the graph obtained from P_l by adding n - l new vertices $w_1, w_2, \ldots, w_{n-l}$ and joining each $w_i(1 \le i \le n - l)$ with u_1 and u_3 in P_l . The graph G has order n and is shown in Figure 3.3. If l > 3, then u_l is the only semi-extreme vertex of G. Therefore, u_l belongs to every edge monophonic set of G. Since $S = \{u_1, u_l\}$ is an edge monophonic set of G, it follows from Theorem 1.1 that $m_e(G) = 2 = k$. Let $S_1 = \{u_3, u_4, \ldots, u_{l-1}, u_l\}$ be the set of semi-extreme vertices and cutvertices of G. Then, for any vertex $y \notin S_1, S_1 \cup \{y\}$ is not a connected edge monophonic set of G. It is clear that $S_1 \cup \{u_1, u_2\}$ is a connected edge

monophonic set of G so that, by Theorem 2.9, $m_{ce}(G) = l$. If l = 3, then $\{u_1, u_3\}$ is an edge monophonic set of G so that $m_e(G) = 2 = k$. It is clear that no 2-element subset of vertices is a connected edge monophonic set of G. Since $\{u_1, u_2, u_3\}$ is a connected edge monophonic set, it follows that $m_{ce}(G) = 3 = l$.

Figure 3.3

Case 2. k = 3. If l = n, then let G be a tree of order n with three endvertices. Then, by Theorems 1.3 and 2.9, $m_e(G) = 3 = k$ and $m_{ce}(G) =$ n = l. If l < n, then we construct a graph G as follows: Let H be a graph obtained from the cycle $C_4 : v_1, v_2, v_3, v_4, v_1$ of order 4 and the path $P_{l-3} : u_1, u_2, \ldots, u_{l-3}$ of order $l-3 \ge 1$ by joining u_1 in P_{l-3} with each v_1, v_2 and v_3 in C_4 . Let G be the graph obtained from H by adding n-l-1new vertices $w_1, w_2, \ldots, w_{n-l-1}$ and joining each $w_i(1 \le i \le n-l-1)$ with u_1 and v_4 in H. The graph G has order n and is shown in Figure 3.4.

If l > 4, then $S_1 = \{v_2, u_{l-3}\}$ is the set of semi-extreme vertices of G. It is clear that $S_1 \cup \{v_4\}$ is an edge monophonic set so that by Theorem 1.1, $m_e(G) = 3 = k$. Let $S_2 = S_1 \cup \{u_1, u_2, \ldots, u_{l-4}\}$ be the set of semi-extreme vertices and cut-vertices of G. Then for any vertex $y \notin S_2, S_2 \cup \{y\}$ is not a connected edge monophonic set of G. It is easily seen that $S_2 \cup \{v_1, v_4\}$ is a connected edge monophonic set of G and so by Theorem 2.9, $m_{ce}(G) = l$. If l = 4, then $S_3 = \{v_2, u_1\}$ is the set of semi-extreme vertices of G. Since $S_3 \cup \{v_4\}$ is an edge monophonic set of G, by Theorem 1.1, $m_e(G) =$ 3 = k. It is also easily verified that no 3-element subset of vertices is a connected edge monophonic set of G. Since $S_3 \cup \{v_1, v_4\}$ is a connected edge monophonic set of G, by Theorem 2.4, $m_{ce}(G) = 4 = l$.

Theorem 3.3. If j, k and l are integers such that $4 \le j \le k \le l$, then there exists a connected graph G with $m_e(G) = j, m_{ce}(G) = k$ and $g_{ce}(G) = l$.

Proof. Case 1. $4 \leq j = k = l$. Let $G = K_j$ be the complete graph of order j. Then by Theorems 1.3, 2.6 and 2.10, $m_e(G) = m_{ce}(G) = g_{ce}(G) = j$. Case 2. $4 \leq j < k = l$. Let G be a tree of order k with j endvertices. Then by Theorem 1.3, $m_e(G) = j$ and by Theorems 2.12 and 2.10, $m_{ce}(G) = g_{ce}(G) = k$.

Case 3. $4 \leq j < k < l$. Let $P_{k-j+3} : u_1, u_2, \ldots, u_{k-j+3}$ be a path of order k-j+3. Take (l-k) copies of K_2 with vertex set $F_i = \{v_i, w_i\}(1 \leq i \leq l-k);$ and also take j-3 new vertices $y_1, y_2, \ldots, y_{j-3}$. Let G be the graph obtained by joining u_1 with each $v_i(1 \leq i \leq l-k); u_3$ with each $w_i(1 \leq i \leq l-k);$ each $y_i(2 \leq i \leq j-3)$ with u_2 and y_1 ; and also y_1 with u_1, u_2, u_3 in P_{k-j+3} . The graph G is shown in Figure 3.5.

Let $S = \{u_2, u_{k-j+3}, y_1, y_2, \ldots, y_{j-3}\}$ be the set of semi-extreme vertices of G. Since S is not an edge monophonic set of G and since $S \cup \{u_1\}$ is an edge monophonic set of G, by Theorem 1.1, we have $m_e(G) = j$. Let $T = S \cup \{u_3, u_4, \ldots, u_{k-j+2}\}$ be the set of semi-extreme vertices and cutvertices of G. It is clear that T is not a connected edge monophonic set of G. Since $T \cup \{u_1\}$ is a connected edge monophonic set of G, by Theorem 2.9, $m_{ce}(G) = k$. Also, it is easily seen that T is not a connected edge geodetic set of G. Now, we observe that at least one of v_i and $w_i(1 \le i \le l - k)$ must belong to every connected edge geodetic set of G. Then, by Theorem 2.10, $T' = T \cup \{u_1, v_1, v_2, \ldots, v_{l-k}\}$ is a minimum connected edge geodetic set of G so that $g_{ce}(G) = l$.

Case 4. $4 \leq j = k < l$. Let $C_4 : u_1, u_2, u_3, u_4, u_1$ be a cycle of order 4. Let H be the graph obtained from the cycle C_4 by taking k - 3 new vertices $y_1, y_2, \ldots, y_{k-3}$ and joining y_1 with u_1 and u_3 , and joining each

 $y_i(2 \le i \le k-3)$ with both u_2 and u_4 , and also joining u_2 and u_4 . Now, let *G* be the graph obtained from *H* by taking (l-k) copies of K_2 with vertex set $F_i = \{v_i, w_i\}(1 \le i \le l-k)$ and joining u_1 with each $v_i(1 \le i \le l-k)$ in *H* and u_3 with each $w_i(1 \le i \le l-k)$ in *H*. The graph *G* is shown in Figure 3.6.

Let $S = \{u_2, u_4, y_2, y_3, \ldots, y_{k-3}\}$ be the set of semi-extreme vertices of G. It is clear that S is not an edge monophonic set of G. Also, for any $y \notin S$, $S \cup \{y\}$ is not an edge monophonic set of G. Since $S' = S \cup \{u_1, u_3\}$ is an edge monophonic set as well as a connected edge monophonic set, it follows from Theorems 1.1 and 2.4 that $m_e(G) = m_{ce}(G) = k$. Also, S is not a connected edge geodetic set of G. Now, we observe that at least one vertex of v_i and $w_i(1 \le i \le l - k)$ must belong to every connected edge geodetic set of G. Let $T = S \cup \{v_1, v_2, \ldots, v_{l-k}\}$. Then for any $y \notin T$, $T \cup \{y\}$ is not a connected edge geodetic set of G. It follows that $T \cup \{u_1, u_3\}$ is a minimum connected edge geodetic set of G so that, by Theorem 2.10, $g_{ce}(G) = l$.

Theorem 3.4. For integers j, k and l with $j < k \leq l$ and j = 2, 3, there exists a connected graph G such that $m_e(G) = j, m_{ce}(G) = k$ and

 $g_{ce}(G) = l.$

Proof. Case 1. j = 2. If k = l, then let G be a path P_l of order l. Then by Theorems 1.3, 2.9 and 2.10, $m_e(G) = 2, m_{ce}(G) = l$ and $g_{ce}(G) = l$. If k < l, then we construct a graph G as follows: Let $P_k : u_1, u_2, \ldots, u_k$ be a path of order k. Let G be the graph obtained by taking (l - k) copies of K_2 with vertex set $F_i = \{v_i, w_i\}(1 \le i \le l - k)$ and joining u_1 with each $v_i(1 \le i \le l - k)$; and also joining u_3 with each $w_i(1 \le i \le l - k)$. The graph G is shown in Figure 3.7.

Figure 3.7

If k > 3, then u_k is the only semi-extreme vertex of G. Therefore, u_k belongs to every edge monophonic set of G. Since $S = \{u_1, u_k\}$ is an edge monophonic set of G, it follows from Theorem 1.1 that $m_e(G) = 2 = j$. Let $S_1 = \{u_3, u_4, \ldots, u_{k-1}, u_k\}$ be the set of semi-extreme vertices and cutvertices of G. Then for any vertex $y \notin S_1$, $S_1 \cup \{y\}$ is not a connected edge monophonic set of G. It is clear that $S_1 \cup \{u_1, u_2\}$ is a connected edge monophonic set and so by Theorem 2.9, $m_{ce}(G) = k$. Also, it is clear that S_1 is not a connected edge geodetic set of G. Now, we observe that at least one of v_i and $w_i(1 \leq i \leq l-k)$ must belong to every connected edge geodetic set of G. Let $S_2 = S_1 \cup \{v_1, v_2, \ldots, v_{l-k}\}$. Then for any vertex $y \notin S_2$, $S_2 \cup \{y\}$ is not a connected edge geodetic set of G. Since $T = S_2 \cup \{u_1, u_2\}$ is a connected edge geodetic set of G, by Theorem 2.10, $g_{ce}(G) = l$.

If k = 3, then $T = \{u_1, u_3\}$ is an edge monophonic set of G and so $m_e(G) = 2 = j$. Also, no 2-element subset of vertices is a connected edge monophonic set of G. It is clear that $T_1 = \{u_1, u_2, u_3\}$ is a connected

edge monophonic set of G so that $m_{ce}(G) = 3 = k$. Now, we observe that at least one of v_i and $w_i(1 \le i \le l-k)$ must belong to every connected edge geodetic set of G. Let $T_2 = \{v_1, v_2, \ldots, v_{l-3}\}$. Then for $x, y \notin T_2$, $T_2 \cup \{x, y\}$ is not a connected edge geodetic set of G. Since $T_2 \cup \{u_1, u_2, u_3\}$ is a connected edge geodetic set of G, it follows that $g_{ce}(G) = l$.

Case 2. j = 3. If k = l, then let G be a tree of order l with three endvertices. Then, by Theorems 1.3, 2.12 and 2.10, $m_e(G) = 3$, $m_{ce}(G) = l$ and $g_{ce}(G) = l$. If k < l, then we construct a graph G as follows: Let H be a graph obtained from the cycle $C_{2l-2k+4}: v_1, v_2, \ldots, v_{2l-2k+4}, v_1$ of order 2l-2k+4, and the path $P_{k-3}: u_1, u_2, \ldots, u_{k-3}$ of order k-3 by joining u_1 in P_{k-3} with v_1, v_2, v_3 in $C_{2l-2k+4}$. The graph G is shown in Figure 3.8. If k > 4, then $S = \{v_2, u_{k-3}\}$ is the set of semi-extreme vertices of G. Since S is not an edge monophonic set of G and since $S \cup \{v_4\}$ is an edge monophonic set of G, by Theorem 1.1, we have $m_e(G) = 3 = j$. Let $T = S \cup \{u_1, ..., u_{k-4}\}$ be the set of semi-extreme vertices and cut-vertices of G. It is clear that for any vertex $y \notin T, T \cup \{y\}$ is not a connected edge monophonic set of G. Since $T \cup \{v_1, v_3\}$ is a connected edge monophonic set of G, by Theorem 2.9, $m_{ce}(G) = k$. It is clear that T is not a connected edge geodetic set of G and it is easily seen that $T_1 = T \cup \{v_3, v_4, ..., v_{l-k+4}\}$ is a minimum connected edge geodetic set of G and so by Theorem 2.10, $g_{ce}(G) = |T_1| = l.$

If k = 4, then $S_1 = \{u_1, u_2\}$ is the set of semi-extreme vertices of G. Since S_1 is not an edge monophonic set and since $S_2 = S_1 \cup \{v_4\}$ is an edge monophonic set of G, by Theorem 1.1, we have $m_e(G) = 3 = j$. It is clear that for any vertex $y \notin S_1, S_1 \cup \{y\}$ is not a connected edge monophonic set of G. Since $S_3 = S_1 \cup \{v_1, v_3\}$ is a connected edge monophonic set of G, by Theorem 2.9, $m_{ce}(G) = 4 = k$. Also, it is clear that S_1 is not a connected edge geodetic set of G and it is easily seen that $S_4 = S_1 \cup \{v_3, v_4, \ldots, v_l\}$ is a minimum connected edge geodetic set of G and so by Theorem 2.10, $g_c e(G) = |T_1| = l$

References

- F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(1), pp. 1-6, (2002).
- [3] G. Chartrand, F. Harary, H. C. Swart and P. Zhang, Geodomination in graphs, Bulletin of the ICA, 31, pp. 51-59, (2001).
- [4] F. Harary, Graph Theory, Addision-Wesely (1969).
- [5] F. Harary, E. Loukakis and C. Tsouros, *The geodetic number of a graph*, Mathl. Comput.Modeling, **17**(11), pp. 89-95, (1993).

- [6] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer., 143, pp. 161-174, (2000).
- [7] A. P. Santhakumaran P. Titus and P. Balakrishnan, *Edge monophonic* number of a graph, communicated.
- [8] A. P. Santhakumaran and S. V. Ullas Chandran, On the edge geodetic number and k-edge geodetic number of a graph, Inter. J. Math. Combin., 3, pp. 85-93, (2008).
- [9] A. P. Santhakumaran and S. V. Ullas Chandran, *The edge geodetic number and cartesian product of a graph*, Discussiones Mathematicae Graph Theory 30 (1), pp. 55-73, (2010).

A. P. Santhakumaran

Department of Mathematics Hindustan University Hindustan Institute of Technology and Science Chennai-603 103, India e-mail : apskumar1953@yahoo.co.in

P. Titus

Department of Mathematics University College of Engineering Nagercoil Anna University, Tirunelveli Region Negercoil - 629 004, India e-mail : titusvino@yahoo.com

and

P. Balakrishnan

Department of Mathematics University College of Engineering Nagercoil Anna University, Tirunelveli Region Negercoil - 629 004, India e-mail : gangaibala1@yahoo.com