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Abstract

For a connected graph G of order n, a set S of vertices is called
an edge monophonic set of G if every edge of G lies on a monophonic
path joining some pair of vertices in S, and the edge monophonic
number me(G) is the minimum cardinality of an edge monophonic
set. An edge monophonic set S of G is a connected edge mono-
phonic set if the subgraph induced by S is connected, and the con-
nected edge monophonic number mce(G) is the minimum cardinality
of a connected edge monophonic set of G. Graphs of order n with
connected edge monophonic number 2, 3 or n are characterized. It
is proved that there is no non-complete graph G of order n ≥ 3 with
me(G) = 3 and mce(G) = 3. It is shown that for integers k, l and
n with 4 ≤ k ≤ l ≤ n, there exists a connected graph G of order n
such that me(G) = k and mce(G) = l. Also, for integers j, k and
l with 4 ≤ j ≤ k ≤ l, there exists a connected graph G such that
me(G) = j,mce(G) = k and gce(G) = l, where gce(G) is the con-
nected edge geodetic number of a graph G.
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1. Introduction

By a graphG = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m
respectively. For basic graph theoretic terminology we refer to [4]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length
of a shortest x-y path in G. It is known that the distance is a metric on the
vertex set of G. An x-y path of length d(x, y) is called an x-y geodesic. A
vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the
vertices x and y. The neighborhood of a vertex v is the set N(v) consisting
of all vertices u which are adjacent with v. A vertex v is an extreme vertex
of G if the subgraph induced by its neighbors is complete.

A vertex v is a semi-extreme vertex of G if the subgraph induced by its
neighbors has a full degree vertex in N(v). In particular, every extreme
vertex is a semi-extreme vertex and a semi-extreme vertex need not an
extreme vertex. For the graph G in Figure 2.1, v1 and v3 are an extreme
vertices as well as semi-extreme vertices. Also v2 is a semi-extreme vertex
and not an extreme vertex of G.

A set S of vertices is a geodetic set of G if every vertex of G lies on a
geodesic joining some pair of vertices in S, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
g(G) is called a g-set of G. The geodetic number of a graph was introduced
in [1, 5] and further studied in [2, 3, 6]. It was shown in [5] that determining
the geodetic number of a graph is an NP-hard problem. A set S of vertices
in G is called an edge geodetic set of G if every edge of G lies on a geodesic
joining some pair of vertices in S, and the minimum cardinality of an edge
geodetic set is the edge geodetic number ge(G) of G. An edge geodetic set
of cardinality ge(G) is called a ge-set of G. An edge geodetic set S of G
is called a connected edge geodetic set of G if the subgraph induced by S
is connected, and the minimum cardinality of a connected edge geodetic
set is the connected edge geodetic number gce(G) of G. A connected edge
geodetic set of cardinality gce(G) is called a gce-set of G. The edge geodetic
number of a graph was introduced and studied in [8, 9].

A chord of a path u1, u2, . . . , uk in G is an edge uiuj with j ≥ i+ 2. A
u-v path P is called a monophonic path if it is a chordless path. A set S
of vertices is a monophonic set if every vertex of G lies on a monophonic
path joining some pair of vertices in S, and the minimum cardinality of a
monophonic set is the monophonic number m(G) of G. A monophonic set
of cardinality m(G) is called an m-set of G. A set S of vertices in G is
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called an edge monophonic set of G if every edge of G lies on a monophonic
path joining some pair of vertices in S, and the minimum cardinality of an
edge monophonic set is the edge monophonic number me(G) of G. An edge
monophonic set of cardinality me(G) is called an me-set of G. The edge
monophonic number of a graph was introduced and studied in [7].

Theorem 1.1. [7] Every semi-extreme vertex of a connected graph G be-
longs to each edge monophonic set of G. In particular, if the set S of all
semi-extreme vertices of G is an edge monophonic set of G, then S is the
unique minimum edge monophonic set of G.

Theorem 1.2. [7] Let G be a connected graph with cut-vertices and S an
edge monophonic set of G. If v is a cut-vertex of G, then every component
of G− v contains an element of S.

Theorem 1.3. [7] (1) For the complete graph Kn of order n ≥ 2, me(G) =
n.
(2) For any non-trivial tree T of order n with k endvertices, me(T ) = k.
(3) For any wheel Wn(n ≥ 5) of order n, me(Wn) = n− 1.

2. Connected edge monophonic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices.
A connected edge monophonic set of G is an edge monophonic set S such
that the subgraph induced by S is connected. The minimum cardinality of
a connected edge monophonic set of G is the connected edge monophonic
number of G and is denoted by mce(G). A connected edge monophonic set
of cardinality mce(G) is called an mce-set of G.

Example 2.2. For the graph G given in Figure 2.1, it is easily seen that
no 4-element subset of vertices is an edge monophonic set. It is clear that
S = {v1, v2, v3, v6, v8} is an edge monophonic set of G so that me(G) = 5.
It is easily seen that no 6-element subset of vertices is a connected edge
monophonic set of G. Since S = {v1, v2, v3, v4, v5, v6, v8} is a connected
edge monophonic set of G, we have mce(G) = 7.
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Note that S1 = {v1, v2, v3, v4, v5, v6, v10} is also a minimum connected
edge monophonic set of G. Thus the edge monophonic number and con-
nected edge monophonic number are different.

Theorem 2.3. For any connected graph G of order n, 2 ≤ me(G) ≤
mce(G) ≤ n.

Proof. An edge monophonic set needs at least two vertices and some(G) ≥
2. Since every connected edge monophonic set is also an edge monophonic
set, it follows that me(G) ≤ mce(G). Also, since the set of all vertices of G
is a connected edge monophonic set of G, mce(G) ≤ n. 2

We observe that for the complete graph K2, mce(K2) = me(K2) = 2
and for the complete graph Kn(n ≥ 3), mce(G) = me(G) = n. Also, all the
inequalities in Theorem 2.3 are strict. For the graph G given in Figure 2.1,
me(G) = 5,mce(G) = 7 and n = 10.

Theorem 2.4. Every semi-extreme vertex of a connected graph G belongs
to each connected edge monophonic set of G. In particular, if the set S of
all semi-extreme vertices of G is a connected edge monophonic set of G,
then S is the unique minimum connected edge monophonic set of G.

Proof. Since every connected edge monophoic set is also an edge mono-
phonic set, the result follows from Theorem 1.1. 2

Corollary 2.5. For any connected graph G of order n with k semi-extreme
vertices, max{2, k} ≤ mce(G) ≤ n.

Marisol Martínez
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Proof. This follows from Theorems 2.3 and 2.4. 2

Corollary 2.6. For the complete graph Kn (n ≥ 2), mce(Kn) = n.

The converse of Corollary 2.6 need not be true. For the graph G given
in Figure 2.2, each vertex is a semi-extreme and S = {v1, v2, v3, v4, v5, v6}
is an mce-set of G. Therefore, mce(G) = 6 and G is not a complete graph.

Since every connected edge monophonic set is an edge monophonic set,
the next theorem follows from Theorem 1.2.

Theorem 2.7. Let G be a connected graph with cut-vertices and S a
connected edge monophonic set of G. If v is a cut-vertex of G, then every
component of G− v contains an element of S.

Theorem 2.8. Every cut-vertex of a connected graph G belongs to every
connected edge monophonic set of G.

Proof. Let G be a connected graph and S a connected edge monophonic
set of G. Let v be a cut-vertex of G and G1, G2, . . . ,Gr(r ≥ 2) the compo-
nents of G− v. By Theorem 2.7, S contains at least one vertex from each
Gi(1 ≤ i ≤ r). Since the subgraph induced by S is connected, it follows
that v ∈ S. 2

Combining Theorems 2.4 and 2.8, we have the following theorem.

Theorem 2.9. Every semi-extreme vertex and every cut-vertex of a con-
nected graph G belong to each connected edge monophonic set of G.

Marisol Martínez
fig2-2
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Since every connected edge geodetic set is a connected edge monophonic
set, we have the following theorem.

Theorem 2.10. Every semi-extreme vertex and every cut-vertex of a con-
nected graph G belong to each connected edge geodetic set of G.

Corollary 2.11. For any connected graph G of order n with k semi-
extreme vertices and l cut-vertices, max{2, k + l} ≤ mce(G) ≤ n.

Proof. This follows from Theorems 2.3 and 2.9 2

Corollary 2.12. For any tree T of order n, mce(T ) = n.

Proof. This follows from Corollary 2.11. 2

Theorem 2.13. For the complete bipartite graph G = Kr,s (2 ≤ r ≤ s),
mce(G) = r + 1.

Proof. Let U = {u1, u2, . . . , ur} and W = {w1, w2, . . . , ws} be the partite
set of G. Let S = U ∪ {w1}. We prove that S is a minimum connected
edge monophonic set of G. Note that any u -v monophonic path in G is
of length at most 2. Every edge uiwj (1 ≤ i ≤ r, 1 ≤ j ≤ s) lies on the
monophonic path ui, wj , uk for any k 6= i, and so S is a connected edge
monophonic set of G. Let T be any set of vertices such that |T | < |S|. If
T ⊆ U or T ⊆ W , then T cannot be a connected edge monophonic set of
G. If T is such that T contains vertices from U and W such that ui /∈ T
and wj /∈ T . Then clearly the edge uiwj does not lie on a monophonic path
joining two vertices of T so that T is not a connected edge monophonic set.
Thus in any case T is not a connected edge monophonic set of G. Hence S
is a minimum connected edge monophonic set so thatmce(G) = |S| = r+1.

2

Theorem 2.14. For any cycle Cn (n ≥ 3), mce(Cn) = 3.

Proof. Let Cn : u1, u2, . . . , un, u1 be a cycle of order n ≥ 3. It is clear
that no 2-element subset of vertices is a connected edge monophonic set of
G. Now, S = {u1, u2, u3} is a connected edge monophonic set of G so that
mce(G) = 3. 2

Theorem 2.15. For any connected graph G of order n, mce(G) = 2 if and
only if G = K2.
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Proof. If G = K2, then mce(G) = 2. Conversely, let mce(G) = 2. Let
S = {u, v} be a minimum connected edge monophonic set of G. Then uv
is an edge. If G 6= K2, then there exists an edge xy different from uv, and
the edge xy does not lie on any u-v monophonic path so that S is not a
connected edge monophonic set, which is a contradiction. Thus G = K2.
2

A vertex v in graph G is called an independent vertex if the subgraph
induced by its neighbors contains no edges.

Theorem 2.16. Let G be a non-complete connected graph of order n ≥ 3.
Then mce(G) = 3 if and only if there exist two independent vertices u and
w such that d(u,w) = 2 and every edge of G lies on a u-w monophonic
path.

Proof. Let mce(G) = 3 and let S = {u, v, w} be a connected edge mono-
phonic set of G. If the subgraph induced by S is complete, then G ∼= K3,
which is a contradiction. So assume that u and w are non-adjacent in G.
It is clear that d(u,w) = 2. Now, we show that u and w are independent
vertices of G. Suppose that u is not an independent vertex of G. Then
there exist vertices u1, u2 ∈ N(u) such that u1 and u2 are adjacent in G.
Since S is a connected edge monophonic set, u1u2 lies on a u-w monophonic
path P . Since u1 and u2 are adjacent to u in G, it follows that P is not
a monophonic path, which is a contradiction. Thus, u is an independent
vertex of G. Similarly, w is an independent vertex of G. Now, since S is a
connected edge monophonic set and since the subgraph induced by S is the
path P : u, v, w, it follows that every edge of G lies on a u-w monophonic
path. Conversely, let u and w be two independent vertices of G such that
d(u,w) = 2 and every edge of G lies on a u-w monophonic path. Since G is
non-complete, no 2-element subset of G is a connected edge monophonic set
of G. Now, let P : u, v, w be a u-w monophonic path. Then S = {u, v, w}
is a minimum connected edge monophonic set of G so that mce(G) = 3. 2

Corollary 2.17. IfG is a non-complete graph of order n ≥ 3 withmce(G) =
3, then me(G) = 2.

Corollary 2.18. There is no non-complete graph G of order n ≥ 3 with
me(G) = 3 and mce(G) = 3.

Corollary 2.19. Let G be any connected graph of order n ≥ 3. Then
me(G) = mce(G) = 3 if and only if G = K3.
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Theorem 2.20. Let G be a connected graph of order n ≥ 3. If G contains
exactly one vertex v of degree n − 1, then every vertex of G other than v
is a semi-extreme vertex.

Proof. Let v be the unique vertex of degree n − 1 and let w 6= v be
any vertex in G. Then v is adjacent to all the neighbors of w so that
deg<N(w)>(v) = |N(w)|− 1. Hence w is a semi-extreme vertex of G. 2

Theorem 2.21. Let G be a connected graph of order n ≥ 3. If G contains
exactly one vertex v of degree n − 1 and v is not a cut-vertex of G, then
mce(G) = n − 1. In fact, S = V − {v} is the unique minimum connected
edge monophonic set of G.

Proof. Let v be the unique vertex of degree n−1. Let S = V −{v}. Then
by Theorem 2.20, S is the set of semi-extreme vertices of G. By Theorem
2.4, every connected edge monophonic set contains S and somce(G) ≥ n−1.
Let uv be any edge incident with v. Since v is the only vertex of degree
n−1, there exists at least one vertex w ∈ N(v) such that u and w are non-
adjacent. Then uv lies on the monophonic path P : u, v, w with u,w ∈ S.
Also, any edge xy not incident with v lies on the x-y monophonic path
itself. Thus S is an edge monophonic set of G. Since v is not a cut-vertex
of G, the subgraph induced by S is connected so that mce(G) ≤ n − 1.
Hence mce(G) = n− 1. 2

Corollary 2.22. For the wheelWn = K1+Cn−1 (n ≥ 5),mce(Wn) = n−1.

The converse of Theorem 2.21 is not true. For the graph G given in Fig-
ure 2.3, S = {u1, u2, u3, u4, u5} is a minimum connected edge monophonic
set of G. Therefore, mce(G) = 5 = n− 1 and no vertex has degree n− 1.

Marisol Martínez
fig2-3
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Problem 2.23. Characterize graphs G of order n for which mce(G) =
n− 1.

Theorem 2.24. Let G be a connected graph of order n ≥ 3. If G has a
cut-vertex of degree n− 1, then mce(G) = n.

Proof. This follows from Theorems 2.20 and 2.9. 2

The converse of Theorem 2.24 is not true. For the graph G given in
Figure 2.4, S = {v1, v3, v4, v5, v6} is the set of all semi-extreme vertices of G
and v2 is the only cut-vertex of G. Hence by Theorem 2.9, mce(G) = 6 = n.
However, G has no cut-vertex of degree n− 1.

Theorem 2.25. Let G be a connected graph of order n. If G has at least
two vertices of degree n−1, then every vertex of G is a semi-extreme vertex
of G.

Proof. Let u1, u2, . . . , ul(l ≥ 2) be the vertices of degree n − 1. Then
each ui(1 ≤ i ≤ l) is adjacent to all other vertices in G. Let u be any
vertex in G. If u 6= ui(1 ≤ i ≤ l), then u is adjacent to each ui so
that deg<N(u)>(ui) = |N(u)| − 1. Hence u is a semi-extreme vertex of
G. If u = ui(1 ≤ i ≤ l), then ui is adjacent to uj , j 6= i, and so again
deg<N(u)>(uj) = |N(u)|− 1. Hence u is a semi-extreme vertex of G. Thus
every vertex of G is a semi-extreme vertex. 2

Theorem 2.26. For any graph G of order n with at least two vertices of
degree n− 1, mce(G) = n.

Proof. This follows from Theorems 2.4 and 2.25. 2

Marisol Martínez
fig2-4
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The converse of Theorem 2.26 is not true. For the graph G given in
Figure 2.2, S = {v1, v2, v3, v4, v5, v6} is a minimum connected edge mono-
phonic set of G so that mce(G) = 6 = n and G has no vertex of degree
n− 1.

Theorem 2.27. Let G be a connected graph of order n. Thenmce(G) = n
if and only if every vertex of G is either a cut-vertex or a semi-extreme
vertex.

Proof. Let mce(G) = n. Then S = V is the only connected edge mono-
phonic set of G. Suppose that there exists a vertex u such that u is neither
a semi-extreme vertex nor a cut-vertex of G. Since u is not a semi-extreme
vertex, for each v ∈ N(u), there exists a vertex w ∈ N(u) such that w 6= v
and vw is not an edge of G. Now, we show that S = V − {u} is an edge
monophonic set of G. Let vu be any edge of G. Then vu lies on the mono-
phonic path P : v, u, w. Also, any edge xy not incident with u lies on the
x-y monophonic path itself. Hence S is an edge monophonic set of G. Since
u is not a cut-vertex of G, the subgraph induced by S is connected. There-
fore, S is a connected edge monophonic set of G so that mce(G) ≤ n − 1,
which is a contradiction. Hence every vertex of G is either a semi-extreme
vertex or a cut-vertex. The converse follows from Theorem 2.9. 2

Corollary 2.28. For the graph G = K1 + ∪mjKj , where
P

mj ≥ 2, of
order n ≥ 3, mce(G) = n.

3. Realisation Results

In view of Corollary 2.18, we have the following realization result.

Theorem 3.1. For integers k, l and n with 4 ≤ k ≤ l ≤ n, there exists a
connected graph G of order n such that me(G) = k and mce(G) = l.

Proof. Case 1. 4 ≤ k = l = n. Then, for the compete graph G = Kn of
order n, by Theorem 1.3 and Corollary 2.6, we have me(G) = mce(G) = n.
Case 2. 4 ≤ k < l = n. Let G be a tree of order n with k endvertices. Then
by Theorem 1.3 and Corollary 2.12, me(G) = k and mce(G) = n = l.
Case 3. 4 ≤ k < l < n. Let Pl−k+3 : u1, u2, . . . , ul−k+3 be a path of order
l − k + 3. Let H be the graph formed by taking n − l + 1 new vertices
w1, w2, . . . , wn−l+1, and joining each wi(1 ≤ i ≤ n− l+1) with the vertices
u1 and u3 in Pl−k+3; and also joining the vertex w1 to the vertex u2 in
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Pl−k+3. Now, let G be the graph obtained from H by adding k − 4 new
vertices y1, y2, . . . , yk−4 and joining each yi(1 ≤ i ≤ k−4) with the vertices
u2 and w1 in H. The graph G has order n and is shown in Figure 3.1.

Let S = {w1, y1, y2, . . . , yk−4, u2, ul−k+3} be the set of semi-extreme vertices
of G. Then S is not an edge monophonic set of G. Since S ∪ {u1} is
an edge monophonic set of G, by Theorem 1.1, me(G) = k. Now, T =
S ∪ {u3, u4, . . . , ul−k+2} is the set of semi-extreme vertices and cut-vertices
of G. It is clear that T is not a connected edge monophonic set of G.
Since T ∪ {u1} is a connected edge monophonic set of G, by Theorem 2.9,
mce(G) = l.

Case 4. 4 ≤ k = l < n. First let n = k + 1. Let G be a wheel with
k+1 vertices. Then by Theorem 1.3 and Corollary 2.22, we have me(G) =
mce(G) = k. Next if n > k + 1, then we construct a graph G as follows
: Let P3 : u1, u2, u3 be a path of order 3. Let H be the graph formed by
taking n− k + 1 new vertices w1, w2, . . . , wn−k+1, and joining each wi(1 ≤
i ≤ n − k + 1) with the vertices u1 and u3 in P3; and also joining the
vertex w1 to the vertex u2 in P3. Now, let G be the graph obtained from
H by adding k − 4 new vertices y1, y2, . . . , yk−4 and joining each yi(1 ≤
i ≤ k − 4) with the vertices u2 and w1 in H. The graph G has order n
and is shown in Figure 3.2. Let S = {w1, y1, y2, . . . , yk−4, u2} be the set of

Marisol Martínez
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semi-extreme vertices of G. Then for any vertex y in G, S ∪ {y} is not an
edge monophonic set of G. Since S ∪ {u1, u3} is an edge monophonic set
as well as connected edge monophonic set of G, it follows from Theorems
1.1 and 2.4 that me(G) = mce(G) = k. 2

Theorem 3.2. For integers k, l and n with k < l ≤ n and k = 2, 3, there
exists a connected graph G of order n such thatme(G) = k andmce(G) = l.

Proof. Case 1. k = 2. If l = n, then let G be a path Pn of order
n. Hence by Theorems 1.3 and 2.9, me(G) = 2,mce(G) = n = l. If
l < n, then we construct a graph G as follows: Let Pl : u1, u2, . . . , ul
be a path of order l. Let G be the graph obtained from Pl by adding
n − l new vertices w1, w2, . . . , wn−l and joining each wi(1 ≤ i ≤ n − l)
with u1 and u3 in Pl. The graph G has order n and is shown in Figure
3.3. If l > 3, then ul is the only semi-extreme vertex of G. Therefore, ul
belongs to every edge monophonic set of G. Since S = {u1, ul} is an edge
monophonic set of G, it follows from Theorem 1.1 that me(G) = 2 = k.
Let S1 = {u3, u4, . . . , ul−1, ul} be the set of semi-extreme vertices and cut-
vertices of G. Then, for any vertex y /∈ S1, S1 ∪ {y} is not a connected
edge monophonic set of G. It is clear that S1∪{u1, u2} is a connected edge

Marisol Martínez
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monophonic set of G so that, by Theorem 2.9, mce(G) = l. If l = 3, then
{u1, u3} is an edge monophonic set of G so that me(G) = 2 = k. It is clear
that no 2-element subset of vertices is a connected edge monophonic set of
G. Since {u1, u2, u3} is a connected edge monophonic set, it follows that
mce(G) = 3 = l.

Case 2. k = 3. If l = n, then let G be a tree of order n with three
endvertices. Then, by Theorems 1.3 and 2.9, me(G) = 3 = k and mce(G) =
n = l. If l < n, then we construct a graph G as follows: Let H be a
graph obtained from the cycle C4 : v1, v2, v3, v4, v1 of order 4 and the path
Pl−3 : u1, u2, . . . , ul−3 of order l − 3 ≥ 1 by joining u1 in Pl−3 with each
v1, v2 and v3 in C4. Let G be the graph obtained from H by adding n−l−1
new vertices w1, w2, . . . , wn−l−1 and joining each wi(1 ≤ i ≤ n− l−1) with
u1 and v4 in H. The graph G has order n and is shown in Figure 3.4.

Marisol Martínez
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If l > 4, then S1 = {v2, ul−3} is the set of semi-extreme vertices of G. It
is clear that S1 ∪ {v4} is an edge monophonic set so that by Theorem 1.1,
me(G) = 3 = k. Let S2 = S1∪{u1, u2, . . . , ul−4} be the set of semi-extreme
vertices and cut-vertices of G. Then for any vertex y /∈ S2, S2 ∪ {y} is not
a connected edge monophonic set of G. It is easily seen that S2∪{v1, v4} is
a connected edge monophonic set of G and so by Theorem 2.9, mce(G) = l.
If l = 4, then S3 = {v2, u1} is the set of semi-extreme vertices of G. Since
S3 ∪ {v4} is an edge monophonic set of G, by Theorem 1.1, me(G) =
3 = k. It is also easily verified that no 3-element subset of vertices is a
connected edge monophonic set of G. Since S3 ∪ {v1, v4} is a connected
edge monophonic set of G, by Theorem 2.4, mce(G) = 4 = l. 2

Theorem 3.3. If j, k and l are integers such that 4 ≤ j ≤ k ≤ l, then there
exists a connected graph G with me(G) = j,mce(G) = k and gce(G) = l.

Proof. Case 1. 4 ≤ j = k = l. Let G = Kj be the complete graph of order
j. Then by Theorems 1.3, 2.6 and 2.10, me(G) = mce(G) = gce(G) = j.

Case 2. 4 ≤ j < k = l. Let G be a tree of order k with j endvertices. Then
by Theorem 1.3, me(G) = j and by Theorems 2.12 and 2.10, mce(G) =
gce(G) = k.
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Case 3. 4 ≤ j < k < l. Let Pk−j+3 : u1, u2, . . . , uk−j+3 be a path of order
k−j+3. Take (l−k) copies ofK2 with vertex set Fi = {vi, wi}(1 ≤ i ≤ l−k);
and also take j−3 new vertices y1, y2, . . . , yj−3. LetG be the graph obtained
by joining u1 with each vi(1 ≤ i ≤ l − k); u3 with each wi(1 ≤ i ≤ l − k);
each yi(2 ≤ i ≤ j−3) with u2 and y1; and also y1 with u1, u2, u3 in Pk−j+3.
The graph G is shown in Figure 3.5.

Let S = {u2, uk−j+3, y1, y2, . . . , yj−3} be the set of semi-extreme vertices
of G. Since S is not an edge monophonic set of G and since S ∪ {u1} is
an edge monophonic set of G, by Theorem 1.1, we have me(G) = j. Let
T = S ∪ {u3, u4, . . . , uk−j+2} be the set of semi-extreme vertices and cut-
vertices of G. It is clear that T is not a connected edge monophonic set of
G. Since T∪{u1} is a connected edge monophonic set of G, by Theorem 2.9,
mce(G) = k. Also, it is easily seen that T is not a connected edge geodetic
set of G. Now, we observe that at least one of vi and wi(1 ≤ i ≤ l − k)
must belong to every connected edge geodetic set of G. Then, by Theorem
2.10, T 0 = T ∪ {u1, v1, v2, . . . , vl−k} is a minimum connected edge geodetic
set of G so that gce(G) = l.

Case 4. 4 ≤ j = k < l. Let C4 : u1, u2, u3, u4, u1 be a cycle of order
4. Let H be the graph obtained from the cycle C4 by taking k − 3 new
vertices y1, y2, . . . , yk−3 and joining y1 with u1 and u3, and joining each
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yi(2 ≤ i ≤ k−3) with both u2 and u4, and also joining u2 and u4. Now, let
G be the graph obtained from H by taking (l−k) copies of K2 with vertex
set Fi = {vi, wi}(1 ≤ i ≤ l − k) and joining u1 with each vi(1 ≤ i ≤ l − k)
in H and u3 with each wi(1 ≤ i ≤ l − k) in H. The graph G is shown in
Figure 3.6.

Let S = {u2, u4, y2, y3, . . . , yk−3} be the set of semi-extreme vertices of G.
It is clear that S is not an edge monophonic set of G. Also, for any y /∈ S,
S ∪ {y} is not an edge monophonic set of G. Since S0 = S ∪ {u1, u3} is an
edge monophonic set as well as a connected edge monophonic set, it follows
from Theorems 1.1 and 2.4 that me(G) = mce(G) = k. Also, S is not a
connected edge geodetic set of G. Now, we observe that at least one vertex
of vi and wi(1 ≤ i ≤ l − k) must belong to every connected edge geodetic
set of G. Let T = S ∪ {v1, v2, . . . , vl−k}. Then for any y /∈ T , T ∪ {y}
is not a connected edge geodetic set of G. It follows that T ∪ {u1, u3} is
a minimum connected edge geodetic set of G so that, by Theorem 2.10,
gce(G) = l. 2

Theorem 3.4. For integers j, k and l with j < k ≤ l and j = 2, 3,
there exists a connected graph G such that me(G) = j,mce(G) = k and
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gce(G) = l.

Proof. Case 1. j = 2. If k = l, then let G be a path Pl of order l. Then
by Theorems 1.3, 2.9 and 2.10, me(G) = 2,mce(G) = l and gce(G) = l. If
k < l, then we construct a graph G as follows: Let Pk : u1, u2, . . . , uk be a
path of order k. Let G be the graph obtained by taking (l − k) copies of
K2 with vertex set Fi = {vi, wi}(1 ≤ i ≤ l − k) and joining u1 with each
vi(1 ≤ i ≤ l − k); and also joining u3 with each wi(1 ≤ i ≤ l − k). The
graph G is shown in Figure 3.7.

If k > 3, then uk is the only semi-extreme vertex of G. Therefore, uk
belongs to every edge monophonic set of G. Since S = {u1, uk} is an edge
monophonic set of G, it follows from Theorem 1.1 that me(G) = 2 = j.
Let S1 = {u3, u4, . . . , uk−1, uk} be the set of semi-extreme vertices and cut-
vertices of G. Then for any vertex y /∈ S1, S1 ∪ {y} is not a connected
edge monophonic set of G. It is clear that S1 ∪ {u1, u2} is a connected
edge monophonic set and so by Theorem 2.9, mce(G) = k. Also, it is clear
that S1 is not a connected edge geodetic set of G. Now, we observe that
at least one of vi and wi(1 ≤ i ≤ l − k) must belong to every connected
edge geodetic set of G. Let S2 = S1 ∪ {v1, v2, . . . , vl−k}. Then for any
vertex y /∈ S2, S2 ∪ {y} is not a connected edge geodetic set of G. Since
T = S2 ∪ {u1, u2} is a connected edge geodetic set of G, by Theorem 2.10,
gce(G) = l.

If k = 3, then T = {u1, u3} is an edge monophonic set of G and so
me(G) = 2 = j. Also, no 2-element subset of vertices is a connected edge
monophonic set of G. It is clear that T1 = {u1, u2, u3} is a connected
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edge monophonic set of G so that mce(G) = 3 = k. Now, we observe that
at least one of vi and wi(1 ≤ i ≤ l − k) must belong to every connected
edge geodetic set of G. Let T2 = {v1, v2, . . . , vl−3}. Then for x, y /∈ T2,
T2∪{x, y} is not a connected edge geodetic set of G. Since T2∪{u1, u2, u3}
is a connected edge geodetic set of G, it follows that gce(G) = l.

Case 2. j = 3. If k = l, then let G be a tree of order l with three
endvertices. Then, by Theorems 1.3, 2.12 and 2.10, me(G) = 3,mce(G) = l
and gce(G) = l. If k < l, then we construct a graph G as follows: Let H be
a graph obtained from the cycle C2l−2k+4 : v1, v2, . . . , v2l−2k+4, v1 of order
2l − 2k + 4, and the path Pk−3 : u1, u2, . . . , uk−3 of order k − 3 by joining
u1 in Pk−3 with v1, v2, v3 in C2l−2k+4. The graph G is shown in Figure
3.8. If k > 4, then S = {v2, uk−3} is the set of semi-extreme vertices of
G. Since S is not an edge monophonic set of G and since S ∪ {v4} is an
edge monophonic set of G, by Theorem 1.1, we have me(G) = 3 = j. Let
T = S ∪ {u1, ..., uk−4} be the set of semi-extreme vertices and cut-vertices
of G. It is clear that for any vertex y /∈ T , T ∪ {y} is not a connected edge
monophonic set of G. Since T ∪ {v1, v3} is a connected edge monophonic
set of G, by Theorem 2.9, mce(G) = k. It is clear that T is not a connected
edge geodetic set of G and it is easily seen that T1 = T ∪{v3, v4, ..., vl−k+4}
is a minimum connected edge geodetic set of G and so by Theorem 2.10,
gce(G) = |T1| = l.

If k = 4, then S1 = {u1, u2} is the set of semi-extreme vertices of G.
Since S1 is not an edge monophonic set and since S2 = S1∪{v4} is an edge
monophonic set of G, by Theorem 1.1, we have me(G) = 3 = j. It is clear
that for any vertex y /∈ S1, S1∪{y} is not a connected edge monophonic set
of G. Since S3 = S1 ∪ {v1, v3} is a connected edge monophonic set of G, by
Theorem 2.9, mce(G) = 4 = k. Also, it is clear that S1 is not a connected
edge geodetic set of G and it is easily seen that S4 = S1 ∪ {v3, v4, . . . , vl}
is a minimum connected edge geodetic set of G and so by Theorem 2.10,
gce(G) = |T1| = l

2
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