# Connected edge monophonic number of a graph 

A. P. Santhakumaran<br>Hindustan University, INDIA<br>P. Titus<br>and<br>P. Balakrishnan<br>University College of Engineering Nagercoil, INDIA<br>Received : April 2012. Accepted : May 2013


#### Abstract

For a connected graph $G$ of order n, a set $S$ of vertices is called an edge monophonic set of $G$ if every edge of $G$ lies on a monophonic path joining some pair of vertices in $S$, and the edge monophonic number $m_{e}(G)$ is the minimum cardinality of an edge monophonic set. An edge monophonic set $S$ of $G$ is a connected edge monophonic set if the subgraph induced by $S$ is connected, and the connected edge monophonic number $m_{c e}(G)$ is the minimum cardinality of a connected edge monophonic set of $G$. Graphs of order $n$ with connected edge monophonic number 2, 3 or $n$ are characterized. It is proved that there is no non-complete graph $G$ of order $n \geq 3$ with $m_{e}(G)=3$ and $m_{c e}(G)=3$. It is shown that for integers $k, l$ and $n$ with $4 \leq k \leq l \leq n$, there exists a connected graph $G$ of order $n$ such that $m_{e}(G)=k$ and $m_{c e}(G)=l$. Also, for integers $j, k$ and $l$ with $4 \leq j \leq k \leq l$, there exists a connected graph $G$ such that $m_{e}(G)=j, m_{c e}(G)=k$ and $g_{c e}(G)=l$, where $g_{c e}(G)$ is the connected edge geodetic number of a graph $G$.


Key Words: Monophonic path, edge monophonic number, connected edge monophonic number, connected edge geodetic number.

AMS Subject Classification: 05C12.

## 1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of $G$ are denoted by $n$ and $m$ respectively. For basic graph theoretic terminology we refer to [4]. For vertices $x$ and $y$ in a connected graph $G$, the distance $d(x, y)$ is the length of a shortest $x-y$ path in $G$. It is known that the distance is a metric on the vertex set of $G$. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex $v$ is said to lie on an $x-y$ geodesic $P$ if $v$ is a vertex of $P$ including the vertices $x$ and $y$. The neighborhood of a vertex $v$ is the set $N(v)$ consisting of all vertices $u$ which are adjacent with $v$. A vertex $v$ is an extreme vertex of $G$ if the subgraph induced by its neighbors is complete.

A vertex $v$ is a semi-extreme vertex of $G$ if the subgraph induced by its neighbors has a full degree vertex in $N(v)$. In particular, every extreme vertex is a semi-extreme vertex and a semi-extreme vertex need not an extreme vertex. For the graph $G$ in Figure 2.1, $v_{1}$ and $v_{3}$ are an extreme vertices as well as semi-extreme vertices. Also $v_{2}$ is a semi-extreme vertex and not an extreme vertex of $G$.

A set $S$ of vertices is a geodetic set of $G$ if every vertex of $G$ lies on a geodesic joining some pair of vertices in $S$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a $g$-set of $G$. The geodetic number of a graph was introduced in $[1,5]$ and further studied in $[2,3,6]$. It was shown in $[5]$ that determining the geodetic number of a graph is an NP-hard problem. A set $S$ of vertices in $G$ is called an edge geodetic set of $G$ if every edge of $G$ lies on a geodesic joining some pair of vertices in $S$, and the minimum cardinality of an edge geodetic set is the edge geodetic number $g_{e}(G)$ of $G$. An edge geodetic set of cardinality $g_{e}(G)$ is called a $g_{e}$-set of $G$. An edge geodetic set $S$ of $G$ is called a connected edge geodetic set of $G$ if the subgraph induced by $S$ is connected, and the minimum cardinality of a connected edge geodetic set is the connected edge geodetic number $g_{c e}(G)$ of $G$. A connected edge geodetic set of cardinality $g_{c e}(G)$ is called a $g_{c e}$-set of $G$. The edge geodetic number of a graph was introduced and studied in $[8,9]$.

A chord of a path $u_{1}, u_{2}, \ldots, u_{k}$ in $G$ is an edge $u_{i} u_{j}$ with $j \geq i+2$. A $u-v$ path $P$ is called a monophonic path if it is a chordless path. A set $S$ of vertices is a monophonic set if every vertex of $G$ lies on a monophonic path joining some pair of vertices in $S$, and the minimum cardinality of a monophonic set is the monophonic number $m(G)$ of $G$. A monophonic set of cardinality $m(G)$ is called an $m$-set of $G$. A set $S$ of vertices in $G$ is
called an edge monophonic set of $G$ if every edge of $G$ lies on a monophonic path joining some pair of vertices in $S$, and the minimum cardinality of an edge monophonic set is the edge monophonic number $m_{e}(G)$ of $G$. An edge monophonic set of cardinality $m_{e}(G)$ is called an $m_{e}$-set of $G$. The edge monophonic number of a graph was introduced and studied in [7].

Theorem 1.1. [7] Every semi-extreme vertex of a connected graph $G$ belongs to each edge monophonic set of $G$. In particular, if the set $S$ of all semi-extreme vertices of $G$ is an edge monophonic set of $G$, then $S$ is the unique minimum edge monophonic set of $G$.

Theorem 1.2. [7] Let $G$ be a connected graph with cut-vertices and $S$ an edge monophonic set of $G$. If $v$ is a cut-vertex of $G$, then every component of $G-v$ contains an element of $S$.

Theorem 1.3. [7] (1) For the complete graph $K_{n}$ of order $n \geq 2, m_{e}(G)=$ $n$.
(2) For any non-trivial tree $T$ of order $n$ with $k$ endvertices, $m_{e}(T)=k$.
(3) For any wheel $W_{n}(n \geq 5)$ of order $n, m_{e}\left(W_{n}\right)=n-1$.

## 2. Connected edge monophonic number of a graph

Definition 2.1. Let $G$ be a connected graph with at least two vertices. A connected edge monophonic set of $G$ is an edge monophonic set $S$ such that the subgraph induced by $S$ is connected. The minimum cardinality of a connected edge monophonic set of $G$ is the connected edge monophonic number of $G$ and is denoted by $m_{c e}(G)$. A connected edge monophonic set of cardinality $m_{c e}(G)$ is called an $m_{c e}$-set of $G$.

Example 2.2. For the graph $G$ given in Figure 2.1, it is easily seen that no 4 -element subset of vertices is an edge monophonic set. It is clear that $S=\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{8}\right\}$ is an edge monophonic set of $G$ so that $m_{e}(G)=5$. It is easily seen that no 6 -element subset of vertices is a connected edge monophonic set of $G$. Since $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{8}\right\}$ is a connected edge monophonic set of $G$, we have $m_{c e}(G)=7$.


Figure 2.1

Note that $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{10}\right\}$ is also a minimum connected edge monophonic set of $G$. Thus the edge monophonic number and connected edge monophonic number are different.

Theorem 2.3. For any connected graph $G$ of order $n, 2 \leq m_{e}(G) \leq$ $m_{c e}(G) \leq n$.

Proof. An edge monophonic set needs at least two vertices and so $m_{e}(G) \geq$ 2. Since every connected edge monophonic set is also an edge monophonic set, it follows that $m_{e}(G) \leq m_{c e}(G)$. Also, since the set of all vertices of $G$ is a connected edge monophonic set of $G, m_{c e}(G) \leq n$.

We observe that for the complete graph $K_{2}, m_{c e}\left(K_{2}\right)=m_{e}\left(K_{2}\right)=2$ and for the complete graph $K_{n}(n \geq 3), m_{c e}(G)=m_{e}(G)=n$. Also, all the inequalities in Theorem 2.3 are strict. For the graph $G$ given in Figure 2.1, $m_{e}(G)=5, m_{c e}(G)=7$ and $n=10$.

Theorem 2.4. Every semi-extreme vertex of a connected graph $G$ belongs to each connected edge monophonic set of $G$. In particular, if the set $S$ of all semi-extreme vertices of $G$ is a connected edge monophonic set of $G$, then $S$ is the unique minimum connected edge monophonic set of $G$.

Proof. Since every connected edge monophoic set is also an edge monophonic set, the result follows from Theorem 1.1.

Corollary 2.5. For any connected graph $G$ of order $n$ with $k$ semi-extreme vertices, $\max \{2, k\} \leq m_{c e}(G) \leq n$.

Proof. This follows from Theorems 2.3 and 2.4.
Corollary 2.6. For the complete graph $K_{n}(n \geq 2), m_{c e}\left(K_{n}\right)=n$.
The converse of Corollary 2.6 need not be true. For the graph $G$ given in Figure 2.2, each vertex is a semi-extreme and $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is an $m_{c e}$-set of $G$. Therefore, $m_{c e}(G)=6$ and $G$ is not a complete graph.


Figure 2.2

Since every connected edge monophonic set is an edge monophonic set, the next theorem follows from Theorem 1.2.

Theorem 2.7. Let $G$ be a connected graph with cut-vertices and $S$ a connected edge monophonic set of $G$. If $v$ is a cut-vertex of $G$, then every component of $G-v$ contains an element of $S$.

Theorem 2.8. Every cut-vertex of a connected graph $G$ belongs to every connected edge monophonic set of $G$.

Proof. Let $G$ be a connected graph and $S$ a connected edge monophonic set of $G$. Let $v$ be a cut-vertex of $G$ and $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ the components of $G-v$. By Theorem 2.7, $S$ contains at least one vertex from each $G_{i}(1 \leq i \leq r)$. Since the subgraph induced by $S$ is connected, it follows that $v \in S$.

Combining Theorems 2.4 and 2.8, we have the following theorem.
Theorem 2.9. Every semi-extreme vertex and every cut-vertex of a connected graph $G$ belong to each connected edge monophonic set of $G$.

Since every connected edge geodetic set is a connected edge monophonic set, we have the following theorem.

Theorem 2.10. Every semi-extreme vertex and every cut-vertex of a connected graph $G$ belong to each connected edge geodetic set of $G$.

Corollary 2.11. For any connected graph $G$ of order $n$ with $k$ semiextreme vertices and $l$ cut-vertices, $\max \{2, k+l\} \leq m_{c e}(G) \leq n$.

Proof. This follows from Theorems 2.3 and 2.9
Corollary 2.12. For any tree $T$ of order $n, m_{c e}(T)=n$.
Proof. This follows from Corollary 2.11.
Theorem 2.13. For the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s)$, $m_{c e}(G)=r+1$.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ be the partite set of $G$. Let $S=U \cup\left\{w_{1}\right\}$. We prove that $S$ is a minimum connected edge monophonic set of $G$. Note that any $u-v$ monophonic path in $G$ is of length at most 2. Every edge $u_{i} w_{j}(1 \leq i \leq r, 1 \leq j \leq s)$ lies on the monophonic path $u_{i}, w_{j}, u_{k}$ for any $k \neq i$, and so $S$ is a connected edge monophonic set of $G$. Let $T$ be any set of vertices such that $|T|<|S|$. If $T \subseteq U$ or $T \subseteq W$, then $T$ cannot be a connected edge monophonic set of $G$. If $T$ is such that $T$ contains vertices from $U$ and $W$ such that $u_{i} \notin T$ and $w_{j} \notin T$. Then clearly the edge $u_{i} w_{j}$ does not lie on a monophonic path joining two vertices of $T$ so that $T$ is not a connected edge monophonic set. Thus in any case $T$ is not a connected edge monophonic set of $G$. Hence $S$ is a minimum connected edge monophonic set so that $m_{c e}(G)=|S|=r+1$.

Theorem 2.14. For any cycle $C_{n}(n \geq 3), m_{c e}\left(C_{n}\right)=3$.
Proof. Let $C_{n}: u_{1}, u_{2}, \ldots, u_{n}, u_{1}$ be a cycle of order $n \geq 3$. It is clear that no 2-element subset of vertices is a connected edge monophonic set of $G$. Now, $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a connected edge monophonic set of $G$ so that $m_{c e}(G)=3$.

Theorem 2.15. For any connected graph $G$ of order $n, m_{c e}(G)=2$ if and only if $G=K_{2}$.

Proof. If $G=K_{2}$, then $m_{c e}(G)=2$. Conversely, let $m_{c e}(G)=2$. Let $S=\{u, v\}$ be a minimum connected edge monophonic set of $G$. Then $u v$ is an edge. If $G \neq K_{2}$, then there exists an edge $x y$ different from $u v$, and the edge $x y$ does not lie on any $u-v$ monophonic path so that $S$ is not a connected edge monophonic set, which is a contradiction. Thus $G=K_{2}$.

A vertex $v$ in graph $G$ is called an independent vertex if the subgraph induced by its neighbors contains no edges.

Theorem 2.16. Let $G$ be a non-complete connected graph of order $n \geq 3$. Then $m_{c e}(G)=3$ if and only if there exist two independent vertices $u$ and $w$ such that $d(u, w)=2$ and every edge of $G$ lies on a $u-w$ monophonic path.

Proof. Let $m_{c e}(G)=3$ and let $S=\{u, v, w\}$ be a connected edge monophonic set of $G$. If the subgraph induced by $S$ is complete, then $G \cong K_{3}$, which is a contradiction. So assume that $u$ and $w$ are non-adjacent in $G$. It is clear that $d(u, w)=2$. Now, we show that $u$ and $w$ are independent vertices of $G$. Suppose that $u$ is not an independent vertex of $G$. Then there exist vertices $u_{1}, u_{2} \in N(u)$ such that $u_{1}$ and $u_{2}$ are adjacent in $G$. Since $S$ is a connected edge monophonic set, $u_{1} u_{2}$ lies on a $u-w$ monophonic path $P$. Since $u_{1}$ and $u_{2}$ are adjacent to $u$ in $G$, it follows that $P$ is not a monophonic path, which is a contradiction. Thus, $u$ is an independent vertex of $G$. Similarly, $w$ is an independent vertex of $G$. Now, since $S$ is a connected edge monophonic set and since the subgraph induced by $S$ is the path $P: u, v, w$, it follows that every edge of $G$ lies on a $u-w$ monophonic path. Conversely, let $u$ and $w$ be two independent vertices of $G$ such that $d(u, w)=2$ and every edge of $G$ lies on a $u-w$ monophonic path. Since $G$ is non-complete, no 2-element subset of $G$ is a connected edge monophonic set of $G$. Now, let $P: u, v, w$ be a $u-w$ monophonic path. Then $S=\{u, v, w\}$ is a minimum connected edge monophonic set of $G$ so that $m_{c e}(G)=3$.

Corollary 2.17. If $G$ is a non-complete graph of order $n \geq 3$ with $m_{c e}(G)=$ 3 , then $m_{e}(G)=2$.

Corollary 2.18. There is no non-complete graph $G$ of order $n \geq 3$ with $m_{e}(G)=3$ and $m_{c e}(G)=3$.

Corollary 2.19. Let $G$ be any connected graph of order $n \geq 3$. Then $m_{e}(G)=m_{c e}(G)=3$ if and only if $G=K_{3}$.

Theorem 2.20. Let $G$ be a connected graph of order $n \geq 3$. If $G$ contains exactly one vertex $v$ of degree $n-1$, then every vertex of $G$ other than $v$ is a semi-extreme vertex.

Proof. Let $v$ be the unique vertex of degree $n-1$ and let $w \neq v$ be any vertex in $G$. Then $v$ is adjacent to all the neighbors of $w$ so that $\operatorname{deg}_{<N(w)>}(v)=|N(w)|-1$. Hence $w$ is a semi-extreme vertex of $G$.

Theorem 2.21. Let $G$ be a connected graph of order $n \geq 3$. If $G$ contains exactly one vertex $v$ of degree $n-1$ and $v$ is not a cut-vertex of $G$, then $m_{c e}(G)=n-1$. In fact, $S=V-\{v\}$ is the unique minimum connected edge monophonic set of $G$.

Proof. Let $v$ be the unique vertex of degree $n-1$. Let $S=V-\{v\}$. Then by Theorem 2.20, $S$ is the set of semi-extreme vertices of $G$. By Theorem 2.4, every connected edge monophonic set contains $S$ and so $m_{c e}(G) \geq n-1$. Let $u v$ be any edge incident with $v$. Since $v$ is the only vertex of degree $n-1$, there exists at least one vertex $w \in N(v)$ such that $u$ and $w$ are nonadjacent. Then $u v$ lies on the monophonic path $P: u, v, w$ with $u, w \in S$. Also, any edge $x y$ not incident with $v$ lies on the $x-y$ monophonic path itself. Thus $S$ is an edge monophonic set of $G$. Since $v$ is not a cut-vertex of $G$, the subgraph induced by $S$ is connected so that $m_{c e}(G) \leq n-1$. Hence $m_{c e}(G)=n-1$.

Corollary 2.22. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5), m_{c e}\left(W_{n}\right)=n-1$.
The converse of Theorem 2.21 is not true. For the graph $G$ given in Figure 2.3, $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a minimum connected edge monophonic set of $G$. Therefore, $m_{c e}(G)=5=n-1$ and no vertex has degree $n-1$.


Figure 2.3

Problem 2.23. Characterize graphs $G$ of order $n$ for which $m_{c e}(G)=$ $n-1$.

Theorem 2.24. Let $G$ be a connected graph of order $n \geq 3$. If $G$ has a cut-vertex of degree $n-1$, then $m_{c e}(G)=n$.

Proof. This follows from Theorems 2.20 and 2.9.
The converse of Theorem 2.24 is not true. For the graph $G$ given in Figure 2.4, $S=\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is the set of all semi-extreme vertices of $G$ and $v_{2}$ is the only cut-vertex of $G$. Hence by Theorem 2.9, $m_{c e}(G)=6=n$. However, $G$ has no cut-vertex of degree $n-1$.


Figure 2.4

Theorem 2.25. Let $G$ be a connected graph of order $n$. If $G$ has at least two vertices of degree $n-1$, then every vertex of $G$ is a semi-extreme vertex of $G$.

Proof. Let $u_{1}, u_{2}, \ldots, u_{l}(l \geq 2)$ be the vertices of degree $n-1$. Then each $u_{i}(1 \leq i \leq l)$ is adjacent to all other vertices in $G$. Let $u$ be any vertex in $G$. If $u \neq u_{i}(1 \leq i \leq l)$, then $u$ is adjacent to each $u_{i}$ so that $\operatorname{deg}_{<N(u)\rangle}\left(u_{i}\right)=|N(u)|-1$. Hence $u$ is a semi-extreme vertex of $G$. If $u=u_{i}(1 \leq i \leq l)$, then $u_{i}$ is adjacent to $u_{j}, j \neq i$, and so again $d e g_{<N(u)\rangle}\left(u_{j}\right)=|N(u)|-1$. Hence $u$ is a semi-extreme vertex of $G$. Thus every vertex of $G$ is a semi-extreme vertex.

Theorem 2.26. For any graph $G$ of order $n$ with at least two vertices of degree $n-1, m_{c e}(G)=n$.

Proof. This follows from Theorems 2.4 and 2.25 .

The converse of Theorem 2.26 is not true. For the graph $G$ given in Figure 2.2, $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a minimum connected edge monophonic set of $G$ so that $m_{c e}(G)=6=n$ and $G$ has no vertex of degree $n-1$.

Theorem 2.27. Let $G$ be a connected graph of order $n$. Then $m_{c e}(G)=n$ if and only if every vertex of $G$ is either a cut-vertex or a semi-extreme vertex.

Proof. Let $m_{c e}(G)=n$. Then $S=V$ is the only connected edge monophonic set of $G$. Suppose that there exists a vertex $u$ such that $u$ is neither a semi-extreme vertex nor a cut-vertex of $G$. Since $u$ is not a semi-extreme vertex, for each $v \in N(u)$, there exists a vertex $w \in N(u)$ such that $w \neq v$ and $v w$ is not an edge of $G$. Now, we show that $S=V-\{u\}$ is an edge monophonic set of $G$. Let $v u$ be any edge of $G$. Then $v u$ lies on the monophonic path $P: v, u, w$. Also, any edge $x y$ not incident with $u$ lies on the $x-y$ monophonic path itself. Hence $S$ is an edge monophonic set of $G$. Since $u$ is not a cut-vertex of $G$, the subgraph induced by $S$ is connected. Therefore, $S$ is a connected edge monophonic set of $G$ so that $m_{c e}(G) \leq n-1$, which is a contradiction. Hence every vertex of $G$ is either a semi-extreme vertex or a cut-vertex. The converse follows from Theorem 2.9.

Corollary 2.28. For the graph $G=K_{1}+\cup m_{j} K_{j}$, where $\sum m_{j} \geq 2$, of order $n \geq 3$, $m_{c e}(G)=n$.

## 3. Realisation Results

In view of Corollary 2.18, we have the following realization result.
Theorem 3.1. For integers $k, l$ and $n$ with $4 \leq k \leq l \leq n$, there exists a connected graph $G$ of order $n$ such that $m_{e}(G)=k$ and $m_{c e}(G)=l$.

Proof. Case 1. $4 \leq k=l=n$. Then, for the compete graph $G=K_{n}$ of order $n$, by Theorem 1.3 and Corollary 2.6, we have $m_{e}(G)=m_{c e}(G)=n$. Case 2. $4 \leq k<l=n$. Let $G$ be a tree of order $n$ with $k$ endvertices. Then by Theorem 1.3 and Corollary 2.12, $m_{e}(G)=k$ and $m_{c e}(G)=n=l$.
Case 3. $4 \leq k<l<n$. Let $P_{l-k+3}: u_{1}, u_{2}, \ldots, u_{l-k+3}$ be a path of order $l-k+3$. Let $H$ be the graph formed by taking $n-l+1$ new vertices $w_{1}, w_{2}, \ldots, w_{n-l+1}$, and joining each $w_{i}(1 \leq i \leq n-l+1)$ with the vertices $u_{1}$ and $u_{3}$ in $P_{l-k+3}$; and also joining the vertex $w_{1}$ to the vertex $u_{2}$ in
$P_{l-k+3}$. Now, let $G$ be the graph obtained from $H$ by adding $k-4$ new vertices $y_{1}, y_{2}, \ldots, y_{k-4}$ and joining each $y_{i}(1 \leq i \leq k-4)$ with the vertices $u_{2}$ and $w_{1}$ in $H$. The graph $G$ has order $n$ and is shown in Figure 3.1.


Figure 3.1

Let $S=\left\{w_{1}, y_{1}, y_{2}, \ldots, y_{k-4}, u_{2}, u_{l-k+3}\right\}$ be the set of semi-extreme vertices of $G$. Then $S$ is not an edge monophonic set of $G$. Since $S \cup\left\{u_{1}\right\}$ is an edge monophonic set of $G$, by Theorem 1.1, $m_{e}(G)=k$. Now, $T=$ $S \cup\left\{u_{3}, u_{4}, \ldots, u_{l-k+2}\right\}$ is the set of semi-extreme vertices and cut-vertices of $G$. It is clear that $T$ is not a connected edge monophonic set of $G$. Since $T \cup\left\{u_{1}\right\}$ is a connected edge monophonic set of $G$, by Theorem 2.9, $m_{c e}(G)=l$.
Case 4. $4 \leq k=l<n$. First let $n=k+1$. Let $G$ be a wheel with $k+1$ vertices. Then by Theorem 1.3 and Corollary 2.22, we have $m_{e}(G)=$ $m_{c e}(G)=k$. Next if $n>k+1$, then we construct a graph $G$ as follows : Let $P_{3}: u_{1}, u_{2}, u_{3}$ be a path of order 3 . Let $H$ be the graph formed by taking $n-k+1$ new vertices $w_{1}, w_{2}, \ldots, w_{n-k+1}$, and joining each $w_{i}(1 \leq$ $i \leq n-k+1)$ with the vertices $u_{1}$ and $u_{3}$ in $P_{3}$; and also joining the vertex $w_{1}$ to the vertex $u_{2}$ in $P_{3}$. Now, let $G$ be the graph obtained from $H$ by adding $k-4$ new vertices $y_{1}, y_{2}, \ldots, y_{k-4}$ and joining each $y_{i}(1 \leq$ $i \leq k-4)$ with the vertices $u_{2}$ and $w_{1}$ in $H$. The graph $G$ has order $n$ and is shown in Figure 3.2. Let $S=\left\{w_{1}, y_{1}, y_{2}, \ldots, y_{k-4}, u_{2}\right\}$ be the set of
semi-extreme vertices of $G$. Then for any vertex $y$ in $G, S \cup\{y\}$ is not an edge monophonic set of $G$. Since $S \cup\left\{u_{1}, u_{3}\right\}$ is an edge monophonic set as well as connected edge monophonic set of $G$, it follows from Theorems 1.1 and 2.4 that $m_{e}(G)=m_{c e}(G)=k$.


Figure 3.2

Theorem 3.2. For integers $k, l$ and $n$ with $k<l \leq n$ and $k=2,3$, there exists a connected graph $G$ of order $n$ such that $m_{e}(G)=k$ and $m_{c e}(G)=l$.

Proof. Case 1. $k=2$. If $l=n$, then let $G$ be a path $P_{n}$ of order $n$. Hence by Theorems 1.3 and $2.9, m_{e}(G)=2, m_{c e}(G)=n=l$. If $l<n$, then we construct a graph $G$ as follows: Let $P_{l}: u_{1}, u_{2}, \ldots, u_{l}$ be a path of order $l$. Let $G$ be the graph obtained from $P_{l}$ by adding $n-l$ new vertices $w_{1}, w_{2}, \ldots, w_{n-l}$ and joining each $w_{i}(1 \leq i \leq n-l)$ with $u_{1}$ and $u_{3}$ in $P_{l}$. The graph $G$ has order $n$ and is shown in Figure 3.3. If $l>3$, then $u_{l}$ is the only semi-extreme vertex of $G$. Therefore, $u_{l}$ belongs to every edge monophonic set of $G$. Since $S=\left\{u_{1}, u_{l}\right\}$ is an edge monophonic set of $G$, it follows from Theorem 1.1 that $m_{e}(G)=2=k$. Let $S_{1}=\left\{u_{3}, u_{4}, \ldots, u_{l-1}, u_{l}\right\}$ be the set of semi-extreme vertices and cutvertices of $G$. Then, for any vertex $y \notin S_{1}, S_{1} \cup\{y\}$ is not a connected edge monophonic set of $G$. It is clear that $S_{1} \cup\left\{u_{1}, u_{2}\right\}$ is a connected edge
monophonic set of $G$ so that, by Theorem 2.9, $m_{c e}(G)=l$. If $l=3$, then $\left\{u_{1}, u_{3}\right\}$ is an edge monophonic set of $G$ so that $m_{e}(G)=2=k$. It is clear that no 2-element subset of vertices is a connected edge monophonic set of $G$. Since $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a connected edge monophonic set, it follows that $m_{c e}(G)=3=l$.


Figure 3.3

Case 2. $k=3$. If $l=n$, then let $G$ be a tree of order $n$ with three endvertices. Then, by Theorems 1.3 and $2.9, m_{e}(G)=3=k$ and $m_{c e}(G)=$ $n=l$. If $l<n$, then we construct a graph $G$ as follows: Let $H$ be a graph obtained from the cycle $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ of order 4 and the path $P_{l-3}: u_{1}, u_{2}, \ldots, u_{l-3}$ of order $l-3 \geq 1$ by joining $u_{1}$ in $P_{l-3}$ with each $v_{1}, v_{2}$ and $v_{3}$ in $C_{4}$. Let $G$ be the graph obtained from $H$ by adding $n-l-1$ new vertices $w_{1}, w_{2}, \ldots, w_{n-l-1}$ and joining each $w_{i}(1 \leq i \leq n-l-1)$ with $u_{1}$ and $v_{4}$ in $H$. The graph $G$ has order $n$ and is shown in Figure 3.4.


Figure 3.4

If $l>4$, then $S_{1}=\left\{v_{2}, u_{l-3}\right\}$ is the set of semi-extreme vertices of $G$. It is clear that $S_{1} \cup\left\{v_{4}\right\}$ is an edge monophonic set so that by Theorem 1.1, $m_{e}(G)=3=k$. Let $S_{2}=S_{1} \cup\left\{u_{1}, u_{2}, \ldots, u_{l-4}\right\}$ be the set of semi-extreme vertices and cut-vertices of $G$. Then for any vertex $y \notin S_{2}, S_{2} \cup\{y\}$ is not a connected edge monophonic set of $G$. It is easily seen that $S_{2} \cup\left\{v_{1}, v_{4}\right\}$ is a connected edge monophonic set of $G$ and so by Theorem 2.9, $m_{c e}(G)=l$. If $l=4$, then $S_{3}=\left\{v_{2}, u_{1}\right\}$ is the set of semi-extreme vertices of $G$. Since $S_{3} \cup\left\{v_{4}\right\}$ is an edge monophonic set of $G$, by Theorem 1.1, $m_{e}(G)=$ $3=k$. It is also easily verified that no 3 -element subset of vertices is a connected edge monophonic set of $G$. Since $S_{3} \cup\left\{v_{1}, v_{4}\right\}$ is a connected edge monophonic set of $G$, by Theorem 2.4, $m_{c e}(G)=4=l$.

Theorem 3.3. If $j, k$ and $l$ are integers such that $4 \leq j \leq k \leq l$, then there exists a connected graph $G$ with $m_{e}(G)=j, m_{c e}(G)=k$ and $g_{c e}(G)=l$.

Proof. Case 1. $4 \leq j=k=l$. Let $G=K_{j}$ be the complete graph of order $j$. Then by Theorems 1.3, 2.6 and $2.10, m_{e}(G)=m_{c e}(G)=g_{c e}(G)=j$. Case $2.4 \leq j<k=l$. Let $G$ be a tree of order $k$ with $j$ endvertices. Then by Theorem 1.3, $m_{e}(G)=j$ and by Theorems 2.12 and $2.10, m_{c e}(G)=$ $g_{c e}(G)=k$.

Case 3. $4 \leq j<k<l$. Let $P_{k-j+3}: u_{1}, u_{2}, \ldots, u_{k-j+3}$ be a path of order $k-j+3$. Take $(l-k)$ copies of $K_{2}$ with vertex set $F_{i}=\left\{v_{i}, w_{i}\right\}(1 \leq i \leq l-k)$; and also take $j-3$ new vertices $y_{1}, y_{2}, \ldots, y_{j-3}$. Let $G$ be the graph obtained by joining $u_{1}$ with each $v_{i}(1 \leq i \leq l-k)$; $u_{3}$ with each $w_{i}(1 \leq i \leq l-k)$; each $y_{i}(2 \leq i \leq j-3)$ with $u_{2}$ and $y_{1}$; and also $y_{1}$ with $u_{1}, u_{2}, u_{3}$ in $P_{k-j+3}$. The graph $G$ is shown in Figure 3.5.


Figure 3.5

Let $S=\left\{u_{2}, u_{k-j+3}, y_{1}, y_{2}, \ldots, y_{j-3}\right\}$ be the set of semi-extreme vertices of $G$. Since $S$ is not an edge monophonic set of $G$ and since $S \cup\left\{u_{1}\right\}$ is an edge monophonic set of $G$, by Theorem 1.1, we have $m_{e}(G)=j$. Let $T=S \cup\left\{u_{3}, u_{4}, \ldots, u_{k-j+2}\right\}$ be the set of semi-extreme vertices and cutvertices of $G$. It is clear that $T$ is not a connected edge monophonic set of $G$. Since $T \cup\left\{u_{1}\right\}$ is a connected edge monophonic set of $G$, by Theorem 2.9, $m_{c e}(G)=k$. Also, it is easily seen that $T$ is not a connected edge geodetic set of $G$. Now, we observe that at least one of $v_{i}$ and $w_{i}(1 \leq i \leq l-k)$ must belong to every connected edge geodetic set of $G$. Then, by Theorem 2.10, $T^{\prime}=T \cup\left\{u_{1}, v_{1}, v_{2}, \ldots, v_{l-k}\right\}$ is a minimum connected edge geodetic set of $G$ so that $g_{c e}(G)=l$.
Case 4. $4 \leq j=k<l$. Let $C_{4}: u_{1}, u_{2}, u_{3}, u_{4}, u_{1}$ be a cycle of order 4. Let $H$ be the graph obtained from the cycle $C_{4}$ by taking $k-3$ new vertices $y_{1}, y_{2}, \ldots, y_{k-3}$ and joining $y_{1}$ with $u_{1}$ and $u_{3}$, and joining each
$y_{i}(2 \leq i \leq k-3)$ with both $u_{2}$ and $u_{4}$, and also joining $u_{2}$ and $u_{4}$. Now, let $G$ be the graph obtained from $H$ by taking $(l-k)$ copies of $K_{2}$ with vertex set $F_{i}=\left\{v_{i}, w_{i}\right\}(1 \leq i \leq l-k)$ and joining $u_{1}$ with each $v_{i}(1 \leq i \leq l-k)$ in $H$ and $u_{3}$ with each $w_{i}(1 \leq i \leq l-k)$ in $H$. The graph $G$ is shown in Figure 3.6.


Figure 3.6

Let $S=\left\{u_{2}, u_{4}, y_{2}, y_{3}, \ldots, y_{k-3}\right\}$ be the set of semi-extreme vertices of $G$. It is clear that $S$ is not an edge monophonic set of $G$. Also, for any $y \notin S$, $S \cup\{y\}$ is not an edge monophonic set of $G$. Since $S^{\prime}=S \cup\left\{u_{1}, u_{3}\right\}$ is an edge monophonic set as well as a connected edge monophonic set, it follows from Theorems 1.1 and 2.4 that $m_{e}(G)=m_{c e}(G)=k$. Also, $S$ is not a connected edge geodetic set of $G$. Now, we observe that at least one vertex of $v_{i}$ and $w_{i}(1 \leq i \leq l-k)$ must belong to every connected edge geodetic set of $G$. Let $T=S \cup\left\{v_{1}, v_{2}, \ldots, v_{l-k}\right\}$. Then for any $y \notin T, T \cup\{y\}$ is not a connected edge geodetic set of $G$. It follows that $T \cup\left\{u_{1}, u_{3}\right\}$ is a minimum connected edge geodetic set of $G$ so that, by Theorem 2.10, $g_{c e}(G)=l$.

Theorem 3.4. For integers $j, k$ and $l$ with $j<k \leq l$ and $j=2,3$, there exists a connected graph $G$ such that $m_{e}(G)=j, m_{c e}(G)=k$ and
$g_{c e}(G)=l$.

Proof. Case 1. $j=2$. If $k=l$, then let $G$ be a path $P_{l}$ of order $l$. Then by Theorems 1.3, 2.9 and $2.10, m_{e}(G)=2, m_{c e}(G)=l$ and $g_{c e}(G)=l$. If $k<l$, then we construct a graph $G$ as follows: Let $P_{k}: u_{1}, u_{2}, \ldots, u_{k}$ be a path of order $k$. Let $G$ be the graph obtained by taking $(l-k)$ copies of $K_{2}$ with vertex set $F_{i}=\left\{v_{i}, w_{i}\right\}(1 \leq i \leq l-k)$ and joining $u_{1}$ with each $v_{i}(1 \leq i \leq l-k)$; and also joining $u_{3}$ with each $w_{i}(1 \leq i \leq l-k)$. The graph $G$ is shown in Figure 3.7.


Figure 3.7

If $k>3$, then $u_{k}$ is the only semi-extreme vertex of $G$. Therefore, $u_{k}$ belongs to every edge monophonic set of $G$. Since $S=\left\{u_{1}, u_{k}\right\}$ is an edge monophonic set of $G$, it follows from Theorem 1.1 that $m_{e}(G)=2=j$. Let $S_{1}=\left\{u_{3}, u_{4}, \ldots, u_{k-1}, u_{k}\right\}$ be the set of semi-extreme vertices and cutvertices of $G$. Then for any vertex $y \notin S_{1}, S_{1} \cup\{y\}$ is not a connected edge monophonic set of $G$. It is clear that $S_{1} \cup\left\{u_{1}, u_{2}\right\}$ is a connected edge monophonic set and so by Theorem $2.9, m_{c e}(G)=k$. Also, it is clear that $S_{1}$ is not a connected edge geodetic set of $G$. Now, we observe that at least one of $v_{i}$ and $w_{i}(1 \leq i \leq l-k)$ must belong to every connected edge geodetic set of $G$. Let $S_{2}=S_{1} \cup\left\{v_{1}, v_{2}, \ldots, v_{l-k}\right\}$. Then for any vertex $y \notin S_{2}, S_{2} \cup\{y\}$ is not a connected edge geodetic set of $G$. Since $T=S_{2} \cup\left\{u_{1}, u_{2}\right\}$ is a connected edge geodetic set of $G$, by Theorem 2.10, $g_{c e}(G)=l$.

If $k=3$, then $T=\left\{u_{1}, u_{3}\right\}$ is an edge monophonic set of $G$ and so $m_{e}(G)=2=j$. Also, no 2-element subset of vertices is a connected edge monophonic set of $G$. It is clear that $T_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a connected
edge monophonic set of $G$ so that $m_{c e}(G)=3=k$. Now, we observe that at least one of $v_{i}$ and $w_{i}(1 \leq i \leq l-k)$ must belong to every connected edge geodetic set of $G$. Let $T_{2}=\left\{v_{1}, v_{2}, \ldots, v_{l-3}\right\}$. Then for $x, y \notin T_{2}$, $T_{2} \cup\{x, y\}$ is not a connected edge geodetic set of $G$. Since $T_{2} \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a connected edge geodetic set of $G$, it follows that $g_{c e}(G)=l$.

Case 2. $j=3$. If $k=l$, then let $G$ be a tree of order $l$ with three endvertices. Then, by Theorems 1.3, 2.12 and 2.10, $m_{e}(G)=3, m_{c e}(G)=l$ and $g_{c e}(G)=l$. If $k<l$, then we construct a graph $G$ as follows: Let $H$ be a graph obtained from the cycle $C_{2 l-2 k+4}: v_{1}, v_{2}, \ldots, v_{2 l-2 k+4}, v_{1}$ of order $2 l-2 k+4$, and the path $P_{k-3}: u_{1}, u_{2}, \ldots, u_{k-3}$ of order $k-3$ by joining $u_{1}$ in $P_{k-3}$ with $v_{1}, v_{2}, v_{3}$ in $C_{2 l-2 k+4}$. The graph $G$ is shown in Figure 3.8. If $k>4$, then $S=\left\{v_{2}, u_{k-3}\right\}$ is the set of semi-extreme vertices of $G$. Since $S$ is not an edge monophonic set of $G$ and since $S \cup\left\{v_{4}\right\}$ is an edge monophonic set of $G$, by Theorem 1.1, we have $m_{e}(G)=3=j$. Let $T=S \cup\left\{u_{1}, \ldots, u_{k-4}\right\}$ be the set of semi-extreme vertices and cut-vertices of $G$. It is clear that for any vertex $y \notin T, T \cup\{y\}$ is not a connected edge monophonic set of $G$. Since $T \cup\left\{v_{1}, v_{3}\right\}$ is a connected edge monophonic set of $G$, by Theorem $2.9, m_{c e}(G)=k$. It is clear that $T$ is not a connected edge geodetic set of $G$ and it is easily seen that $T_{1}=T \cup\left\{v_{3}, v_{4}, \ldots, v_{l-k+4}\right\}$ is a minimum connected edge geodetic set of $G$ and so by Theorem 2.10, $g_{c e}(G)=\left|T_{1}\right|=l$.

If $k=4$, then $S_{1}=\left\{u_{1}, u_{2}\right\}$ is the set of semi-extreme vertices of G. Since $S_{1}$ is not an edge monophonic set and since $S_{2}=S_{1} \cup\left\{v_{4}\right\}$ is an edge monophonic set of G, by Theorem 1.1, we have $m_{e}(G)=3=j$. It is clear that for any vertex $y \notin S_{1}, S_{1} \cup\{y\}$ is not a connected edge monophonic set of G. Since $S_{3}=S_{1} \cup\left\{v_{1}, v_{3}\right\}$ is a connected edge monophonic set of G, by Theorem 2.9, $m_{c e}(G)=4=k$. Also, it is clear that $S_{1}$ is not a connected edge geodetic set of G and it is easily seen that $S_{4}=S_{1} \cup\left\{v_{3}, v_{4}, \ldots, v_{l}\right\}$ is a minimum connected edge geodetic set of G and so by Theorem 2.10, $g_{c} e(G)=\left|T_{1}\right|=l$


Figure 3.8

## References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(1), pp. 1-6, (2002).
[3] G. Chartrand, F. Harary , H. C. Swart and P. Zhang, Geodomination in graphs, Bulletin of the ICA, 31, pp. 51-59, (2001).
[4] F. Harary, Graph Theory, Addision-Wesely (1969).
[5] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput.Modeling, 17(11), pp. 89-95, (1993).
[6] R. Muntean and P. Zhang, On geodomonation in graphs, Congr. Numer., 143, pp. 161-174, (2000).
[7] A. P. Santhakumaran P. Titus and P. Balakrishnan, Edge monophonic number of a graph, communicated.
[8] A. P. Santhakumaran and S. V. Ullas Chandran, On the edge geodetic number and $k$-edge geodetic number of a graph, Inter. J. Math. Combin., 3, pp. 85-93, (2008).
[9] A. P. Santhakumaran and S. V. Ullas Chandran, The edge geodetic number and cartesian product of a graph, Discussiones Mathematicae Graph Theory 30 (1), pp. 55-73, (2010).

## A. P. Santhakumaran

Department of Mathematics
Hindustan University
Hindustan Institute of Technology and Science
Chennai-603 103,
India
e-mail : apskumar1953@yahoo.co.in

## P. Titus

Department of Mathematics
University College of Engineering Nagercoil
Anna University,
Tirunelveli Region
Negercoil - 629 004,
India
e-mail : titusvino@yahoo.com
and
P. Balakrishnan

Department of Mathematics
University College of Engineering Nagercoil
Anna University,
Tirunelveli Region
Negercoil - 629 004,
India
e-mail : gangaibala1@yahoo.com

