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Abstract

In this paper, we establish some new difference inequalities of frac-
tional order which provide explicit bounds on unknown functions and
can be used as an effective tool in the development of the theory of
fractional order difference equations.
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1. Introduction

Difference equations usually describe the evolution of certain phenomena
over the course of time. The theory of difference equations has been devel-
oped as a natural discrete analogue of corresponding theory of differential
equations. Many physical problems arising in a wide variety of applications
are governed by finite difference equations.

The notions of fractional differential equations may be traced back to
the works of Euler, but the idea of fractional difference equations is very
recent. Diaz and Osler [7] defined the fractional difference by the rather
natural approach of allowing the index of differencing, in the standard ex-
pression for the nth difference, to be any real or complex number. Later,
Hirota [8] defined the fractional difference using Taylor series. In 2002, At-
sushi Nagai [2] introduced another definition of fractional difference which
is a slight modification of Hirotas definition. In 2010, G. V. S. R. Deekshi-
tulu and J. Jagan Mohan [3] modified the definition of Atsushi Nagai [2]
in such a way that the expression for fractional difference does not involve
any difference operator and using which some basic difference inequalities
have been established.

The theory of inequalities is always of great importance for the de-
velopment of many branches of mathematics. This field is dynamic and
experiencing an explosive growth in both theory and applications. As a
response to the needs of diverse applications, a large variety of inequali-
ties have been proposed and studied in the literature. Since the integral
inequalities with explicit estimates are so important in the study of proper-
ties of solutions of differential and integral equations, their finite difference
(or discrete) analogues should also be useful in the study of properties of
solutions of finite difference equations. The finite difference version of the
well known Gronwall inequality seems to have appeared first in the work
of Mikeladze in 1935. It is well recognized that the discrete version of
Gronwalls inequality provides a very useful and important tool in proving
convergence of the discrete variable methods. In view of wider applications,
finite difference inequalities with explicit estimates have been generalized,
extended and used considerably in the development of the theory of finite
difference equations.

In the present paper, the authors considered an initial value problem
of fractional order and some difference inequalities and comparison results
are obtained.
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2. Notations and Terminology

Throughout the article, we shall use the following notations and definitions
[1].

Let Z andR denote the set of all integers and the set of all real numbers
respectively and R+ = [0,∞). N = {0, 1, 2, ...} be the set of all natural
numbers including zero and N+

a = {a, a + 1, a + 2, ...} where a ∈ N. Let
u(n) : N+

0 → R then for all a, b ∈ N+
a and a > b,

Pb
j=a u(j) = 0 andQb

j=a u(j) = 1, i.e. empty sums and products are taken to be 0 and 1
respectively. If n − 1 and n are in N+

a , then for this function u(n) the
backward difference operator ∇ is defined as ∇u(n) = u(n)−u(n−1). The
extended binomial coefficient

¡a
n

¢
, (a ∈ R, n ∈ Z) is defined by

Ã
a

n

!
=

⎧⎪⎨⎪⎩
Γ(a+1)

Γ(a−n+1)Γ(n+1) n > 0

1 n = 0
0 n < 0.

(2.1)

G. V. S. R. Deekshitulu and J. Jagan Mohan [6] modified the definition of
fractional difference given by Atsushi Nagai [2] for 0 < α < 1 as follows.

Definition 2.1. The fractional sum operator of order α is defined as

∇−αu(n) =
n−1X
j=0

Ã
j + α− 1

j

!
u(n− j) =

nX
j=1

Ã
n− j + α− 1

n− j

!
u(j).(2.2)

Definition 2.2. The fractional difference operator of order α is defined as

∇αu(n) = ∇α−1[∇u(n)] =
n−1X
j=0

Ã
j − α

j

!
∇u(n− j).(2.3)

Remark 1. Let u(n), v(n) : N+
0 → R; α, β ∈ R such that 0 < α, β, α +

β < 1 and c, d are scalars. Then the fractional order difference operator
satisfies the following properties.

1. ∇α∇βu(n) = ∇α+βu(n).

2. ∇α[cu(n) + dv(n)] = c∇αu(n) + d∇αv(n).

3. ∇α∇−αu(n) = u(n).

4. ∇−α∇αu(n) = u(n)− u(0).



202 J. Jagan Mohan and G. V. S. R. Deekshitulu

Definition 2.3. Let f(n, r) be any function defined for n ∈ N+
0 , 0 ≤ r <

∞. Then a nonlinear difference equation of order α ∈ R, 0 < α < 1
together with an initial condition is of the form

∇αu(n+ 1) = f(n, u(n)), u(0) = u0.(2.4)

Using (2.3), the solution of (2.4) is expressed as a recurrence relation
involving the values of the unknown function at the previous arguments as
follows.

u(n) = u0+
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
f(j, u(j)) = u0+

n−1X
j=0

B(n−1, α; j)f(j, u(j))

(2.5)
where B(n, α; j) =

¡n−j+α−1
n−j

¢
for 0 ≤ j ≤ n. Recently [6], the authors

have established the following fractional order discrete Gronwall - Bellman
inequality.

Theorem 2.1. Let u(n), a(n) and b(n) be real valued nonnegative func-
tions defined on N+

0 . For n ∈ N+
0 , if

∇αu(n+ 1) ≤ a(n)u(n) + b(n)

then

u(n) ≤ u(0)
n−1Y
j=0

∙
1 +B(n− 1, α; j)a(j)

¸
+

n−1X
j=0

∙
B(n− 1, α; j)b(j)

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)a(k)

¸¸
.

3. Main Results

In the present section, we establish some new fractional order difference
inequalities.

Theorem 3.1. Let u(n), a(n), b(n) and c(n) are real valued nonnegative
functions defined on N+

0 and ∇αc(n) ≥ 0 for n ∈ N+
0 . Let L : N

+
0 ×R+ →

R+ be a function such that

0 ≤ L(n, x)− L(n, y) ≤ m(n, y)(x− y)(3.1)
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for n ∈ N+
0 , x ≥ y ≥ 0, whereM(n, y) is a real valued nonnegative function

defined for n ∈ N+
0 , y ∈ R+. If

u(n) ≤ a(n) + b(n)

µ
c(n) +

n−1X
j=0

B(n− 1, α; j)L(j, u(j))
¶

(3.2)

for n ∈ N+
0 , then

u(n) ≤ a(n) + b(n)

µ
c(0)

n−1Y
j=0

∙
1 +B(n− 1, α; j)M(j, a(j))b(j)

¸

+
n−1X
j=0

B(n− 1, α; j)[∇αc(j + 1) + L(j, a(j))]

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M(k, a(k))b(k)

¸¶

(3.3)

for n ∈ N+
0 .

Proof. Define a function z(n) by

z(n) = c(n) +
n−1X
j=0

B(n− 1, α; j)L(j, u(j)).(3.4)

Then z(0) = c(0) and (3.2) can be restated as

u(n) ≤ a(n) + b(n)z(n).(3.5)

From (3.1), (3.4) and (3.5) we have

∇αz(n+ 1) = ∇αc(n+ 1) + L(n, u(n))
≤ ∇αc(n+ 1) + L(n, a(n) + b(n)z(n))
= [∇αc(n+ 1) + L(n, a(n))] + [L(n, a(n) + b(n)z(n))− L(n, a(n))]
≤ [∇αc(n+ 1) + L(n, a(n))] +M(n, a(n))(b(n)z(n)).

(3.6)
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Now an application of Theorem 2.1 to (3.6) yields

z(n) ≤ c(0)
n−1Y
j=0

∙
1 +B(n− 1, α; j)M(j, a(j))b(j)

¸

+
n−1X
j=0

B(n− 1, α; j)[∇αc(j + 1) + L(j, a(j))]

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M(k, a(k))b(k)

¸
.

(3.7)

Using (3.7) in (3.5) we get the required inequality in (3.3). 2

Theorem 3.2. Let u(n), a(n), b(n) and c(n) are real valued nonnegative
functions defined on N+

0 and ∇αc(n) ≥ 0 for n ∈ N+
0 . Let L : N

+
0 ×R+ →

R+ be a function such that

0 ≤ L(n, x)− L(n, y) ≤ m(n, y)φ−1(x− y)(3.8)

for n ∈ N+
0 , x ≥ y ≥ 0, whereM(n, y) is a real valued nonnegative function

defined for n ∈ N+
0 , y ∈ R+ and φ : R+ → R+ is a continuous and strictly

increasing function with φ(0) = 0, φ−1 is the inverse of φ and

φ−1(xy) ≤ φ−1(x)φ−1(y)(3.9)

for x, y ∈ R+. If

u(n) ≤ a(n) + b(n)φ

µ
c(n) +

n−1X
j=0

B(n− 1, α; j)L(j, u(j))
¶

(3.10)

for n ∈ N+
0 , then

u(n) ≤ a(n) + b(n)φ

µ
c(0)

n−1Y
j=0

∙
1 +B(n− 1, α; j)M(j, a(j))φ−1(b(j))

¸

+
n−1X
j=0

B(n− 1, α; j)[∇αc(j + 1) + L(j, a(j))]

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M(k, a(k))φ−1(b(k))

¸¶
(3.11)

for n ∈ N+
0 .
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Proof. Define a function z(n) by

z(n) = c(n) +
n−1X
j=0

B(n− 1, α; j)L(j, u(j)).(3.12)

Then z(0) = c(0) and (3.10) can be restated as

u(n) ≤ a(n) + b(n)φ(z(n)).(3.13)

From (3.8), (3.9 ), (3.12) and (3.13) we have

∇αu(n+ 1) = ∇αc(n+ 1) + L(n, u(n))

≤ ∇αc(n+ 1) + L(n, a(n) + b(n)φ(z(n)))

= [∇αc(n+ 1) + L(n, a(n))] + [L(n, a(n) + b(n)φ(z(n)))− L(n, a(n))]

≤ [∇αc(n+ 1) + L(n, a(n))] +M(n, a(n))φ−1(b(n)φ(z(n)))

≤ [∇αc(n+ 1) + L(n, a(n))] +M(n, a(n))φ−1(b(n))z(n).

(3.14)

Now an application of Theorem 2.1 to (3.14) yields

z(n) ≤ c(0)
n−1Y
j=0

∙
1 +B(n− 1, α; j)M(j, a(j))φ−1(b(j))

¸

+
n−1X
j=0

B(n− 1, α; j)[∇αc(j + 1) + L(j, a(j))]

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M(k, a(k))φ−1(b(k))

¸
.

(3.15)

Using (3.15) in (3.13) we get (3.11). 2

Theorem 3.3. Let u(n), a(n), b(n), g(n) and h(n) are real valued non-
negative functions defined on N+

0 and p > 1 be a real constant. If

up(n) ≤ a(n) + b(n)
n−1X
j=0

B(n− 1, α; j)[g(j)up(j) + h(j)u(j)](3.16)
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for n ∈ N+
0 , then

u(n) ≤
½
a(n) + b(n)

n−1X
j=0

B(n− 1, α; j)
µ
g(j)a(j) + h(j)

µ
p− 1
p

+
a(j)

p

¶¶

×
n−1Y

k=j+1

∙
1 +B(n− 1, α; k)b(k)

µ
g(k) +

h(k)

p

¶¸¾ 1
p

(3.17)

for n ∈ N+
0 .

Proof. Define a function z(n) by

z(n) =
n−1X
j=0

B(n− 1, α; j)[g(j)up(j) + h(j)u(j)].(3.18)

Then z(0) = 0,

∇αz(n+ 1) = g(n)up(n) + h(n)u(n)(3.19)

and (3.16) can be written as

up(n) ≤ a(n) + b(n)z(n).(3.20)

From (3.19) and using the elementary inequality

x
1
p y

1
q ≤ x

p
+

y

q
(3.21)

where x ≥ 0, y ≥ 0 and 1
p +

1
q = 1, we observe that

u(n) ≤ (a(n) + b(n)z(n))
1
p (1)

1

(
p

p−1 ) ≤ p− 1
p

+
a(n)

p
+

b(n)

p
z(n).(3.22)

From (3.19) and using (3.20) and (3.22), we get

∇αz(n+ 1) ≤ g(n)[a(n) + b(n)z(n)] + h(n)

∙
p− 1
p

+
a(n)

p
+

b(n)

p
z(n)

¸
= b(n)

∙
g(n) +

h(n)

p

¸
z(n) +

∙
g(n)a(n) + h(n)

µ
p− 1
p

+
a(n)

p

¶¸
.(3.23)

Now an application of Theorem 2.1 to (3.23) yields
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z(n) ≤Pn−1
j=0 B(n− 1, α; j)

µ
g(j)a(j) + h(j)

µ
p−1
p + a(j)

p

¶¶
n−1Y

k=j+1

∙
1 +B(n− 1, α; k)b(k)

µ
g(k) +

h(k)

p

¶¸
.

(3.24)

Using (3.24) in (3.20) we get the required inequality in (3.17). 2

Theorem 3.4. Let u(n), b(n), g(n) and h(n) are real valued nonnegative
functions defined on N+

0 and c(n) be a real valued positive and nondecreas-
ing function defined on N+

0 . Let p > 1 be a real constant. If

up(n) ≤ cp(n) + b(n)
n−1X
j=0

B(n− 1, α; j)[g(j)up(j) + h(j)u(j)](3.25)

for n ∈ N+
0 , then

u(n) ≤ c(n)

½
1 + b(n)

n−1X
j=0

B(n− 1, α; j)
µ
g(j) + h(j)c1−p(j)

¶

×
n−1Y

k=j+1

∙
1 +B(n− 1, α; k)b(k)

µ
g(k) +

h(k)

p
c1−p(k)

¶¸¾ 1
p

(3.26)

for n ∈ N+
0 .

Proof. Since c(n) is positive and nondecreasing function for n ∈ N+
0 ,

from (3.25) we observe thatµ
u(n)

c(n)

¶p
≤ 1+b(n)

n−1X
j=0

B(n−1, α; j)
∙
g(j)

µ
u(j)

c(j)

¶p
+h(j)c1−p(j)

µ
u(j)

c(j)

¶p¸
.

(3.27)
Now an application of Theorem 3.3 to (3.27) yields the desired inequal-

ity in (3.26). 2

Theorem 3.5. Let u(n), a(n) and b(n) are real valued nonnegative func-
tions defined on N+

0 and p > 1 be a real constant. Let L : N
+
0 ×R+ → R+

be a function such that

0 ≤ L(n, x)− L(n, y) ≤ m(n, y)(x− y)(3.28)
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for n ∈ N+
0 , x ≥ y ≥ 0, whereM(n, y) is a real valued nonnegative function

defined for n ∈ N+
0 , y ∈ R+. If

up(n) ≤ a(n) + b(n)
n−1X
j=0

B(n− 1, α; j)L(j, u(j))(3.29)

for n ∈ N+
0 , then

u(n) ≤
½
a(n) + b(n)

n−1X
j=0

B(n− 1, α; j)L
µ
j,
p− 1
p

+
a(j)

p

¶

×
n−1Y

k=j+1

∙
1 +B(n− 1, α; k)M

µ
k,

p− 1
p

+
a(k)

p

¶
b(k)

p

¸¾ 1
p

(3.30)

for n ∈ N+
0 .

Proof. Define a function z(n) by

z(n) =
n−1X
j=0

B(n− 1, α; j)L(j, u(j)).(3.31)

Then z(0) = 0 and (3.29) can be restated as

up(n) ≤ a(n) + b(n)z(n).(3.32)

From (3.32) and using the elementary inequality

x
1
p y

1
q ≤ x

p
+

y

q
(3.33)

where x ≥ 0, y ≥ 0 and 1
p +

1
q = 1, we observe that

u(n) ≤ (a(n) + b(n)z(n))
1
p (1)

1

(
p

p−1 ) ≤ p− 1
p

+
a(n)

p
+

b(n)

p
z(n).

(3.34)

From (3.31) and using (3.32) and (3.34), we get

∇αz(n+ 1) = L(n, u(n))
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≤ L

µ
n,

p− 1
p

+
a(n)

p
+

b(n)

p
z(n)

¶

= L

µ
n,

p− 1
p

+
a(n)

p

¶
+

∙
L

µ
n,

p− 1
p

+
a(n)

p
+

b(n)

p
z(n)

¶

−L
µ
n,

p− 1
p

+
a(n)

p

¶¸

≤ L

µ
n,

p− 1
p

+
a(n)

p

¶
+M

µ
n,

p− 1
p

+
a(n)

p

¶µ
b(n)

p
z(n)

¶
.

(3.35)

Now an application of Theorem 2.1 to (3.35) yields

z(n) ≤
n−1X
j=0

B(n− 1, α; j)L
µ
j,
p− 1
p

+
a(j)

p

¶

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M

µ
k,

p− 1
p

+
a(k)

p

¶
b(k)

p

¸
.

(3.36)

Using (3.36) in (3.32) we get the required inequality in (3.30). 2

Theorem 3.6. Let u(n), a(n) and b(n) are real valued nonnegative func-
tions defined on N+

0 and p > 1 be a real constant.

Let L : N+
0 ×R+ → R+ be a function such that

0 ≤ L(n, x)− L(n, y) ≤ m(n, y)φ−1(x− y)(3.37)

for n ∈ N+
0 , x ≥ y ≥ 0, whereM(n, y) is a real valued nonnegative function

defined for n ∈ N+
0 , y ∈ R+ and φ : R+ → R+ is a continuous and strictly

increasing function with φ(0) = 0, φ−1 is the inverse of φ and

φ−1(xy) ≤ φ−1(x)φ−1(y)(3.38)

for x, y ∈ R+. if

up(n) ≤ a(n) + b(n)φ

µ n−1X
j=0

B(n− 1, α; j)L(j, u(j))
¶

(3.39)
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for n ∈ N+
0 , then

u(n) ≤
½
a(n) + b(n)φ

µ n−1X
j=0

B(n− 1, α; j)L
µ
j,
p− 1
p

+
a(j)

p

¶

×
n−1Y

k=j+1

∙
1 +B(n− 1, α; k)M

µ
k,

p− 1
p

+
a(k)

p

¶
φ−1

µ
b(k)

p

¶¸¶¾ 1
p

(3.40)

for n ∈ N+
0 .

Proof. Define a function z(n) by

z(n) =
n−1X
j=0

B(n− 1, α; j)L(j, u(j))(3.41)

Then z(0) = 0 and (3.39) can be restated as

up(n) ≤ a(n) + b(n)φ(z(n)).(3.42)

From (3.42) and using the elementary inequality

x
1
p y

1
q ≤ x

p
+

y

q
(3.43)

where x ≥ 0, y ≥ 0 and 1
p +

1
q = 1, we observe that

u(n) ≤ (a(n) + b(n)φ(z(n)))
1
p (1)

1

(
p

p−1 ) ≤ p− 1
p

+
a(n)

p
+

b(n)

p
φ(z(n)).

(3.44)

From (3.41) and using (3.42) and (3.44), we get

∇αz(n+ 1) = L(n, u(n))

≤ L

µ
n,

p− 1
p

+
a(n)

p
+

b(n)

p
φ(z(n))

¶

= L

µ
n,

p− 1
p

+
a(n)

p

¶
+

∙
L

µ
n,

p− 1
p

+
a(n)

p
+

b(n)

p
φ(z(n))

¶
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−L
µ
n,

p− 1
p

+
a(n)

p

¶¸

≤ L

µ
n,

p− 1
p

+
a(n)

p

¶
+M

µ
n,

p− 1
p

+
a(n)

p

¶
φ−1

µ
b(n)

p
φ(z(n))

¶

≤ L

µ
n,

p− 1
p

+
a(n)

p

¶
+M

µ
n,

p− 1
p

+
a(n)

p

¶
φ−1

µ
b(n)

p

¶
z(n).

(3.45)

Now an application of Theorem 2.1 to (3.45) yields

z(n) ≤
n−1X
j=0

B(n− 1, α; j)L
µ
j,
p− 1
p

+
a(j)

p

¶

n−1Y
k=j+1

∙
1 +B(n− 1, α; k)M

µ
k,

p− 1
p

+
a(k)

p

¶
φ−1

µ
b(k)

p

¶¸
.

(3.46)

Using (3.46) in (3.40) we get the required inequality in (3.40). 2

4. Applications

In this section we apply the fractional difference inequality established in
Theorem 2.1 to obtain a bound for the solution of a fractional difference
equation together with an initial condition of the form

∇αu(n+ 1) = f(n, u(n)), u(0) = u0,(4.1)

where f(n, r) be any function defined for n ∈ N+
0 , 0 ≤ r < ∞ and u(n) :

N+
0 → R such that

|f(n, u(n)| ≤ a(n)|u(n)|+ b(n)(4.2)

for n ∈ N+
0 , where a(n), b(n) are as defined in Theorem 2.1. Let u(n) be

the solution of (4.1) for n ∈ N+
0 . Using Theorem 2.1, we get

|u(n)| ≤ u(0)
n−1Y
j=0

∙
1 +B(n− 1, α; j)a(j)

¸
+

n−1X
j=0

∙
B(n− 1, α; j)b(j)
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Qn−1
k=j+1

∙
1 +B(n− 1, α; k)a(k)

¸¸
≤ u(0) exp

∙
B(n− 1, α; j)a(j)

¸
+

Pn−1
j=0 B(n− 1, α; j)b(j) exp

∙
B(n− 1, α; k)a(k)

¸

for n ∈ N+
0 . The right hand side of the above inequality gives the bound

on the solution of (4.1) in terms of the known functions.
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