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1. Introduction

In 1971, H. Skala introduced the notions of pseudo-ordered sets and trel-
lises and gave two fixed points theorems in this setting (see [Theorems 36
and 37, 11]). Unfortunately this subject was a long time without serious
study because in this setting we have not the essential property used in all
proofs for fixed point theory in the case of partially ordered sets namely
the property of transitivity (for examples see: [3, 5, 12, 13, 15]). Later
on, S. Parameshwara Bhatta and all [2, 3] studied the fixed point property
in pseudo-ordered sets. In the present paper, we first establish the exis-
tence of the least and the greatest fixed points of monotone maps defined
on nonempty pseudo-ordered sets (see Theorems 3.1 and 3.3). Note that
our results ensure the existence of the least and the greatest fixed points
under weaker hypothesis than the assumptions of [Theorem 36, 11] which
was established by H. Skala. We prove also that the set of all common
fixed points of two categories of finite commutative family F of monotone
maps f defined on a nonempty complete trellis is also a nonempty complete
trellis (see Theorems 4.1 and 4.2). Note that our reslts could be used as a
tool for solving differential equations in metric pseudo-ordered spaces (for
the case of metric ordered spaces see for examples: [1, 2, 4, 6, 7, 15]).

2. Preliminaries

Let X be a nonempty set and ≥ be a binary relation defined on its. If the
binary relation ≥ is reflexive and antisymmetric, we say that (X, ≥) is a
pseudo-ordered set or a psoset.

Let A be a nonempty subset of a psoset (X, ≥).

An element u of X is said to be an upper bound of A (respectively v a
lower bound of A) if x ≥ u for every x ∈ A. An element s of X is called a
greatest element or the maximum of A and denoted by s = max(A, ≥) if s
is an upper bound of A and s ∈ A.

An element v of X is said to be a lower bound of A if v ≥ x for every
x ∈ A. An element of X is called a least or the minimum element of A
and denoted by = min(A, ≥) if is a lower bound of A and ∈ A.

When the least upper bound (l.u.b.) s of A exists, we shall denoted its
by s = sup(A, ≥). Dually if the greatest lower bound (g.l.b.) of A exists,
we shall denoted its by = inf(A, ≥).
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Note that the greatest lower bound and the least upper bound when
they exist they are unique.

A psoset (X, ≥) is said to be a trellis if every pair of elements of (X, ≥)
has a greatest lower bound (g.l.b) and a least upper bound (l.u.b). A psoset
(X, ≥) is said to be a complete trellis if every nonempty subset of X has
a g.l.b and a l.u.b. For more details for these notions can be found in H.L.
Skala [10, 11].

Let (X, ≥) be a nonempty pseudo-ordered sets and let f : X → X be
a map. We shall say that f is monotone if for every x, y ∈ X, with x ≥ y,
then we have f(x) ≥ f(y).

An element x of X is said to be a fixed point of a map f : X → X if
f(x) = x. The set of all fixed points of f is denoted by Fix(f).

Example.
Let A the set defined by A = {0, a, b, c}. We define a pseudo-order relation
on A by setting:

(i) for every x ∈ A, we have 0 ≥ x and
(ii) a ≥ b ≥ c ≥ a.

Then, (A, ≥) is a trellis having the minimum element 0 but (A, ≥) is not
complete.

In this paper, we shall need the following notion of inverse relation.

Definition 2.1. Let X be a nonempty set and let ≥ be a relation on its.
The inverse relation ≤ of ≥ is defined for every x, y ∈ X by:

(x≤ y)⇔ (y ≥ x).

The proofs of the following two lemmas are obvious.

Lemma 2.2. Let ≥ be a pseudo-order relation defined on a nonempty
set X and let ≤ be the inverse relation of ≥. Then, ≤ is a pseudo-order
relation on X.

Lemma 2.3. Let ≥ be a pseudo-order relation defined on a nonempty set
X, let ≤ be the inverse relation of ≥ and let A be a nonempty subset of
X. Then, we have

(i) if sup(A, ≥) exists, so inf(A,≤) exists too and sup(A, ≥) = inf(A,≤)
;
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(ii) if inf(A, ≥) exists, hence also sup(A,≤) exists too and inf(A, ≥) =
sup(A,≤) ;

(iii) if min(A, ≥) exists, then also max(A,≤) exists and min(A, ≥) =
max(A,≤) ;

(iv) if max(A, ≥) exists, so also min(A,≤) exists too and max(A, ≥) =
min(A,≤) ;

(v) if (X, ≥) is a nonempty complete trellis, so (X,≤) is also a nonempty
complete trellis ;

(vi) if f : X → X is a monotone map for ≥, then f is also a monotone
map for ≤ .

3. Fixed points in pseudo-ordered sets

In this section we shall establish the existence of the greatest and the least
fixed points of monotone maps defined on a nonempty pseudo-ordered sets.
Note that our results (Theorem 3.1 and 3.3) ensure the existence of the least
and the greatest fixed points under weaker hypothesis than the assumptions
of [Theorem 36, 11] which was established by H. Skala. First, we shall give
our key result in this paper.

Theorem 3.1. Let (X, ≥) be a nonempty pseudo-ordered set with a least
element . Assume that every nonempty subset of X has a supremum
in (X, ≥). Then, the set of all fixed points of every monotone map f :
(X, ≥)→ (X, ≥) is nonempty and has a least element.

Proof. Let (X, ≥) be a nonempty pseudo-ordered set with a least element
and f : (X, ≥)→ (X, ≥) be a monotone map.

First step. We have: Fix(f) 6= ∅. Indeed, let A the family of all subsets
A of X satisfying the following three conditions:

(i) ∈ A ;

(ii) f(A) ⊂ A ;

(iii) for every nonempty subset B of A, we have sup(B, ≥) ∈ A.

Let us note that A 6= ∅ because X ∈ A. Now, let C = T
A∈AA.

Claim 1. C is the nonempty least element of A. Indeed, as ∈ A for
every A ∈ A, so ∈ C. Since C =

T
A∈AA, then we have

f(C) = f(
\
A∈A

A) ⊂
\
A∈A

f(A) ⊂
\
A∈A

A.
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Thus, we get f(C) ⊂ C. Now, let D ⊂ C such that D 6= ∅. Then, D ⊂ A
for every A ∈ A. So, sup(D, ≥) ∈ A for every A ∈ A. Hence, we obtain
sup(D, ≥) ∈ C. Therefore, C is the least nonempty element of A. Then,
we set s = sup(C, ≥).

Claim 2. We have: s ∈ Fix(f). Indeed, since s ∈ C and f(C) ⊂ C,
then f(s) ∈ C. As s = sup(C, ≥), so we get

f(s) ≥ s. (2.1)

Now, we consider the following subset D of C defined by

D = {x ∈ C : x ≥ f(s)}.

As ∈ D, so D 6= ∅. We claim that D ∈ A. As D ⊂ C, then we get x ≥ s
for every x ∈ D. By the monotonicity of f we obtain f(x) ≥f(s), for every
x ∈ D. Then, we get f(D) ⊂ D.

Now, if E ⊂ D and E 6= ∅, then we set m = sup(E, ≥). As E ⊂ D, so
E ⊂ C and m ∈ C. By our definition of D, we deduce that f(s) is an upper
bound of (E, ≥). Then, we get m ≥f(s). Thus, we have m ∈ D. Therefore,
we obtain D ∈ A. As D ⊂ C and C is the least nonempty element of A, so
we get C = D. On the other hand, we know that s = sup(C, ≥) ∈ C, then
we obtain

s ≥ f(s). (2.2)

By combining (2.1) and (2.2) and using the antisymmetry of ≥, we obtain
that f(s) = s. Thus, we have s ∈ Fix(f). Therefore, Fix(f) 6= ∅.

Second step. We have: (Fix(f), ≥) has a least element. Indeed, from
the first step above, we know that Fix(f) 6= ∅. Next, we shall show that
(Fix(f), ≥) has a least element. Now we consider the following subset S
of X defined by

S = {x ∈ X : x ≥ z for every z ∈ Fix(f)}.

As = min(X, ≥), then ∈ S. Hence, = min(S,≤). Now let L be a
nonempty subset of S. Hence, by our hypothesis L has a supremum in
(X,≤). Let t = sup(L, ≥). As L ⊂ S, so every element z of Fix(f) is an
upper bound of (L, ≥). Since t = sup(L, ≥), hence we get t ≥ z for every
z ∈ Fix(f). Then, we have t ∈ S. So, sup(L, ≥) ∈ S. Hence, sup(L, ≥) is
the supremum of L in (S, ≥).
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Now, let x ∈ S. So by our definition of S, we have x ≥ z for every
z ∈ Fix(f). Hence, by the monotonicity of f we get f(x) ≥ z for every
z ∈ Fix(f). Then, f(x) ∈ S for every x ∈ S. Thus, we have f(S) ⊂ S.

Therefore, all hypothesis of the first step above are satisfied for the map
f/S : (S, ≥)→ (S, ≥) defined by f/S (x) = f(x) for every x ∈ S. Then, we
get Fix(f/S ) 6= ∅. So, there exists a ∈ S such that f(a) = a and a ≥ z for
every z ∈ Fix(f). Thus, a ∈ Fix(f) and a is a lower bound of (Fix(f), ≥).
Thus, a is the minimum of (Fix(f), ≥).

As a corollary of Theorem 3.1, we get the following result.

Corollary 3.2. Let (X,≤) be a nonempty partially ordered set with a
least element . Assume that every nonempty subset of X has a supremum
in (X,≤). Then, the set of all fixed points of every monotone map f : (X,≤
)→ (X,≤) is nonempty and has a least element.

Next, by using Theorem 3.1 and Lemmas 2.2 and 2.3, we obtain the
following result.

Theorem 3.3. Let (X, ≥) be a nonempty pseudo-ordered set with a great-
est element g. Assume that every nonempty subset of X has an infimum
in (X, ≥). Then, the set of all fixed points of every monotone map f :
(X, ≥)→ (X, ≥) is nonempty and has a greatest element.

Proof. Let (X, ≥) be a nonempty pseudo-ordered set with a greatest el-
ement g, let f : (X, ≥) → (X, ≥) be a monotone map and let ≤ be the
inverse relation of ≥. From Lemma 2.2, we know that ≤ is a pseudo-order
relation on X. On the other hand, by Lemma 2.3, min(X,≤) exists and
we have min(X,≤) = g. As by our hypothesis f : (X, ≥) → (X, ≥) is
a monotone map, so from Lemma 2.3 the map f : (X,≤) → (X,≤) is
also monotone. Thus, all hypothesis of Theorem 3.1 are satisfied. There-
fore, The set Fix(f) of all fixed points of the map f is nonempty and
has a least element in (X,≤), m, say. Then from Lemma 2.3, we get
m = min(Fix(f),≤) = max(Fix(f), ≥).

As a consequence of Theorem 3.3, we get the following result.

Corollary 3.4. Let (X,≤) be a nonempty partially ordered set with a
greatest element g. Assume that every nonempty subset of X has an in-
fimum in (X,≤). Then, the set of all fixed point of every monotone map
f : (X,≤)→ (X,≤) is nonempty and has a greatest element.
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Combining Theorems 3.1 and 3.3, we obtain the following results.

Corollary 3.5. Let (X, ≥) be a nonempty complete trellis. Then, the set
of all fixed point of every monotone map f : (X, ≥)→ (X, ≥) is nonempty
and has a greatest and a least elements.

Corollary 3.6. Let (X,≤) be a nonempty complete lattice. Then, the set
of all fixed points of every monotone map f : (X,≤)→ (X,≤) is nonempty
and has a least and a greatest elements.

4. Common fixed points in compete trellises

In this section, we shall prove under suitable conditions that the set of all
common fixed points of a finite commutative family F of monotone maps f
defined on a nonempty complete trellis is also a nonempty complete trellis.
First, we shall show the following.

Theorem 4.1. Let (X, ≥) be a nonempty complete trellis and F be a
finite commutative family of monotone maps f : (X, ≥) → (X, ≥) such
that for every x ∈ X, and f ∈ F we have x ≥ f(x). Then, the set of all
common fixed points Fix(F) of F is a nonempty complete trellis.

Proof. Let (X, ≥) be a nonempty complete trellis, let F = {f1, ..., fn}
be a finite commutative family of monotone maps fi : (X, ≥) → (X, ≥)
for i = 1, ..., n (i.e. fi ◦ fj = fj ◦ fi for every i, j ∈ {1, ..., n}). and let
g = max(X, ≥). Then, fi(g) = g for every i = 1, ..., n. Hence, Fix(F) is
nonempty and has a greatest element. From [Theorem 37, 5], we know
that Fix(f1) is a nonempty complete trellis. Now, we shall show that the
set of common fixed points of the family {f1, f2} is a nonempty complete
trellis. Indeed, if x ∈ Fix(f1), then f2(x) = f2(f1(x)) = f1(f2(x)). So, for
every x ∈ Fix(f1) we have f2(x) ∈ Fix(f1). So, f2(Fix(f1)) ⊂ Fix(f1).
Then as Fix(f1) is a nonempty complete trellis and x ≥ f2(x) for every
x ∈ Fix(f1), hence from [Theorem 37, 5] the set of all fixed points of f2
in Fix(f1) is a nonempty complete trellis. On the other hand, the set
of all fixed points of f2 in Fix(f1) is equal to Fix({f1, f2}). Thus, the
set of common fixed points of the family {f1, f2} is a nonempty complete
trellis. By induction, assume that for every k ∈ {1, ..., n − 1} the set of
all common fixed points of the family {f1, ..., fk} is a nonempty complete
trellis. Let x ∈ Fix({f1, ..., fn−1}). Then, fn(x) = fn(fk(x)) = fk(fn(x))
for every k ∈ {1, ..., n− 1}. So, fn(x) ∈ Fix(fk) for every k ∈ {1, ..., n− 1}.
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Thus, fn(Fix({f1, ..., fn−1})) ⊂ Fix({f1, ..., fn−1}). As by the hypothesis
of induction Fix({f1, ..., fn−1}) is a nonempty complete trellis and x≥fn(x)
for every x ∈ Fix({f1, ..., fn−1}), then we deduce from [Theorem 37, 5] that

the set Fix({f1, ..., fn}) =
i=n\
i=1

Fix(fi) is a nonempty complete trellis.

Next, by using Theorem 4.1 and Lemmas 2.2 and 2.3, we obtain the
following dual result.

Theorem 4.2. Let (X, ≥) be a nonempty complete trellis and F a finite
commutative family of monotone map f : (X, ≥) → (X, ≥) such that for
every x ∈ X, and f ∈ F we have f(x) ≥ x. Then, the set of all common
fixed points Fix(F) of F is a nonempty complete trellis.

Proof. Let (X, ≥) be a nonempty complete trellis and F a finite commu-
tative family of monotone map f : (X, ≥) → (X, ≥) such that for every
x ∈ X, and f ∈ F we have f(x) ≥x and let ≤ be the inverse relation of ≥.
From Lemma 2.2, we know that ≤ is a pseudo-order relation on X. On the
other hand, by Lemma 2.3 the pseudo-ordered set (X,≤) is a nonempty
complete trellis. Let f ∈ F . As by our hypothesis f : (X, ≥)→ (X, ≥) is
a monotone map, so from Lemma 2.3 the map f : (X,≤)→ (X,≤) is also
monotone. Since f(x) ≥ x for every x ∈ X and f ∈ F , so we get x≤ f(x)
for every x ∈ X and f ∈ F . Therefore from Theorem 3.1, we know that the
set (Fix({f1, ..., fn}),≤) is a nonempty complete trellis. Hence by Lemma
2.3, we deduce that (Fix({f1, ..., fn}), ≥) is a nonempty complete trellis.
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[7] Nieto, J. J. and Rodŕiguez-Lopez, R.: Existence and uniqueness of
fixed point in partially ordered sets and applications to ordinary dif-
ferential equations, Acta Mathematica Sinica, vol. 23, no. 12, pp.
22052212, (2007).

[8] Parameshwara Bhatta, S., Shashirekha, H.: A characterisation of com-
pleteness for Trellises. Algebra univeralis 44, pp. 305-308, (2000).

[9] Parameshwara Bhatta, S.: Weak chain completeness and fixed point
property for pseudo-ordered sets. Czechoslovac Mathematical Journal
55 (130), pp. 365-369, (2005)

[10] Skala, H. L.: Trellis theory. Algebra Universalis 1, pp. 218-233, (1971)

[11] Skala, H. L.: Trellis theory. Mem. Amer. Math. Soc. 121, Providence,
(1972)

[12] Stouti, A. : A generalized Amman fixed point theorem and its
applications to Nash equilibrium, Acta Academiae Paedagogicae
Ny’iregyh’aziensis, 21, no. 2, pp. 107-112, (2005).

[13] Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions Pacific J. Math, pp. 285-309 5(1955)

[14] Ran, A. C. M. and Reurings, M. C. B.: A fixed point theorem in
partially ordered sets and some applications to matrix equations, Pro-
ceedings of the American Mathematical Society, vol. 132, no. 5, pp.
14351443, (2004).

[15] E. Zeidler: Nonlinear Functional Analysis and its Applications, I.
Fixed-Point Theorems, Springer-Verlag, New-York, (1986).



418 Abdelkader Stouti and Abdelhakim Maaden

Abdelkader Stouti
Center for Doctoral Studies: Sciences and Techniques,
Laboratory of Mathematics and Applications,
Faculty of Sciences and Techniques,
University Sultan Moulay Slimane,
P. O. Box 523. Beni-Mellal 23000,
Morocco
e-mail : stouti@yahoo.com or stout@fstbm.ac.ma

and

Abdelhakim Maaden
Center for Doctoral Studies: Sciences and Techniques,
Laboratory of Mathematics and Applications,
Faculty of Sciences and Techniques,
University Sultan Moulay Slimane,
P. O. Box 523. Beni-Mellal 23000,
Morocco




