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Abstract

We consider a strongly regular graph, G, and associate a three
dimensional Euclidean Jordan algebra, V, to its adjacency matrix A.
Then, by considering binomial series of Hadamard powers of the idem-
potents of the unique complete system of orthogonal idempotents of V
associated to A, we establish feasibility conditions for the existence of
strongly regular graphs.
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1. Introduction

The concept of Euclidean Jordan algebra was introduced in 1934 by Pas-
cual Jordan, John von Neumann and Eugene Wigner in the paper On an
algebraic generalization of the quantum mechanical formalism [12]. This
concept has had a wide range of applications. For instance, there are ap-
plications to the theory of statistics (see [17]), to interior point methods
(see [7, 8]) and to combinatorics (see [4]). Detailed literature on Euclidean
Jordan algebras can be found in the monograph by Faraut and Korányi,
[6].

Strongly regular graphs are a class of graphs introduced in 1963 in a
paper by R. C. Bose, entitled Strongly regular graphs, partial geometries
and partially balanced designs, [2]. These graphs are defined by a set
of parameters that must satisfy several feasibility conditions. The Krein
conditions and the absolute bounds (see, for instance, [9]) are among the
most used admissibility inequalities. For detailed information on strongly
regular graphs, the reader may consult the following references: [1, 3, 9,
11, 14, 18].

In this work we explore the relationship between Euclidean Jordan al-
gebras and strongly regular graphs, in order to find feasibility conditions
for the existence of strongly regular graphs.

In the present work we consider a strongly regular graph, G, and as-
sociate a three dimensional Euclidean Jordan algebra, V, to its adjacency
matrix A. Then, by considering binomial series of Hadamard powers of
the idempotents of the unique complete system of orthogonal idempotents
of V associated to A, we establish feasibility conditions for the existence
of strongly regular graphs. These admissibility conditions are generaliza-
tions of the conditions obtained in the extended abstract [15] and in the
paper [16]. Instead of using geometric series with natural exponents as it
was done in [15, 16], we now consider binomial series with positive real
exponents and we also apply our conclusions to the complement graph G.

Euclidean Jordan algebras are briefly introduced in Section 2, while in
Section 3 the theory of strongly regular graphs is surveyed. Then, in Section
4, by constructing a special series of Hadamard powers of a particular
idempotent of V, and applying some matrix techniques, we establish a
feasibility condition for the existence of strongly regular graphs. Finally
by observing the relationship between a strongly regular graph and its
complement, we extract further conclusions for parameter sets with k < n/2
and k > n/2− 1. We finish the paper with some experimental results that
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confirm our conclusions (Section 5).

2. Euclidean Jordan algebras

In this section we introduce the most important definitions and results
about power-associative algebras and Euclidean Jordan algebras. Adit-
tional literature can be found in the monograph by Faraut and Korányi,
[6], and in Koecher’s lecture notes, [13].

Let F be the fieldR or C and A be a n-dimensional algebra over F with
the bilinear mapping (x, y) 7→ x · y with the unit element e. The algebra A
is power-associative if for any x in A the algebra generated by x and e is
associative.

For x in A, the rank of x is the least natural number k such that
{e,x, . . . ,xk} is linearly dependent and we write rank(x) = k. Since for all
x in A we have rank(x) ≤ n, we define the rank of A as being the natural
number rank(A) = max{rank(x) : x ∈ A}.

An element x in A is regular if rank(x) = rank(A). Let x be a regular
element of A and r = rank(x).

Then, there exist polynomials a1, a2, . . . , ar−1 and ar on A, not all being
zero, such that

xr − a1(x)x
r−1 + · · ·+ (−1)rar(x)e = 0,(2.1)

where 0 is the null vector of A and each aj(x) is a homogeneous polynomial
of degree j. Taking into account (2.1) we conclude that the polynomial

p(x, λ) = λr − a1(x)λ
r−1 + · · ·+ (−1)rar(x)(2.2)

is the minimal polynomial of x.When x is non regular the minimal polyno-
mial of x has degree less than r.We call the roots of the minimal polynomial
of x the eigenvalues of x.

The real vector space of real symmetric matrices of order n, V =
Sym(n,R), equipped with the bilinear map x • y = (xy + yx)/2, with
x, y in V, is a real power-associative algebra whose unit is e = In.

A Jordan algebra A over F is a vector space over the field F with a
bilinear map (x, y) 7→ x · y, such that for all x and y in A we have

(i) x · y = y · x,

(ii) x · (x2 · y) = x2 · (x · y),



396 Vasco Moço M., Luís A. de Almeida V. and Enide Andrade M.

where x2 = x · x.
Let A be a finite dimensional associative algebra over the field F with

the bilinear map (x, y) 7→ x · y. We introduce on A a structure of Jordan
algebra by considering a new product • defined by x • y = (x · y+ y · x)/2,
for all x and y in A. This product is called the Jordan product.

The real vector space V = Sym(n,R) is a real Jordan algebra when
endowed with the bilinear map • given by x • y = (xy+ yx)/2 for all x and
y in V, where xy is the usual matrix multiplication of x and y.

From now on, a Jordan algebra A is always a finite dimensional algebra
over the field F with unit element e. If A is a Jordan algebra then A is
power-associative.

An Euclidean Jordan algebra A is a Jordan algebra with an inner prod-
uct < ·, · > such that

< x · y, z > = < y, x · z >(2.3)

for all x, y and z in A.
The real vector space V = Sym(n,R) is a real Euclidean Jordan algebra

when endowed with the Jordan product and with the inner product <
x, y >= tr(xy), where tr denotes the usual trace of matrices.

Let A be a real Euclidean Jordan algebra with unit element e. An
element c in A is an idempotent if c2 = c. Two idempotents c and d in A
are orthogonal if c · d = 0. The set {c1, c2, . . . , cl} is a complete system of
orthogonal idempotents if

(i) c2i = ci, for i = 1, . . . , l,

(ii) ci · cj = 0, if i 6= j,

(iii)
Pl

i=1 ci = e.

An idempotent c is primitive if it is a nonzero idempotent of A and if
it cannot be written as a sum of two nonzero idempotents. We say that
{c1, c2, . . . , ck} is a Jordan frame if {c1, c2, . . . , ck} is a complete system of
orthogonal idempotents such that each idempotent is primitive.

Theorem 1. ([6], pg. 43).
Let A be a real Euclidean Jordan algebra. Then for x in A there ex-

ist unique real numbers λ1, λ2, . . . , λk, all distinct, and a unique complete
system of orthogonal idempotents {c1, c2, . . . , ck} such that

x = λ1c1 + λ2c2 + · · ·+ λkck.(2.4)
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The numbers λj of (2.4) are the eigenvalues of x and the decomposition
(2.4) is the spectral decomposition of x. If x is an element of a real Eu-
clidean Jordan algebra A with spectral decomposition x = λ1c1 + λ2c2 +
· · ·+λkck, then the minimal polynomial of x is the polynomial p such that

p(x, λ) = Πki=1(λ− λi).(2.5)

3. Strongly regular graphs

Throughout this text a graph G is a pair (V (G), E(G)) of a vertex set,
V (G), and an edge set E(G), where an edge is an unordered pair of distinct
vertices of G. An edge whose endpoints are the vertices u and v is denoted
by uv and, in such a case, the vertices u and v are adjacent or neighbors.
The number of vertices of G, |V (G)|, is called the order of G. A graph in
which all pairs of vertices are adjacent (non-adjacent) is called a complete
(null) graph. The number of neighbors of a vertex v in V (G) is called the
degree of v. If all vertices of a graph G have degree k, for some natural
number k, then G is k-regular. Along this paper we only consider simple
graphs, that is, graphs with no loops (edges connected at both ends to the
same vertex) and no more than one edge between any two different vertices.

We associate to G an n × n matrix A = [aij ], where each aij = 1, if
vivj ∈ E(G), otherwise aij = 0, called the adjacency matrix of G. The
eigenvalues of A are simply called the eigenvalues of G.

A simple, non-null and not complete graph G is strongly regular with
parameters (n, k, a, c) if

1) G is k-regular;

2) each pair of adjacent vertices has a common neighbors;

3) each pair of non-adjacent vertices have c common neighbors.

If A is the adjacency matrix of a (n, k, a, c)-strongly regular graph G,
then conditions 1)− 3) are equivalent to

AJn = kJn,

A2 = kIn + aA+ c(Jn −A− In),

where In and Jn denote the identity and the all one matrices of order n,
respectively. The parameters of a (n, k, a, c)-strongly regular graph are not
independent and are related by the equality

k(k − a− 1) = (n− k − 1)c.(3.1)
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It is well known (see, for instance, [9]) that if G is a (n, k, a, c)-strongly
regular graph, then it’s complementG is a (n, k, a, c)-strongly regular graph,
where

k = n− k − 1,(3.2)

a = n− 2− 2k + c,(3.3)

c = n− 2k + a.(3.4)

In order to exclude trivial cases we shall consider that G and its com-
plement are connected and therefore we have 0 < c < k < n− 1. Note that
while (3.2) and (3.4) produce positive numbers, the positivity of (3.3) is not
guaranteed. Also, the eigenvalues of a (n, k, a, c)-strongly regular graph G
are k, θ and τ , where θ and τ are given by

θ =
a− c+

p
(a− c)2 + 4(k − c)

2
,(3.5)

τ =
a− c−

p
(a− c)2 + 4(k − c)

2
.(3.6)

Note that θ is positive and τ is negative. The eigenvalues of a strongly
regular graph satisfy the following inequalities known as the Krein condi-
tions, obtained in [19]:

(θ + 1)(k + θ + 2θτ) ≤ (k + θ)(τ + 1)2,(3.7)

(τ + 1)(k + τ + 2θτ) ≤ (k + τ)(θ + 1)2.(3.8)

The multiplicities of the eigenvalues of a strongly regular graph can also
be obtained as follows (see, for instance, [14]):

f =
1

2

µ
n− 1− (θ + τ)(n− 1) + 2k

θ − τ

¶
,(3.9)

g =
1

2

µ
n− 1 + (θ + τ)(n− 1) + 2k

θ − τ

¶
.(3.10)

Regard that the formulae (3.9) and (3.10) must yield natural numbers.
Furthermore, it was proven (see [5]) that f and g must also satisfy the
following Seidel’s absolute bounds:

n ≤ f(f + 3)

2
,(3.11)

n ≤ g(g + 3)

2
.(3.12)
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Besides the conditions presented above, A. E. Brouwer improved a result
from Neumaier (see [18, Theorem 4.7]) and obtained the following condition
(see [3]), known as the claw bound:

Theorem 2 ([14], Theorem 21.7). Let G be a (n, k, a, c)-strongly reg-
ular graph, such that 0 < c < k < n − 1, whose adjacency matrix has the
eigenvalues k, θ and τ . If c 6= τ2 and c 6= τ(τ + 1), then

2(θ + 1) ≤ τ(τ + 1)(c+ 1).(3.13)

A parameter set (n, k, a, c) for which (3.3), (3.9) and (3.10) produce
positive integers and that also satisfies equality (3.1) and inequalities (3.7),
(3.8), (3.11), (3.12) and (3.13) is usually called a feasible set and all the
conditions above are called feasibility conditions. With these feasibility
conditions there are many parameter sets that are excluded as possible
strongly regular graphs. However, there are still many parameter sets for
which we do not know if they correspond to a strongly regular graph. In this
work we deduce conditions to claim the unfeasibility of certain parameter
sets of strongly regular graphs.

4. Feasibility conditions for strongly regular graphs

From now on we consider the Euclidean Jordan algebra of real symmetric
matrices of order n, V = Sym(n,R), endowed with the Jordan product
already defined and the inner product defined for matrices A,B in V as
< A,B >= tr(AB), where tr is the classical trace of matrices, that is the
sum of its eigenvalues.

LetG be a (n, k, a, c)-strongly regular graph such that 0 < c < k < n−1,
and let A be the adjacency matrix of G with three distinct eigenvalues,
namely the degree of regularity k, and the restricted eigenvalues θ and τ ,
given in (3.5) and (3.6). Recall that k and θ are the positive eigenvalues
and τ is the negative eigenvalue of A. Now we consider the Euclidean
Jordan subalgebra of V, V 0, spanned by In and the powers of A. Since
A has three distinct eigenvalues, then V 0 is a three dimensional Euclidean
Jordan algebra with rank(V 0) = 3.

Let B = {E0, E1, E2} be the unique complete system of orthogonal
idempotents of V associated to A, with

E0 =
1

n
In +

1

n
A+

1

n
(Jn −A− In) =

1

n
Jn,
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E1 =
−τn+ τ − k

n(θ − τ)
In +

n+ τ − k

n(θ − τ)
A+

τ − k

n(θ − τ)
(Jn −A− In),

E2 =
θn+ k − θ

n(θ − τ)
In +

−n+ k − θ

n(θ − τ)
A+

k − θ

n(θ − τ)
(Jn −A− In),

We now introduce a more specific notation. Let p be a nonnegative
integer and denote by Mn(R) the set of square matrices of order n with
real entries. For B in Mn(R), we denote by B◦p and B⊗p the Hadamard
power and the Kronecker power of order p of B, respectively, with B◦1 = B,
B◦0 = Jn and B⊗1 = B. We consider E◦ij = (Ej)

◦i and E⊗ij = (Ej)
⊗i for

all natural numbers i and j such that 0 ≤ j ≤ 2 and i ≥ 0.
Consider the following spectral decomposition of A, A = kE0 + θE1 +

τE2. Let l in N, α in R
+ and S⊗(2l)α be the following sum:

S⊗(2l)α =

Ã
−α
0

!
J⊗2ln −

Ã
−α
1

!
J⊗2l−2n ⊗E⊗22 +

Ã
−α
2

!
J⊗2l−4n ⊗E⊗42 + · · ·

+ (−1)l−1
Ã
−α
l − 1

!
J⊗2n ⊗E⊗2l−22 + (−1)l

Ã
−α
l

!
E⊗2l2 .(4.1)

where each summand is a Kronecker product with 2l factors. Recall that
for any real number α and each nonegative integer k ≥ 1,Ã

α

k

!
=

α(α− 1) · · · (α− k + 1)

k!
,

with
¡α
0

¢
= 1, that is the generalized binomial number. The sum S⊗(2l)α has

a principal submatrix given by:

S◦(2l)α =

Ã
−α
0

!
J◦2ln −

Ã
−α
1

!
J◦2l−2n ◦ E◦22 +

Ã
−α
2

!
J◦2l−4n ◦E◦42 + · · ·

+ (−1)l−1
Ã
−α
l − 1

!
J◦2n ◦E◦2l−22 + (−1)l

Ã
−α
l

!
E◦2l2 .(4.2)

Observe that S◦(2l)α =
Pl

i=0(−1)i
¡−α
i

¢
E◦2i2 . Let q0(2l)α, q

1
(2l)α and q2(2l)α

be the real numbers such that S◦(2l)α =
P2

i=0 q
i
(2l)αEi. Since the set

C = {Ei1 ⊗Ei2 ⊗ · · ·⊗Ei2l : i1, i2, . . . , i2l ∈ {0, 1, 2}}

is a complete system of orthogonal idempotents that is a basis of the real
Euclidean Jordan subalgebra of Sym(n2l,R), V⊗2l, spanned by I⊗2ln and
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the natural powers of A⊗2l, then the minimal polynomial of S⊗(2l)α is

pα(λ) = (λ− 0)
lY

i=0

Ã
λ− (−1)i

Ã
−α
i

!
n2(l−i)

!
.

Note that to obtain the minimal polynomial we use (2.5) and the system
of orthogonal idempotents, C, in each summand of (4.1).

Attending that the matrix in (4.2) is a principal submatrix of S⊗(2l)α and

pα is the minimal polynomial of S
⊗
(2l)α. By the interlacing theorem (see [10,

Theorem 4.3.15]), its eigenvalues are all nonnegative. Regarding that

S◦(2l)α =
lX

i=0

(−1)i
Ã
−α
i

!µ
θn+ k − θ

n(θ − τ)

¶2i
In

+
lX

i=0

(−1)i
Ã
−α
i

!µ−n+ k − θ

n(θ − τ)

¶2i
A

+
lX

i=1

(−1)i
Ã
−α
i

!µ
k − θ

n(θ − τ)

¶2i
(Jn −A− In),(4.3)

since |τ | > 1, then¯̄̄̄
θn+ k − θ

n(θ − τ)

¯̄̄̄
< 1,

¯̄̄̄−n+ k − θ

n(θ − τ)

¯̄̄̄
< 1 and

¯̄̄̄
k − θ

n(θ − τ)

¯̄̄̄
< 1,

and therefore the series
P+∞

i=0 (−1)i
¡−α
i

¢
E◦2i2 is convergent with sum sα.

The next theorem contains a new inequality for which the parameters
of a strongly regular graph must satisfy.

Theorem 3. Let G be a (n, k, a, c)-strongly regular graph, such that 0 <
c < k < n − 1, whose adjacency matrix has the eigenvalues k, θ and τ .
Then, for any positive real number α,

0 ≤ 1µ
1−

³
θn+k−θ
n(θ−τ)

´2¶α + 1µ
1−

³
−n+k−θ
n(θ−τ)

´2¶α τ
+

1µ
1−

³
k−θ

n(θ−τ)

´2¶α (−τ − 1).(4.4)
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Consider the real numbers q0∞α, q
1
∞α, q

2
∞α such that

sα = lim
l→+∞

S◦(2l)α = q0∞αE0 + q1∞αE1 + q2∞αE2.(4.5)

As
S◦(2l)α = q0(2l)αE0 + q1(2l)αE1 + q2(2l)αE2,(4.6)

applying limits to (4.6) and comparing expressions (4.5) and (4.6) we obtain
q0∞α = liml→∞ q0(2l)α, q

1
∞α = liml→∞ q1(2l)α, q

2
∞α = liml→∞ q2(2l)α.

As the eigenvalues of S◦(2l)α are nonnegative, it follows that q
0
∞α ≥ 0,

q1∞α ≥ 0 and q2∞α ≥ 0. Then from identity (4.3) and doing some algebraic
manipulations we obtain:

q2∞α =
1µ

1−
³
θn+k−θ
n(θ−τ)

´2¶α + τµ
1−

³
−n+k−θ
n(θ−τ)

´2¶α + −τ − 1µ
1−

³
k−θ

n(θ−τ)

´2¶α ,
thus proving our assertion.

Note that the other real numbers q0∞α and q
1
∞α are obtained with similar

arguments. Inequality (4.4) from Theorem 3 allow us to deduce the next
result for parameter sets with k < n/2.

Corollary 1. Let G be a (n, k, a, c)-strongly regular graph, such that 0 <
c < k < n − 1, whose adjacency matrix has the eigenvalues k, θ and τ . If
k < n/2, then

−τ(−2τ − 1)(4θ − 2τ + 1) ≤ 2n

n− 2(k − θ)
θ(θ + 1)(2θ − 2τ − 1)(θ − τ + 1).(4.7)

From inequality (4.4) of Theorem 3, with α = 1, since (−n+ k− θ)2 =
(n− k + θ)2, one concludes that

0 ≤ 1

1−
³
θn+k−θ
n(θ−τ)

´2 + 1

1−
³
n−k+θ
n(θ−τ)

´2 τ + 1

1−
³

k−θ
n(θ−τ)

´2 (−τ − 1).
Associating terms in τ we obtain

0 ≤

³
θn+k−θ
n(θ−τ)

´2
−
³

k−θ
n(θ−τ)

´2∙
1−

³
θn+k−θ
n(θ−τ)

´2¸ ∙
1−

³
k−θ

n(θ−τ)

´2¸ +
³
n−k+θ
n(θ−τ)

´2
−
³

k−θ
n(θ−τ)

´2∙
1−

³
n−k+θ
n(θ−τ)

´2¸ ∙
1−

³
k−θ

n(θ−τ)

´2¸τ.
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Multiplying by 1 −
³

k−θ
n(θ−τ)

´2
and after some algebraic manipulations

we get

0 ≤
θ(θn+2k−2θ)

n(θ−τ)2

1−
³
θn+k−θ
n(θ−τ)

´2 + n−2k+2θ
n(θ−τ)2

1−
³
n−k+θ
n(θ−τ)

´2 τ.
Multiplying by (θ − τ)2, considering k < n/2 and neglecting −2θ we

obtain

0 <
θ(θ + 1)

1−
³
θn+k−θ
n(θ−τ)

´2 + n−2k+2θ
n

1−
³
n−k+θ
n(θ−τ)

´2 τ.
Now we will attend to the denominators of the right hand side of the

inequality above. For the first one we will use the fact that k < n/2, neglect
−θ and simplify. As for the second denominator we will simplify using the
difference of two squares and, along the way, neglect −θ and −k + θ:

0 <
θ(θ + 1)

(−2τ−1)(4θ−2τ+1)
4(θ−τ)2

+
n−2k+2θ

n
(θ−τ− 1

2
)(θ−τ+1)

(θ−τ)2
τ.

Finally, multiplying both terms of the inequality by 1
4(θ−τ)2 ,

0 <
θ(θ + 1)

(−2τ − 1)(4θ − 2τ + 1) +
n− 2k + 2θ

2n(2θ − 2τ − 1)(θ − τ + 1)
τ,

which can be rewritten as (4.7).
For a fixed n, k and θ and analyzing inequality (4.7) we observe that

the left hand side is a polynomial in |τ | of degree 3 and the right hand side
is a polynomial in |τ | of degree 2, both with positive leading coefficients.
Therefore one may conclude that if |τ | is bigger than θ, then |τ | cannot be
too large relatively to the value of θ.

Applying Corollary 1 to the complement graph, G, we deduce the next
result, that presents an inequality for graphs which satisfy k > n/2− 1.

Corollary 2. Let G be a (n, k, a, c)-strongly regular graph, such that 0 <
c < k < n − 1, whose adjacency matrix has the eigenvalues k, θ and τ . If
k > n/2− 1, then

(θ−1)(2θ−3)(−4τ+2θ+3) < 2n(−τ + 1)(−τ + 2)(−2τ + 2θ − 1)(θ − τ + 1)

2(k − τ + 2)− n
.

(4.8)
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Regard that the condition k < n/2 is equivalent to k > n/2− 1. There-
fore, applying inequality (4.7) of Theorem 1 to the parameter set (n, k, a, c)
already introduced by (3.2)-(3.4), ofG, the inequality (4.8) follows directly.

This result can be interpreted in a similar way than the previous one.
For a fixed n, k and τ , inequality (4.8) presents a polynomial in θ of degree
3 on the left hand side and a polynomial in θ of degree 2 on the right hand
side, both with positive leading coefficients. Therefore θ cannot be too
large regarding |τ |.

Finally, combining the conclusions of corollaries 1 and 2, we conclude
that for any parameter set (n, k, a, c) the value of |− τ − θ| cannot be too
big.

5. Experimental Results

In this section we present some experimental results for the admissibility
conditions obtained in the previous section.

In Table 5.1 we consider the value q2∞α from the right hand side of
inequality (4.4) from Theorem 3 and we present the results for the pa-
rameter sets P1 = (1275, 364, 63, 120), P2 = (1296, 435, 90, 174) and P3 =
(1296, 434, 64, 186) for different values of α. For each set we present the
respective eigenvalues θ and τ .

Parameters P1 P2 P3

θ 4 3 2
τ −61 −87 −124

q2∞0.01 −2.0× 10−5 −2.2× 10−5 −2.3× 10−5
q2∞0.5 −1.0× 10−3 −1.1× 10−3 −1.1× 10−3
q2∞1 −1.9× 10−3 −2.2× 10−3 −2.3× 10−3
q2∞5 −9.5× 10−3 −1.1× 10−2 −1.1× 10−2
q2∞10 −1.9× 10−2 −2.2× 10−2 −2.2× 10−2
q2∞50 −7.3× 10−2 −1.1× 10−1 −1.1× 10−1

Table 5.1: Numerical results for P1, P2 and P3.

Next we present some examples of parameter sets (n, k, a, c), with k <
n/2, that do not verify the inequality (4.7) from Corollary 1 and the cor-
responding complement parameter sets (n, k, a, c), with k > n/2 − 1, that
do not verify inequality (4.8) of Corollary 2. In Table 5.2 we consider
the parameter sets P4 = (1024, 385, 36, 210), P5 = (1225, 456, 39, 247),
P6 = (1296, 481, 40, 260) and P7 = (1275, 378, 57, 135). For each set we
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present the respective eigenvalues θ and τ , and the value

m1 = τ(−2τ−1)(4θ−2τ+1)+ 2n

n− 2(k − θ)
θ(θ+1)(2θ−2τ−1)(θ−τ+1),

obtained from the inequality (4.7) of Corollary 1.

Parameters P4 P5 P6 P7

θ 1 1 1 3
τ −175 −209 −221 −81
m1 −2.1× 107 −3.5× 107 −4.2× 107 −1.45× 106

Table 5.2: Numerical results for P4, P5, P6 and P7.

From the data presented in Table 5.2 we confirm the results expressed in
Corollary 1, namely we confirm that if θ is much smaller than |τ |, then we
conclude that the sequence (n, k, a, c) does not correspond to a parameter
set of a strongly regular graph.

In Table 5.3 we present the respective complement parameter sets of P1,
P2 and P3, denoted by P4 = (1024, 638, 462, 290), P5 = (1225, 768, 558, 352),
P6 = (1296, 814, 592, 374) and P7 = (1275, 896, 652, 576). For each set we
present the respective eigenvalues θ and τ , and the value

m2 =
2n(−τ + 1)(−τ + 2)(−2τ + 2θ − 1)(θ − τ + 1)

2(k − τ + 2)− n

− (θ − 1)(2θ − 3)(−4τ + 2θ + 3),

obtained from the inequality (4.8) from Corollary 2.

Parameters P4 P5 P6 P7

θ 174 208 220 80
τ −2 −2 −2 −4
m2 −1.6× 107 −2.8× 107 −3.4× 107 −1.7× 105

Table 5.3: Numerical results for P4, P5, P6 and P7.

From the data presented in Table 5.3 we confirm the results expressed
in Corollary 2, namely it is confirmed that if |τ | is much smaller than θ,
then the sequence (n, k, a, c) does not correspond to a parameter set of a
strongly regular graph.
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