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Abstract

In this article we study the existence of positive periodic solutions
for two types of second-order nonlinear neutral differential equation
with variable delay. The main tool employed here is the Krasnosel-
skii’s fixed point theorem dealing with a sum of two mappings, one
is a contraction and the other is completely continuous. The results
obtained here generalize the work of Cheung, Ren and Han [7].
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1. Introduction.

Due to their importance in numerous applications, for example, physics,
population dynamics, industrial robotics, and other areas, many authors are
studying the existence, uniqueness, stability and positivity of solutions for
delay differential equations, see the references in this article and references
therein.

In this paper, we are interested in the analysis of qualitative theory
of positive periodic solutions of delay differential equations. Motivated by
the papers [6, 7, 10, 11, 12, 13, 16, 18, 19] and the references therein, we
concentrate on the existence of positive periodic solutions for the two types
of second-order nonlinear neutral differential equation with variable delay

d2

dt2
(x (t)− g (t, x (t− τ (t)))) = a (t)x (t)− f (t, x (t− τ (t))) ,(1.1)

and

d2

dt2
(x (t)− g (t, x (t− τ (t)))) = −a (t)x (t) + f (t, x (t− τ (t))) ,(1.2)

where
a, τ ∈ C (R, (0,∞)) , g ∈ C (R× [0,∞) ,R) , f ∈ C (R× [0,∞) , [0,∞)),
and a, τ, g (t, x) , f (t, x) are T -periodic in t where T is a positive constant.
To reach our desired end we have to transform (1.1) and (1.2) into integral
equations and then use Krasnoselskii’s fixed point theorem to show the
existence of positive periodic solutions. The obtained equation splits into
a sum of two mappings, one is a contraction and the other is compact.
In the special case g (t, x) = cx with |c| < 1, Cheung, Ren and Han in
[7] show that (1.1) and (1.2) have a positive periodic solutions by using
Krasnoselskii’s fixed point theorem.

The organization of this paper is as follows. In Section 2, we introduce
some notations and lemmas, and state some preliminary results needed in
later sections, then we give the Green’s function of (1.1) and (1.2), which
plays an important role in this paper. Also, we present the inversions
of (1.1) and (1.2), and Krasnoselskii’s fixed point theorem. For details on
Krasnoselskii’s theorem we refer the reader to [17]. In Section 3 and Section
4, we present our main results on existence of positive periodic solutions of
(1.1) and (1.2), respectively. The results presented in this paper generalize
the main results in [7].
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2. PRELIMINARIES

For T > 0, let CT be the set of all continuous scalar functions x, periodic in
t of period T . Then (CT , k.k) is a Banach space with the supremum norm

kxk =sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| .

Define

C+T = {x ∈ CT : x > 0} , C−T = {x ∈ CT : x < 0} .

Denote

M = sup {a (t) : t ∈ [0, T ]} , m = inf {a (t) : t ∈ [0, T ]} , β =
√
M,

and
F (t, x) = f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t))) .

Lemma 2.1. ([7]) The equation

d2

dt2
y (t)−My (t) = h (t) , h ∈ C−T ,

has a unique T -periodic solution

y (t) =

Z t+T

t
G1 (t, s) (−h (s)) ds,

where

G1 (t, s) =
exp (−β (s− t)) + exp (β (s− t− T ))

2β (1− exp (−βT )) , s ∈ [t, t+ T ] .

Lemma 2.2. ([7]) G1 (t, s) > 0 and
R t+T
t G1 (t, s) ds =

1

M
for all t ∈ [0, T ]

and s ∈ [t, t+ T ].

Lemma 2.3. ([7]) The equation

d2

dt2
y (t)− a (t) y (t) = h (t) , h ∈ C−T ,

has a unique positive T -periodic solution

(P1h) (t) = (I − T1B1)
−1 T1h (t) ,

where

(T1h) (t) =

Z t+T

t
G1 (t, s) (−h (s)) ds, (B1y) (t) = [−M + a (t)] y (t) .
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Lemma 2.4. ([7]) P1 is completely continuous and satisfies

0 < (T1h) (t) ≤ (P1h) (t) ≤
M

m
kT1hk , h ∈ C−T .

The following lemma is essential for our results on existence of positive
periodic solution of (1.1).

Lemma 2.5. If x ∈ CT then x is a solution of equation (1.1) if and only if

x (t) = g (t, x (t− τ (t)))+P1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) .
(2.1)

Proof. Let x ∈ PT be a solution of (1.1). Rewrite (1.1) as

d2

dt2
(x (t)− g (t, x (t− τ (t))))−M (x (t)− g (t, x (t− τ (t))))

= (−M + a (t)) (x (t)− g (t, x (t− τ (t))))

−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))

= B1 (x (t)− g (t, x (t− τ (t))))−f (t, x (t− τ (t)))+a (t) g (t, x (t− τ (t))) .

From Lemma 2.1, we have
x(t)− g (t, x (t− τ (t))) = T1B1 (x (t)− g (t, x (t− τ (t))))

+T1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) .
This yields
(I − T1B1) (x (t)− g (t, x (t− τ (t))))

=T1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) .
Therefore
x(t)− g (t, x (t− τ (t)))

=(I − T1B1)
−1 T1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t))))
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=P1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) .
Obviously

x (t) = g (t, x (t− τ (t)))+P1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) .

This completes the proof. 2

Lemma 2.6. ([7]) The equation

d2

dt2
y (t) +My (t) = h (t) , h ∈ C+T ,

has a unique T -periodic solution

y (t) =

Z t+T

t
G2 (t, s)h (s) ds,

where

G2 (t, s) =
cos

³
β
³
T
2 + t− s

´´
2β sin

³
βT
2

´ , s ∈ [t, t+ T ] .

Lemma 2.7. ([7])
R t+T
t G2 (t, s) ds =

1

M
. Furthermore, if M <

µ
π

T

¶2
,

then G2 (t, s) > 0 for all t ∈ [0, T ] and s ∈ [t, t+ T ].

Lemma 2.8. ([7]) The equation

d2

dt2
y (t) + a (t) y (t) = h (t) , h ∈ C+T ,

has a unique positive T -periodic solution

(P2h) (t) = (I − T2B2)
−1 T2h (t) ,

where

(T2h) (t) =

Z t+T

t
G2 (t, s)h (s) ds, (B2y) (t) = [M − a (t)] y (t) .

Lemma 2.9. ([7]) P2 is completely continuous. Furthermore, if M <µ
π

T

¶2
, then

0 < (T2h) (t) ≤ (P2h) (t) ≤
M

m
kT2hk , h ∈ C+T .
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The following lemma is essential for our results on existence of positive
periodic solution of (1.2).

Lemma 2.10. If x ∈ CT then x is a solution of equation (1.2) if and only
if

x (t) = g (t, x (t− τ (t))) + P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .

(2.2)

Proof. Let x ∈ PT be a solution of (1.2). Rewrite (1.2) as

d2

dt2
(x (t)− g (t, x (t− τ (t)))) +M (x (t)− g (t, x (t− τ (t))))

=(M − a (t)) (x (t)− g (t, x (t− τ (t))))

+f(t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))

=B2 (x (t)− g (t, x (t− τ (t))))+f (t, x (t− τ (t)))−a (t) g (t, x (t− τ (t))) .

From Lemma 2.6, we have
x(t)− g (t, x (t− τ (t))) = T2B2 (x (t)− g (t, x (t− τ (t))))

+T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .
This yields
(I − T2B2) (x (t)− g (t, x (t− τ (t))))

=T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .
Therefore
x(t)− g (t, x (t− τ (t)))

=(I − T2B2)
−1 T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t))))

=P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .
Obviously

x (t) = g (t, x (t− τ (t))) + P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .
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This completes the proof. 2

Lastly in this section, we state Krasnoselskii’s fixed point theorem which
enables us to prove the existence of positive periodic solutions to (1.1) and
(1.2). For its proof we refer the reader to [17].

Theorem 2.11 (Krasnoselskii). Let D be a closed convex nonempty
subset of a Banach space (B, k.k) . Suppose that A and B map D into
B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is completely continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3. POSITIVE PERIODIC SOLUTIONS FOR (1.1)

To apply Theorem 2.11, we need to define a Banach space B, a closed
convex subset D of B and construct two mappings, one is a contraction
and the other is a completely continuous. So, we let (B, k.k) = (CT , k.k)
and D = {ϕ ∈ B : L ≤ ϕ ≤ K}, where L is non-negative constant and K
is positive constant. We express equation (2.1) as

ϕ (t) = (B1ϕ) (t) + (A1ϕ) (t) := (H1ϕ) (t) ,

where A1,B1 : D→ B are defined by

(A1ϕ) (t) = P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t)))) ,(3.1)

and

(B1ϕ) (t) = g (t, ϕ (t− τ (t))) .(3.2)

In this section we obtain the existence of a positive periodic solution of
(1.1) by considering the three cases;

g (t, x) > 0, g (t, x) = 0 and g (t, x) < 0 for all t ∈ R, x ∈ D. We
assume that function g (t, x) is locally Lipschitz continuous in x. That is,
there exists a positive constant k such that

|g (t, x)− g (t, y)| ≤ k kx− yk , for all t ∈ [0, T ] , x, y ∈ D.(3.3)

In the case g (t, x) > 0, we assume that there exist positive constants
k1 and k2 such that
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k1x ≤ g (t, x) ≤ k2x, for all t ∈ [0, T ] , x ∈ D,(3.4)

k2 < 1,(3.5)

and for all t ∈ [0, T ] , x ∈ D,

(1− k1) k2 ≤ F (t, x) ≤ 1− k2.(3.6)

Lemma 3.1. Suppose that (3.3) holds. If B1 is given by (3.2) with

k < 1,(3.7)

then B1 : D→ B is a contraction.

Proof. Let B1 be defined by (3.2). Obviously, B1ϕ is continuous and it
is easy to show that (B1ϕ) (t+ T ) = (B1ϕ) (t). So, for any ϕ,ψ ∈ D,
we have

|(B1ϕ) (t)− (B1ψ) (t)| ≤ |g (t, ϕ (t− τ (t)))− g (t, ψ (t− τ (t)))|
≤ k kϕ− ψk .

Then kB1ϕ− B1ψk ≤ k kϕ− ψk. Thus B1 : D→ B is a contraction by
(3.7). 2

Besides, by the complete continuity of P1, it is easy to verify the fol-
lowing lemma.

Lemma 3.2. Suppose that the conditions (3.4)-(3.6) hold. Then A1 :
D→ B is completely continuous.

Theorem 3.3. Suppose (3.3)-(3.7) hold with L =
k2
M

and K =
1

m
. Then

equation (1.1) has a positive T -periodic solution x in the subset

D =

½
ϕ ∈ B : k2

M
≤ ϕ ≤ 1

m

¾
.

Proof. By Lemma 3.1, the operator B1 : D→ B is a contraction. Also,
from Lemma 3.2, the operator A1 : D→ B is completely continuous.

Moreover, we claim that B1ψ + A1ϕ ∈ D for all ϕ,ψ ∈ D. Since
F (t, x) ≥ (1− k1) k2 > 0 which implies −f (t, x) + a (t) g (t, x) < 0, then
for any ϕ,ψ ∈ D, by Lemma 2.2 and Lemma 2.4, we have
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(B1ψ) (t) + (A1ϕ) (t)

=g(t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≤ k2ψ (t− τ (t))+M
m kT1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))k

≤ k2
m+

M
m max

t∈[0,T ]

¯̄̄R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

¯̄̄
≤ k2

m+
M
m max

t∈[0,T ]

R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≤ k2
m + M

m

R t+T
t G1 (t, s) (1− k2) ds

≤ k2
m + M

m (1− k2)
1
M

= 1
m .

On the other hand, Lemma 2.2 and Lemma 2.4,

(B1ψ) (t) + (A1ϕ) (t)

=g(t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≥ k1ψ (t− τ (t))+
R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≥ k1k2
M +

R t+T
t G1 (t, s) (1− k1) k2ds

= k1k2
M + (1− k1) k2

1
M

= k2
M .

Then B1ψ+A1ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the
Krasnoselskii theorem are satisfied. Thus there exists a fixed point x ∈ D
such that x = A1x + B1x. By Lemma 2.5 this fixed point is a solution of
(1.1) and the proof is complete. 2

Remark 3.4. When g (t, x) = cx, Theorem 3.3 reduces to Theorem 2.1 of
[7].

In the case g (t, x) = 0, we have 5 theorem.
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Theorem 3.5. ([7]) If k2 = 0 and 0 < F (t, x) ≤ 1, then equation (1.1) has
a positive T -periodic solution x in the subset D1 =

½
ϕ ∈ B : 0 < ϕ ≤ 1

m

¾
.

In the case g (t, x) < 0, we substitute conditions (3.4)-(3.6) with the
following conditions respectively. We assume that there exist negative con-
stants k3 and k4 such that

k3x ≤ g (t, x) ≤ k4x, for all t ∈ [0, T ] , x ∈ D,(3.8)

− k3 <
m

M
,(3.9)

and for all t ∈ [0, T ] , x ∈ D

− k3M < F (t, x) ≤ m.(3.10)

Theorem 3.6. Suppose (3.3) and (3.7)-(3.10) hold with L = 0 and K =
1. Then equation (1.1) has a positive T -periodic solution x in the subset
D2 = {ϕ ∈ B : 0 < ϕ ≤ 1}.

Proof. By Lemma 3.1, the operator B1 : D → B is a contraction.
Also, from Lemma 3.2, the operator A1 : D→ B is completely continuous.
Moreover, we claim that B1ψ +A1ϕ ∈ D for all ϕ,ψ ∈ D. In fact, for any
ϕ,ψ ∈ D, by Lemma 2.2 and Lemma 2.4, we have

(B1ψ) (t) + (A1ϕ) (t)

=g(t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≤ k4ψ (t− τ (t))+M
m kT1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))k

≤ M
m max

t∈[0,T ]

¯̄̄R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

¯̄̄
≤ M

m max
t∈[0,T ]

R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

= M
m

R t+T
t G1 (t, s)mds

= M
mm 1

M

=1.
On the other hand, Lemma 2.2 and Lemma 2.4,
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(B1ψ) (t) + (A1ϕ) (t)

=g(t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≥ k3ψ (t− τ (t))+
R t+T
t G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≥ k3 +
R t+T
t G1 (t, s) (−k3M) ds

= k3 + (−k3M) 1
M

=0.
Then B1ψ+A1ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the

Krasnoselskii theorem are satisfied. Thus there exists a fixed point x ∈ D
such that x = A1x+B1x. Since F (t, x) > −k3M , it is clear that x (t) > 0,
hence x ∈ D2. By Lemma 2.5 this fixed point is a solution of (1.1) and the
proof is complete. 2

Remark 3.7. When g (t, x) = cx, Theorem 3.6 reduces to Theorem 2.3 of
[7].

4. POSITIVE PERIODIC SOLUTIONS FOR (1.2)

We express equation (2.2) as

ϕ (t) = (B2ϕ) (t) + (A2ϕ) (t) := (H2ϕ) (t) ,

where A2,B2 : D→ B are defined by

(A2ϕ) (t) = P2 (f (t, ϕ (t− τ (t)))− a (t) g (t, ϕ (t− τ (t)))) ,(4.1)

and

(B2ϕ) (t) = g (t, ϕ (t− τ (t))) .(4.2)

Moreover, by the complete continuity of P2, it is easy to verify

Lemma 4.1. Suppose that the conditions (3.4)-(3.6) hold. Then A2 :
D→ B is completely continuous.

Remark 4.2. Notice that B2 in this section is defined exactly the same as
that in Section 3. Hence Lemma 3.1 still holds true.
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Similar to the results in Section 3, we have

Theorem 4.3. Assume that the hypotheses of Theorem 3.3 hold. Also
assume that

max {a (t) : t ∈ [0, T ]} <
µ
π

T

¶2
.

Then equation (1.2) has a positive T -periodic solution x in the subset

D =

½
ϕ ∈ B : k2

M
≤ ϕ ≤ 1

m

¾
.

Theorem 4.4. ([7]) Assume that the hypotheses of Theorem 3.5 hold.
Also assume that

max {a (t) : t ∈ [0, T ]} <
µ
π

T

¶2
.

Then equation (1.2) has a positive T -periodic solution x in the subset

D1=

½
ϕ ∈ B : 0 < ϕ ≤ 1

m

¾
.

Theorem 4.5. Assume that the hypotheses of Theorem 3.6 hold. Also
assume that

max {a (t) : t ∈ [0, T ]} <
µ
π

T

¶2
.

Then equation (1.2) has a positive T -periodic solution x in the subset
D2= {ϕ ∈ B : 0 < ϕ ≤ 1}.

Remark 4.6. When g (t, x) = cx, Theorem 4.3 and Theorem 4.5 reduce
to Theorem 3.1 and Theorem 3.3 of [7], respectively.

Acknowledgement. The authors are grateful to the referee for his/ her
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