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Abstract

In this paper we define some tridiagonal matrices depending of a
parameter from which we will find the k-Fibonacci numbers. And from
the cofactor matrix of one of these matrices we will prove some for-
mulas for the k-Fibonacci numbers differently to the traditional form.
Finally, we will study the eigenvalues of these tridiagonal matrices.
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1. Introduction

The generalization of the Fibonacci sequence has been treated by some
authors as e.g. Hoggat V.E. [6] and Horadam A.F. [7].

One of these generalizations has been found by Falcon S. and Plaza A.
to study the method of triangulation 4TLE [1] and that we define below.

We define the k-Fibonacci numbers [1, 2, 3] by mean of the recurrence
relation Fk,n+1 = k Fk,n + Fk,n−1 for n ≥ 1 with the initial conditions
Fk,0 = 0 and Fk,1 = 1.

The recurrence equation of this formula is r2 − k · r − 1 = 0 whose

solutions are σ1 =
k+
√
k2+4
2 and σ2 =

k−
√
k2+4
2 .

The Binet formula for these numbers is Fk,n =
σn1 − σn2
σ1 − σ2

From the definition of the k-Fibonacci numbers, the first of them are
presented in Table ??.

First k-Fibonacci numbers

Fk,0 = 0
Fk,1 = 1
Fk,2 = k
Fk,3 = k2 + 1
Fk,4 = k3 + 2k
Fk,5 = k4 + 3k2 + 1
Fk,6 = k5 + 4k3 + 3k

For k = 1, the classical Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, . . .} is ob-
tained and for k = 2 it is the Pell sequence {0, 1, 2, 5, 12, 29, . . .}

2. Tridiagonal matrices and the k-Fibonacci numbers

In this section we extend the matrices defined in [4] and applied them to
the k-Fibonacci numbers in order to prove some formulas differently to the
traditional form.
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2.1. The determinant of a special kind of tridiagonal matrices

Let us consider the n-by-n tridiagonal matrices Mn,

Mn =

⎛⎜⎜⎜⎜⎜⎜⎝

a b
c d e

c d e
c d e

. . .
. . .

. . .
c d e

c d

⎞⎟⎟⎟⎟⎟⎟⎠
Solving the sequence of determinants, we find

|M1| = a

|M2| = d · |M1|− bċ

|M3| = d · |M2|− cė · |M1|
|M4| = d · |M3|− cė · |M2|
. . .

And, in general,

|Mn+1| = d · |Mn|− cė · |Mn−1|(2.1)

2.2. Some tridiagonal matrices and the k—Fibonacci numbers

• If a = d = k, b = e = 1, and c = −1, the matrices Mn are transformed in
the tridiagonal matrices

Hn(k) =

⎛⎜⎜⎜⎜⎝
k 1
−1 k 1

−1 k 1
. . .

. . .
. . .
−1 k 1

−1 k

⎞⎟⎟⎟⎟⎠
In this case, and taking into account Table ??, the above formulas are
transformed in

|H1(k)| = k = Fk,2

|H2(k)| = k · k − 1(−1) = k2 + 1 = Fk,3

|H3(k)| = k(k2 + 1)− (−1)1k = k3 + 2k = Fk,4

and Formula (2.1) is |Hn(k)| = Fk,n+1 for n ≥ 1.
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The k-Fibonacci numbers can also be obtained from the symmetric tridiag-
onal matrices

H 0
n(k) =

⎛⎜⎜⎜⎜⎝
k i
i k i

i k i
. . .

. . .
. . .
i k i

i k

⎞⎟⎟⎟⎟⎠
where i is the imaginary unit, i.e. i2 = −1.

• If a = k2 + 1, b = c = e = 1, d = k2 + 2, the tridiagonal matrices obtained
are

On(k) =

⎛⎜⎜⎜⎜⎜⎝
k2 + 1 1
1 k2 + 2 1

1 k2 + 2 1
. . .

. . .
. . .
1 k2 + 2 1

1 k2 + 2

⎞⎟⎟⎟⎟⎟⎠
In this case, it is |On(k)| = Fk,2n+1 for n ≥ 1. So, with |O0(k)| = Fk,1 =
1, the sequence of these determinants is the sequence of odd k—Fibonacci
numbers {1, k2 + 1, k4 + 3k2 + 1}.

• Finally, if a = k, b = 0, c = 1, d = k2 + 2, and e = 1, for n ≥ 1 we obtain
the even k—Fibonacci numbers from the determinant of the matrices

En(k) =

⎛⎜⎜⎜⎜⎜⎝
k 0
1 k2 + 2 1

1 k2 + 2 1
. . .

. . .
. . .
1 k2 + 2 1

1 k2 + 2

⎞⎟⎟⎟⎟⎟⎠
because |En(k)| = Fk,2n for n ≥ 1 with |E0(k)| = Fk,0 = 0.

3. Cofactor matrices of the generating matrices of the k-
Fibonacci numbers

The following definitions are well-known: [9]

If A is a square matrix, then the minor of its entry aij , also known as the
(i, j) minor of A, is denoted by Mij and is defined to be the determinant of the
submatrix obtained by removing from A its i− th row and j − th column.

It follows Cij = (−1)i+jMij and Cij called the cofactor of aij , also referred to
as the (i, j) cofactor of A.
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Define the cofactor matrix of A, as the n × n matrix C whose (i, j) entry is
the (i, j) cofactor of A.

Finally, the inverse matrix of A is A−1 = 1
|A|C

T , where |A| is the determinant
of the matrix A (assuming non zero) and CT is the transpose of the cofactor matrix
C or adjugate matrix of A.

On the other hand, let us consider the n-by-n nonsingular tridiagonal matrix

T =

⎛⎜⎜⎜⎜⎝
a1 b1
c1 a2 b2

c2
. . .

. . .
. . .

. . . bn−1
cn−1 an

⎞⎟⎟⎟⎟⎠(3.1)

In [8], Usmani gave an elegant and concise formula for the inverse of the
tridiagonal matrix T−1 = (ti,j):

ti,j =

⎧⎪⎪⎨⎪⎪⎩
(−1)i+j 1

θn
bi · · · bj−1θi−1φj+1 if i ≤ j

(−1)i+j 1
θn

cj · · · ci−1θj−1φi+1 if i > j

(3.2)

where

• θi verify the recurrence relation θi = aiθi−1 − bi−1ci−1θi−2 for i = 2, . . . n

with the initial conditions θ0 = 1 and θ1 = a1.

Formula (2.1) is one special case of this one.

• φi verify the recurrence relation

φi = aiφi+1 − biciφi+2 for i = n− 1, . . . 1

with the initial conditions φn+1 = 1 and φn = an

Observe that θn = det(T ).

3.1. Cofactor matrix of Hn(k)

For the matrixHn(k), it is ai = k, bi = 1, ci = −1, θi = Fk,i+1 and φj = Fk,n−j+2.
Consequently,

((Hn(k))
−1)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)i+j 1

Fk,n+1
Fk,i · Fk,n−j+1 if i ≤ j

1

Fk,n+1
Fk,j · Fk,n−i+1 if i > j
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We will work with the cofactor matrix whose entries are

ci,j(Hn(k)) =

(
(−1)i+jFk,jFk,n−i+1 if i ≥ j

Fk,iFk,n−j+1 if i < j

So, cj,i(Hn(k)) = (−1)i+jci,j(Hn(k)) if i > j.

In this form, the cofactor matrix of Hn(k) for n ≥ 2 is
Cn−1(k) =⎛⎜⎜⎜⎜⎜⎝

Fk,n Fk,n−1 Fk,n−2 Fk,n−3 · · · Fk,2 Fk,1
−Fk,n−1 Fk,2Fk,n−1 Fk,2Fk,n−2 Fk,2Fk,n−3 · · · Fk,2Fk,2 Fk,2
Fk,n−2 −Fk,2Fk,n−2 Fk,3Fk,n−2 Fk,3Fk,n−3 · · · Fk,3Fk,2 Fk,3
−Fk,n−3 Fk,2Fk,n−3 −Fk,3Fk,n−3 Fk,4Fk,n−3 · · · Fk,4Fk,2 Fk,4

. . . . . . . . . . . . . . . . . . . . .
Fk,2 −Fk,2Fk,2 Fk,3Fk,2 −Fk,4Fk,2 · · · Fk,n−1Fk,2 Fk,n−1
−Fk,1 Fk,2 −Fk,3 Fk,4 · · · −Fk,n−1 Fk,n

⎞⎟⎟⎟⎟⎟⎠
On the other hand, taking into account the inverse matrix A−1 = 1

|A|Adj(A),

it is easy to prove |Adj(A)| = |A|n−1.
So, |Cn−1(k)| = Fn−1

k,n+1.

In this form, for n = 2, 3, 4, . . ., it is

C1(k) =
¯̄̄

Fk,2 Fk,1
−Fk,1 Fk,2

¯̄̄
= Fk,3 → F 2k,2 + F 2k,1 = Fk,3

C2(k) =

¯̄̄̄
¯ Fk,3 Fk,2 Fk,1
−Fk,2 Fk,2Fk,2 Fk,2
Fk,1 −Fk,2 Fk,3

¯̄̄̄
¯ = F 2k,4

→ F 2k,2(F
2
k,3 + 2Fk,3 + 1) = F 2k,4 →

µ
Fk,3 − Fk,1

k

¶2
(Fk,3 + Fk,1)

2
= F 2k,4

→ F 2k,3 − F 2k,1 = kFk,4

C3(k) =

¯̄̄̄
¯̄ Fk,4 Fk,3 Fk,2 Fk,1
−Fk,3 Fk,2Fk,3 Fk,2Fk,2 Fk,2
Fk,2 −Fk,2Fk,2 Fk,3Fk,2 Fk,3
−Fk,1 Fk,2 −Fk,3 Fk,4

¯̄̄̄
¯̄ = F 3k,5

→ (F 2k,2 + F 2k,3)F
2
k,5 = F 3k,5 → F 2k,2 + F 2k,3 = Fk,5

C4(k) = F 4k,6 → F 2k,3(Fk,2 + Fk,4)
2F 2k,6 = F 4k,6

→
µ
Fk,4 − Fk,2

k

¶2
(Fk,4 + Fk,2)

2 = F 2k,6 → F 2k,4 − F 2k,2 = kFk,6

· · ·

Generalizing these results, and taking into account Fk,n =
Fk,n+1−Fk,n−1

k , we
find the following two formulas for the k-Fibonacci numbers according to that n
is odd or even [2]: F 2k,n+1 + F 2k,n = Fk,2n+1 and F 2k,n+1 − F 2k,n−1 = k · Fk,2n
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3.2. Cofactor matrix of On(k)

To apply formula (3.2) to the matrices On(k), we must take into account that

a1 = k2 + 1

ai = k2 + 2, i ≥ 2
bi = ci = 1, i ≥ 1
θi = Fk,2i−1, i ≥ 1

φj =
1

k
Fk,2(n−j+2), j ≥ 1

and consequently the cofactor of the (i, j) entry of these matrices is

ci,j(On(k)) = (−1)i+j
1

k
Fk,2j−1Fk,2(n−i+1) if i ≥ j

cj,i(On(k)) = ci,j(On(k)) for j > i

3.3. Cofactor matrix of En(k)

For the matrices En(k) it is

a1 = k = Fk,2

ai = k2 + 2, i ≥ 2
b1 = 0

bi+1 = ci = 1, i ≥ 1
θi = Fk,2(i+1), i ≥ 1

φj =
1

k
Fk,2(n−j+2), j ≥ 1

and consequently the cofactor of the (i, j) entry of these matrices is

c1,j(En(k)) = (−1)j+1 1
k
Fk,2(n−j+1)

ci,j(En(k)) = (−1)i+j 1kFk,2jFk,2(n−i+1), if i ≥ j, i > 1

cj,i(En(k)) = ci,j(En(k)), if j > i > 1

4. Eigenvalues

This section is dedicated to the study of the eigenvalues of the matrices Hn(k),
On(k) and En(k).
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4.1. Eigenvalues of the matrices Hn(k)

The matrix (3.1) has entries in the diagonals a1, . . . , an, b1, . . . , bn−1, c1, . . . , cn−1.

It is well-known the eigenvalues of the matrix (3.1) are

λr = a+ 2
√
b · c cos

µ
rπ

n+ 1

¶
for r = 1, 2, . . . , n.

Consequently, the eigenvalues of the matrixHn(k) where a = k, b = 1, c = −1,
are λr = k + 2i cos

µ
rπ

n+ 1

¶
If n is odd, then the matrixHn(k) has one unique real eigenvalue corresponding

to r = n+1
2 .

If n is even, no one eigenvalue is real.

So, the sequence of spectra of the tridiagonal matrices Hn(k) for n = 1, 2, . . .
is

Σ1 = {k}
Σ2 = {k ± i}
Σ3 =

n
k, k ± i

√
2
o

Σ4 =

(
k ± 1 +

√
5

2
i, k ± 1−

√
5

2
i

)
= {k ± φi, k ± (−φ)−1i}

Σ5 =
n
k, k ± i, k ± i

√
3
o

. . .

where φ = 1+
√
5

2 is the Golden Ratio.

All the roots λr lie on the segment <(λj) = k, −2 < =(λj) < 2.

It is verified
nX
j=1

λj = nk and
nY
j=1

λj = Fk,n+1.

Moreover, taking into account the product of all eigenvalues is the determinant
of the matrix Hn(k) and as |Hn(k)| = Fk,n+1, it is verified that

Fk,n+1 =
nY
j=1

µ
k + 2i cos

µ
πj

n+ 1

¶¶

4.2. Eigenvalues of the matrices On(k)

Matrices On(k) are symmetric, so all its eigenvalues are real.
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4.2.1. Theorem

If λi is an eigenvalue of the matrix On(k) for a fixed value k, then λi + 2k + 1 is
eigenvalue of the matrix On(k + 1).

Proof. If λi is an eigenvalue of the matrix On(k), then it is

|On(k)− λiIn| =

¯̄̄̄
¯̄̄̄ k

2 + 1− λi 1
1 k2 + 2− λi 1

1 k2 + 2− λi 1
. . .

. . .
. . .

¯̄̄̄
¯̄̄̄ =

¯̄̄̄
¯̄̄̄ (k + 1)

2 + 1− (λi + 2k + 1) 1
1 (k + 1)2 + 2− (λi + 2k + 1) 1

1 (k + 1)2 + 2− (λi + 2k + 1) 1
. . .

. . .

¯̄̄̄
¯̄̄̄ =

|On(k + 1)− (λi + 2k + 1)In|
Consequently, only it is necessary to find the eigenvalues of the matrix On(1)

for n = 2, 3, . . . and then, if λj is an eigenvalue of On(1), then

λ0j = λj + k2 − 1(4.1)

is an eigenvalue of the matrix On(k).
Now we will study the spectra of these matrices.
First, we present the spectra of these matrices for k = 1 and n = 2, 3, 4, 5, 6, 7, 8

obtained with the help of MATHEMATICA:
Σ2 = {1.381966, 3.618034}

Σ3 = {1.198062, 2.554958, 4.246980}
Σ4 = {1.120615, 2.000000, 3.347296, 4.532089}
Σ5 = {1.081014, 1.690279, 2.715370, 3.830830, 4.682507}
Σ6 = {1.058116, 1.502979, 2.290790, 3.241073, 4.136129, 4.770912}
Σ7 = {1.043705, 1.381966, 2.000000, 2.790943, 3.618034, 4.338261, 4.827091}
Σ8 = {1.034054, 1.299566, 1.794731, 2.452674, 3.184537, 3.891477, 4.478018, 4.864944}

Evidently, X
λj = 3n− 1(4.2)

and Y
λj = F2n+1(4.3)

Below are the minimum and maximum eigenvalues of these spectra:
n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

minima 1.381966 1.198062 1.120615 1.081014 1.058116 1.043705 1.034054
Maxima 3.618034 4.246980 4.532089 4.682507 4.770912 4.827091 4.864944

In the first case, we can see this sequence is decreasing and converge to 1, and
consequently, lim

n→∞
minλ(On(k)) = k.
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In the same form, the sequence of Maxima is increasing and converge to 5, so
we can say lim

n→∞
Maxλ(On(k)) = k2 + 4.

Finally, if k 6= 1, then, taking into account Formula (4.1), the formulas (4.2)
and (4.3) are transformed into

nX
j=1

λj(k) =
X
(λi(1) + k2 − 1) = nk2 + 2n− 1

nY
j=1

λj(k) = Fk,2n+1

4.3. Eigenvalues of the matrices En(k)

Finally, we say a matrix is positive if all the entries are real and nonnegative. If a
matrix is tridiagonal and positive, then all the eigenvalues are real [5]. So, taking
into account matrix En(k) is tridiagonal and positive, all its eigenvalues are real.

Following the same process that for the matrices On(k), we can prove that the
first eigenvalue is k and the others verify λi(k) = λi(1) + k2 − 1.

Moreover,
nX
j=1

λj(k) = (n− 1)(k2 + 2) + k and
nY
j=1

λj(k) = Fk,2n

The sequence of spectra of the matrices En(1) is
Σ2 = {1, 3}

Σ3 = {1, 2, 4}
Σ4 = {1, 1.585786, 3, 4.414214}
Σ5 = {1, 1.381966, 2.381966, 3.618034, 4.618034}
Σ6 = {1, 1.267949, 2, 3, 4, 4.732051}
σ7 = {1, 1.198062, 1.753020, 2.554958, 3.445042, 4.246980, 4.801938}

The sequence of minima eigenvalue converges to 1 (to k in general ) and the
sequience of maxima converges to 5 (to k2 + 4 in the general case).
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