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Abstract

In this paper, we introduce and investigate the notion of contra
βθ-continuous functions by utilizing β-θ-closed sets. We obtain fun-
damental properties of contra βθ-continuous functions and discuss the
relationships between contra βθ-continuity and other related functions.
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1. Introduction and Preliminaries

In 1996, Dontchev [9] introduced a new class of functions called contra-
continuous functions. He defined a function f : X → Y to be contra-
continuous if the pre image of every open set of Y is closed in X. In 2007,
Caldas and Jafari [3] introduced and investigated the notion of contra β-
continuity. In this paper, we present a new notion of a contra-continuity
called contra βθ-continuity which is a strong form of contra β-continuity.

Throughout this paper (X, τ), (Y, σ) and (Z, γ) will always denote topo-
logical spaces. Let S a subset of X. Then we denote the closure and the
interior of S by Cl(S) and Int(S) respectively. A subset S is said to be
β-open [1, 2] if S ⊂ Cl(Int(Cl(S))). The complement of a β-open set is
said to be β-closed. The intersection of all β-closed sets containing S is
called the β-closure of S and is denoted by βCl(S). A subset S is said
to be β-regular [17] if it is both β-open and β-closed. The family of all
β-open sets (resp. β-regular sets) of (X, τ) is denoted by βO(X, τ) (resp.
βR(X, τ)). The β-θ-closure of S [17], denoted by βClθ(S), is defined to be
the set of all x ∈ X such that βCl(O) ∩ S 6= ∅ for every O ∈ βO(X, τ)
with x ∈ O. The set {x ∈ X : βClθ(O) ⊂ S for some O ∈ β(X,x)} is
called the β-θ- interior of S and is denoted by βIntθ(S). A subset S is
said to be β-θ-closed [17] if S = βClθ(S). The complement of a β-θ-closed
set is said to be β-θ-open. The family of all β-θ-open (resp. β-θ-closed)
subsets of X is denoted by βθO(X, τ) or βθO(X) (resp. βθC(X, τ)). We
set βθO(X,x) = {U : x ∈ U ∈ βθO(X, τ)} and βθC(X,x) = {U : x ∈ U ∈
βθC(X, τ)}.

A function f : (X, τ) → (Y, σ) is called, weakly β-irresolute [17] (resp.
strongly β-irresolute [17]) if f−1(V ) is β-θ-open (resp. β-θ-open) in X for
every β-θ-open (resp. β-open) set V in Y .

We recall the following three results which were obtained by Noiri [17].

Lemma 1.1. Let A be a subset of a topological space (X, τ).
(i) If A ∈ βO(X, τ), then βCl(A) ∈ βR(X).
(ii) A ∈ βR(X) if and only if A ∈ βθO(X) ∩ βθC(X).

Lemma 1.2. For the β-θ-closure of a subset A of a topological space
(X, τ), the following properties are hold:
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(i) A ⊂ βCl(A) ⊂ βClθ(A) and βCl(A) = βClθ(A) if A ∈ βO(X).

(ii) If A ⊂ B, then βClθ(A) ⊂ βClθ(B).

(iii) If Aα ∈ βθC(X) for each α ∈ A, then
T{Aα | α ∈ A} ∈ βθC(X).

(iv) If Aα ∈ βθO(X) for each α ∈ A, then
S{Aα | α ∈ A} ∈ βθO(X).

(v) βClθ(βClθ(A)) = βClθ(A) and βClθ(A) ∈ βθC(X).

The union of two β-θ-closed sets is not necessarily β-θ-closed as showed
in the following example.

Example 1.3. Let X = {a, b, c}, τ = {∅,X, {a}, {b}, {a, b}}. The subsets
{a} and {b} are β-θ-closed in (X, τ) but {a, b} is not β-θ-closed.

2. Contra βθ-continuous functions

Definition 1. A function f : X → Y is called contra βθ-continuous if
f−1(V ) is β-θ-closed in X for every open set V of Y.

Example 2.1. ([11]) 1) Let R be the set of real numbers, τ be the count-
able extension topology on R, i.e. the topology with subbase τ1∪ τ2, where
τ1 is the Euclidean topology of R and τ2 is the topology of countable com-
plements of R, and σ be the discrete topology of R. Define a function
f : (R, τ) → (R, σ) as follows: f(x) = 1 if x is rational, and f(x) = 2 if
x is irrational. Then f is not contra βθ-continuous, since {1} is closed in
(R, σ) and f−1({1}) = Q, where Q is the set of rationals, is not β-θ-open
in (R, τ).
2) Let X = {a, b, c} and τ = {X, ∅, {b}, {c}, {b, c}}. We have
βO(X, τ) = {X, ∅, {b}, {c}, {a, b}, {a, c}, {b, c}}. The β-θ-closed sets of
(X, τ) are
{X, ∅, {a}, {b}, {c}, {a, b}, {a, c}}. Let f : (X, τ) → (X, τ) be defined by
f(a) = c, f(b) = b and f(c) = a. Then f is contra βθ-continuous.

Let A be a subset of a space (X, τ). The set
T{U ∈ τ |A ⊂ U} is called

the kernel of A [15] and is denoted by ker(A).

Lemma 2.2. [14]. The following properties hold for subsets A,B of a
space X:
1) x ∈ ker(A) if and only if A ∩ F 6= ∅ for any F ∈ C(X,x).
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2) A ⊂ ker(A) and A = ker(A) if A is open in X.
3) If A ⊂ B, then ker(A) ⊂ ker(B).

Theorem 2.3. The following are equivalent for a function f : X → Y :

1) f is contra βθ-continuous;
2) The inverse image of every closed set of Y is β-θ-open in X;

3) For each x ∈ X and each closed set V in Y with f(x) ∈ V, there
exists a β-θ-open set U in X such that x ∈ U and f(U) ⊂ V ;
4) f(βClθ(A)) ⊂ Ker(f(A)) for every subset A of X;
5) βClθ(f

−1(B)) ⊂ f−1(Ker(B)) for every subset B of Y.

Proof. (1)⇒ (2): Let U be any closed set of Y. Since Y \U is open, then
by (1), it follows that f−1(Y \U) = X\f−1(U) is β-θ-closed. This shows
that f−1(U) is β-θ-open in X.

(1) ⇒ (3): Let x ∈ X and V be a closed set in Y with f(x) ∈ V. By
(1), it follows that f−1(Y \V ) = X\f−1(V ) is β-θ-closed and so f−1(V ) is
β-θ-open. Take U = f−1(V ) We obtain that x ∈ U and f(U) ⊂ V.

(3)⇒ (2): Let V be a closed set in Y with x ∈ f−1(V ). Since f(x) ∈ V,
by (3) there exists a β-θ-open set U in X containing x such that f(U) ⊂ V.
It follows that x ∈ U ⊂ f−1(V ). Hence f−1(V ) is β-θ-open.

(2) ⇒ (4): Let A be any subset of X. Let y /∈ Ker(f(A)). Then by
Lemma 1.2, there exist a closed set F containing y such that f(A)∩F = ∅.
We have A ∩ f−1(F ) = ∅ and since f−1(F ) is β-θ-open then we have
βClθ(A) ∩ f−1(F ) = ∅. Hence we obtain f(βClθ(A)) ∩ F = ∅ and y /∈
f(βClθ(A)). Thus f(βClθ(A)) ⊂ Ker(f(A)).
(4)⇒ (5): Let B be any subset of Y. By (4), f(βClθ(f

−1(B))) ⊂ Ker(B)
and βClθ(f

−1(B)) ⊂ f−1(Ker(B)).

(5) ⇒ (1): Let B be any open set of Y. By (5), βClθ(f
−1(B)) ⊂

f−1(Ker(B)) = f−1(B) and βClθ(f
−1(B)) = f−1(B). So we obtain that

f−1(B) is β-θ-closed in X.

Definition 2. A function f : X → Y is said to be contra-continuous
[9] (resp. contra-α-continuous [12], contra-precontinuous [13], contra-semi-
continuous [10], contra-β-continuous [3] if for each open set V of Y , f−1(V )
is closed (resp. α-closed, preclosed, semi-closed, β-closed) in X.
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For the functions defined above, we have the following implications:

A ⇒ B ⇒ C
⇓ ⇓
E ⇒ F ⇐ G

Notation: A = contra-continuity, B = contra α-continuity, C = contra
precontinuity, E = contra semi-continuity, F = contra β-continuity,
G = contra βθ-continuity.

Remark 2.4. It should be mentioned that none of these implications is
reversible as shown by the examples stated below.

Example 2.5. Let X = {a, b, c}, τ = {∅, {a},X} and
σ = {∅, {b}, {c}, {b, c},X}. Then the identity function f : (X, τ)→ (X,σ)
is

1) contra α-continuous but not contra-continuous [12].

2) contra β-continuous but not contra βθ-continuous.

Example 2.6. ([10]) A contra semicontinuous function need not be contra
precontinuous. Let f : R → R be the function f(x) = [x], where [x] is the
Gaussian symbol. If V is a closed subset of the real line, its preimage
U = f−1(V ) is the union of the intervals of the form [n, n + 1], n ∈ Z;
hence U is semi-open being union of semi-open sets. But f is not contra
precontinuous, since f−1(0.5, 1.5) = [1, 2) is not preclosed in R.

Example 2.7. ([10]) A contra precontinuous function need not be contra
semicontinuous. Let X = {a, b}, τ = {∅,X} and σ = {∅, {a},X}. The
identity function f : (X, τ) → (Y, σ) is contra precontinuous as only the
trivial subsets of X are open in (X, τ). However, f−1({a}) = {a} is not
semi-closed in (X, τ); hence f is not contra semicontinuous.

Example 2.8. ([11]) Let R be the set of real numbers, τ be the countable
extension topology on R, i.e. the topology with subbase τ1 ∪ τ2, where τ1
is the Euclidean topology of R and τ2 is the topology of countable com-
plements of R, and σ be the discrete topology of R. Define a function
f : (R, τ)→ (R, σ) as follows: f(x) = 1 if x is rational, and f(x) = 2 if x is
irrational. Then f is contra δ-precontinuous but not contra β-continuous,
since {1} is closed in (R, σ) and f−1({1}) = Q, where Q is the set of
rationals, is not β-open in (R, τ).
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Example 2.9. ([3]) Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b},X} and Y =
{p, q}, σ = {∅, {p}, Y }. Let f : (X, τ) → (Y, σ) be defined by f(a) = p
and f(b) = f(c) = q. Then f is contra β-continuous but not contra-
precontinuous since f−1({q}) = {b, c} is β-open but not preopen.

Definition 3. A function f : X → Y is said to be
1) βθ-semiopen if f(U) ∈ SO(Y ) for every β-θ-open set U of X;
2) contra I(βθ)-continuous if for each x ∈ X and each F ∈ C(Y, f(x)),
there exists U ∈ βθO(X,x) such that Int(f(U)) ⊂ F ;
3) βθ-continuous [17] if f−1(F )is β-θ-closed in X for every closed set F of
Y ;
4) β-continuous [1] if f−1(F )is β-closed in X for every closed set F of Y.

We note that, every contra βθ-continuous function is a contra I(βθ)-
continuous function but the converse need not be true as seen from the
following example: Let X = {a, b, c}, τ = {∅, {a},X} and
σ = {∅, {b}, {c}, {b, c},X}. Then the identity function f : (X, τ)→ (X,σ)
is contra I(βθ)-continuous but not contra βθ-continuous.

Theorem 2.10. If a function f : X → Y is contra I(βθ)-continuous and
βθ-semiopen, then f is contra βθ-continuous.

Proof. Suppose that x ∈ X and F ∈ C(Y, f(x)). Since f is contra
I(βθ)-continuous, there exists U ∈ βθO(X,x) such that Int(f(U)) ⊂ F.
By hypothesis f is βθ-semiopen, therefore f(U) ∈ SO(Y ) and f(U) ⊂
Cl(Int(f(U))) ⊂ F. This shows that f is contra βθ-continuous.

Theorem 2.11. If a function f : X → Y is contra βθ-continuous and Y
is regular, then f is βθ-continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y
containing f(x). Since Y is regular, there exists an open set W in Y con-
taining f(x) such that Cl(W ) ⊂ U. Since f is contra βθ-continuous, there
exists U ∈ βθO(X,x) such that f(U) ⊂ Cl(W ). Then f(U) ⊂ Cl(W ) ⊂ V.
Hence f is βθ-continuous.

Theorem 2.12. Let {Xi : i ∈ Ω} be any family of topological spaces. If a
function f : X → Q

Xi is contra βθ-continuous, then Pri ◦ f : X → Xi

is contra βθ-continuous for each i ∈ Ω, where Pri is the projection of
Q
Xi

onto Xi.
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Proof. For a fixed i ∈ Ω, let Vi be any open set of Xi. Since Pri is
continuous, Pr−1i (Vi) is open in

Q
Xi. Since f is contra βθ-continuous,

f−1(Pr−1i (Vi)) = (Pri ◦ f)−1(Vi) is β-θ-closed in X. Therefore, Pri ◦ f is
contra βθ-continuous for each i ∈ Ω.

Theorem 2.13. Let f : X → Y , g : Y → Z and g ◦ f : X → Z functions.
Then the following hold:
1) If f is contra βθ-continuous and g is continuous, then g ◦ f is contra
βθ-continuous;

2) If f is βθ-continuous and g is contra-continuous, then g ◦ f is contra
βθ-continuous;

3) If f is contra βθ-continuous and g is contra-continuous, then g ◦ f is
βθ-continuous;

4) If f is weakly β-irresolute and g is contra βθ-continuous, then g ◦ f
is contra βθ-continuous;
5) If f is strongly β-irresolute and g is contra β-continuous, then g ◦ f is
contra βθ-continuous.

3. Properties of contra βθ-continuous functions

Definition 4. [7, 5] A topological space (X, τ) is said to be:

1) βθ-T0 (resp. βθ-T1) if for any distinct pair of points x and y in X,
there is a β-θ-open U in X containing x but not y or (resp. and) a β-θ-open
set V in X containing y but not x.
2) βθ-T2 (resp. β-T2 [16]) if for every pair of distinct points x and y, there
exist two β-θ-open (resp. β-open) sets U and V such that x ∈ U , y ∈ V
and U ∩ V = ∅.

From the definitions above, we obtain the following diagram:

βθ-T2 ⇒ βθ-T1 ⇒ βθ-T0.

Theorem 3.1. [8] If (X, τ) is βθ-T0, then (X, τ) is βθ-T2.

Proof. For any points x 6= y let V be a β-θ-open set that x ∈ V and
y /∈ V . Then, there exists U ∈ βO(X, τ) such that x ∈ U ⊂ βClθ(U) ⊂ V .
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By Lemma 1.1 and 1.2 βClθ(U) ∈ βR(X, τ). Then βClθ(U) is β-θ-open
and also X\βClθ(U) is a β-θ-open set containing y. Therefore, X is βθ-T2.

Remark 3.2. For a topological space (X, τ) the three properties in the
diagram are equivalent.

Theorem 3.3. A topological space (X, τ) is βθ-T2 if and only if the sin-
gletons are β-θ-closed sets.

Proof. Suppose that (X, τ) is βθ-T2 and x ∈ X. Let y ∈ X\{x}. Then
x 6= y and so there exists a β-θ-open set Uy such that y ∈ Uy but x /∈ Uy.
Consequently y ∈ Uy ⊂ X\{x} i.e., X\{x} = S{Uy/y ∈ X\{x}} which is
β-θ -open.

Conversely. Suppose that {p} is β-θ-closed for every p ∈ X. Let x, y ∈
X with x 6= y . Now x 6= y implies that y ∈ X\{x}. HenceX\{x} is a
β-θ-open set containing y but not x. Similarly X\{y} is a β-θ-open set
containing x but not y. From Remark 3.2, X is a βθ-T2 space.

Theorem 3.4. For a topological space (X, τ), the following properties are
equivalent:
1) (X, τ) is βθ-T2;
2) (X, τ) is β-T2;
3) For every pair of distinct points x, y ∈ X, there exist U, V ∈ βO(X)
such that x ∈ U , y ∈ V and βCl(U) ∩ βCl(V ) = ∅;
4) For every pair of distinct points x, y ∈ X, there exist U, V ∈ βR(X)
such that x ∈ U , y ∈ V and U ∩ V = ∅.
5) For every pair of distinct points x, y ∈ X, there exist U ∈ βθO(X,x)
and V ∈ βθO(X, y) such that βClθ(U) ∩ βClθ(V ) = ∅.

Proof. (1) ⇒ (2): Since βθO(X) ⊂ βO(X), the proof is obvious.
(2) ⇒ (3): This follows from Lemma 5.2 of [17].

(3) ⇒ (4): By Lemma 1.1, βCl(U) ∈ βR(X) for every U ∈ βO(X) and
the proof immediately follows.

(4) ⇒ (5): By Lemma 1.1, every β-regular set is β-θ-open and β-θ-
closed. Hence the proof is obvious.

(5) ⇒ (1): This is obvious.
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Theorem 3.5. Let X be a topological space. Suppose that for each pair of
distinct points x1 and x2 inX, there exists a function f ofX into a Urysohn
space Y such that f(x1) 6= f(x2). Moreover, let f be contra βθ-continuous
at x1 and x2. Then X is βθ-T2.

Proof. Let x1 and x2 be any distinct points in X. Then suppose that
there exist an Urysohn space Y and a function f : X → Y such that
f(x1) 6= f(x2) and f is contra βθ-continuous at x1 and x2. Let w = f(x1)
and z = f(x2). Then w 6= z. Since Y is Urysohn, there exist open sets
U and V containing w and z, respectively such that Cl(U) ∩ Cl(V ) = ∅.
Since f is contra βθ-continuous at x1 and x2, then there exist β-θ-open sets
A and B containing x1 and x2, respectively such that f(A) ⊂ Cl(U) and
f(B) ⊂ Cl(V ). So we have A ∩B = ∅ since Cl(U) ∩ Cl(V ) = ∅. Hence, X
is βθ-T2.

Corollary 3.6. If f is a contra βθ-continuous injection of a topological
space X into a Urysohn space Y, then X is βθ-T2.

Proof. For each pair of distinct points x1 and x2 in X and f is a
contra βθ-continuous function of X into a Urysohn space Y such that
f(x1) 6= f(x2) because f is injective. Hence by Theorem 3.5, X is βθ-
T2.

Recall, that a space X is said to be
1) weakly Hausdorff [18] if each element of X is an intersection of regular
closed sets.
2) Ultra Hausdorff [19] if for each pair of distinct points x and y in X,
there exist clopen sets A and B containing x and y, respectively such that
A ∩B = ∅.

Theorem 3.7. 1) If f : X → Y is a contra βθ-continuous injection and Y
is T0, then X is βθ-T1.
2) If f : X → Y is a contra βθ-continuous injection and Y is Ultra Haus-
dorff, then X is βθ-T2.

Proof. 1) Let x1, x2 be any distinct points of X, then f(x1) 6= f(x2).
There exists an open set V such that f(x1) ∈ V , f(x2) /∈ V (or f(x2) ∈ V ,
f(x1) /∈ V ). Then f(x1) /∈ Y \V , f(x2) ∈ Y \V and Y \V is closed. By
Theorem 2.3 f−1(Y \V ) ∈ βθO(X,x2) and x1 /∈ f−1(Y \V ). Therefore X is
βθ-T0 and by Theorem 3.1 X is βθ-T2.

2) By Remark 3.2, (2) is an immediate consequence of (1).



342 Miguel Caldas

Definition 5. A space (X, τ) is said to be βθ-connected if X cannot be
expressed as the disjoint union of two non-empty β-θ-open sets.

Theorem 3.8. If f : X → Y is a contra βθ-continuous surjection and X
is βθ-connected, then Y is connected which is not a discrete space

Proof. Suppose that Y is not a connected space. There exist non-empty
disjoint open sets U1 and U2 such that Y = U1 ∪ U2. Therefore U1 and U2
are clopen in Y. Since f is contra βθ-continuous, f−1(U1) and f−1(U2) are
β-θ-open in X.Moreover, f−1(U1) and f−1(U2) are non-empty disjoint and
X = f−1(U1) ∪ f−1(U2). This shows that X is not βθ-connected. This
contradicts that Y is not connected assumed. Hence Y is connected.
By other hand, Suppose that Y is discrete. Let A be a proper non-empty
open and closed subset of Y. Then f−1(A) is a proper non-empty β-regular
subset of X which is a contradiction to the fact that X is βθ-connected.

A topological space X is said to be βθ-normal if for each pair of non-
empty disjoint closed sets can be separated by disjoint β-θ-open sets.

Theorem 3.9. If f : X → Y is a contra βθ-continuous, closed injection
and Y is normal, then X is βθ-normal.

Proof. Let F1 and F2 be disjoint closed subsets of X. Since f is closed
and injective, f(F1) and f(F2) are disjoint closed subsets of Y. Since Y is
normal, f(F1) and f(F2) are separated by disjoint open sets V1 and V2.
Since that Y is normal, for each i = 1, 2, There exists an open set Gi such
that f(Fi) ⊂ Gi ⊂ Cl(Gi) ⊂ Vi. Hence Fi ⊂ f−1(Cl(Gi)), f

−1(Cl(Gi)) ∈
βθO(X) for i = 1, 2 and f−1(Cl(G1)) ∩ f−1(Cl(G2)) = ∅. Thus X is βθ-
normal.

Definition 6. The graph G(f) of a function f : X → Y is said to be
contra βθ-closed if for each (x, y) ∈ (X × Y )\G(f), there exist a β-θ-open
set U in X containing x and a closed set V in Y containing y such that
(U × V ) ∩G(f) = ∅.

Lemma 3.10. A graph G(f) of a function f : X → Y is contra βθ-closed
in X × Y if and only if for each (x, y) ∈ (X × Y )\G(f), there exists U ∈
βθO(X) containing x and V ∈ C(Y ) containing y such that f(U)∩ V = ∅.

Theorem 3.11. If f : X → Y is contra βθ-continuous and Y is Urysohn,
G(f) is contra βθ-closed in X × Y.
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Proof. Let (x, y) ∈ (X × Y )\G(f). It follows that f(x) 6= y. Since Y
is Urysohn, there exist open sets V and W such that f(x) ∈ V, y ∈ W
and Cl(V ) ∩ Cl(W ) = ∅. Since f is contra βθ-continuous, there exist a
U ∈ βθO(X,x) such that f(U) ⊂ Cl(V ) and f(U) ∩ Cl(W ) = ∅. Hence
G(f) is contra βθ-closed in X × Y.

Theorem 3.12. Let f : X → Y be a function and g : X → X × Y the
graph function of f, defined by g(x) = (x, f(x)) for every x ∈ X. If g is
contra βθ-continuous, then f is contra βθ-continuous.

Proof. Let U be an open set in Y, then X ×U is an open set in X × Y.
It follows that f−1(U) = g−1(X × U) ∈ βθC(X). Thus f is contra βθ-
continuous.

Theorem 3.13. Let f : X → Y have a contra βθ-closed graph. If f is
injective, then X is βθ-T1.

Proof. Let x1 and x2 be any two distinct points of X. Then, we have
(x1, f(x2)) ∈ (X × Y )\G(f). Then, there exist a β-θ-open set U in X
containing x1 and F ∈ C(Y, f(x2)) such that f(U) ∩ F = ∅. Hence U ∩
f−1(F ) = ∅. Therefore, we have x2 /∈ U. This implies that X is βθ-T1.

Definition 7. A topological space (X, τ) is said to be
1) Strongly S-closed [9] if every closed cover of X has a finite subcover.
2) Strongly βθ-closed if every β-θ-closed cover of X has a finite subcover.
3) βθ-compact [4] if every β-θ-open cover of X has a finite subcover.
4) βθ-space [8] if every β-θ-closed set is closed.

Theorem 3.14. Let (X, τ) be a βθ-space. If f : X → Y has a contra-βθ-
closed graph, then the inverse image of a strongly S-closed set K of Y is
closed in (X, τ).

Proof. Let K be a strongly S-closed set of Y and x /∈ f−1(K). For
each k ∈ K, (x, k) /∈ G(f). By Lemma 3.10, there exists Uk ∈ βθO(X,x)
and Vk ∈ C(Y, k) such that f(Uk) ∩ Vk = φ. Since {K ∩ Vk/k ∈ K} is a
closed cover of the subspace K, there exists a finite subset K0 ⊂ K such
that K ⊂ ∪{Vk/k ∈ K0}. Set U = ∩{Uk/k ∈ K0}, then U is open since X
is a βθ-space. Therefore f(U) ∩K = φ and U ∩ f−1(K) = φ. This shows
that f−1(K) is closed in (X, τ).

Theorem 3.15. Contra βθ-continuous image of strongly βθ-closed spaces
are compact.
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Proof. Suppose that f : X → Y is a contra βθ-continuous surjec-
tion. Let {Vα/α ∈ I} be any open cover of Y . Since f is contra βθ-
continuous, then

©
f−1(Vα)/α ∈ I

ª
is a β-θ-closed cover of X. Since X

is strongly βθ-closed, then there exists a finite subset I◦ of I such that
X = ∪

©
f−1(Vα)/α ∈ I◦

ª
. Thus, we have Y = ∪ {Vα/α ∈ I◦} and Y is

compact.

Theorem 3.16. 1) Contra βθ-continuous image of βθ-compact spaces are
strongly S-closed.
2) Contra βθ-continuous image of a βθ-compact space in any βθ-space is
strongly βθ-closed.

Proof. 1) Suppose that f : X → Y is a contra βθ-continuous surjection.
Let {Vα/α ∈ I} be any closed cover of Y . Since f is contra βθ-continuous,
then

©
f−1(Vα)/α ∈ I

ª
is a β-θ-open cover of X. Since X is βθ-compact,

then there exists a finite subset I◦ of I such that X = ∪
©
f−1(Vα)/α ∈ I◦

ª
.

Thus, we have Y = ∪ {Vα/α ∈ I◦} and Y is strongly S-closed.
2) Suppose that f : X → Y is a contra βθ-continuous surjection. Let
{Vα/α ∈ I} be any β-θ-closed cover of Y . Since Y is a βθ-space, then
{Vα/α ∈ I} is a closed cover of Y . Since f is contra βθ-continuous, then©
f−1(Vα)/α ∈ I

ª
is a β-θ-open cover of X. Since X is βθ-compact, then

there exists a finite subset I◦ of I such that X = ∪
©
f−1(Vα)/α ∈ I◦

ª
.

Thus, we have Y = ∪{Vα/α ∈ I◦} and Y is strongly βθ-closed.

Theorem 3.17. If f : X → Y is a weakly β-irresolute surjective function
and X is strongly βθ-closed then Y = f(X) is strongly βθ-closed.

Proof. Suppose that f : X → Y is a weakly β-irresolute surjection.
Let {Vα/α ∈ I} be any β-θ-closed cover of Y . Since f is a weakly β-
irresolute,then

©
f−1(Vα)/α ∈ I

ª
is a β-θ-closed cover of X. Since X is

strongly βθ-closed, then there exists a finite subset I◦ of I such that X =
∪
©
f−1(Vα)/α ∈ I◦

ª
. Thus, we have Y = ∪ {Vα/α ∈ I◦} and Y is strongly

βθ-closed.

Theorem 3.18. Let f : X1 → Y and g : X2 → Y be two functions
where Y is a Urysohn space and f and g are contra βθ-continuous func-
tions. Assume that the product of two β-θ-open sets is β-θ-open. Then
{(x1, x2)/f(x1) = g(x2)} is β-θ-closed in the product space X1 ×X2.

Proof. Let V denote the set {(x1, x2)/f(x1) = g(x2)}. In order to show
that V is β-θ-closed,we show that (X1×X2)\V is β-θ-open. Let (x1, x2) /∈
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V. Then f(x1) 6= g(x2), Since Y is Uryshon, there exist open sets U1 and U2
of Y containing f(x1) and g(x2) respectively, such that Cl(U1)∩Cl(U2) = φ.
Since f and g are contra βθ-continuous, f−1(Cl(U1)) and g−1(Cl(U2)) are
β-θ-open sets containing x1 and x2 in Xi(i = 1, 2). Hence by hypothesis,
f−1(Cl(U1))× g−1(Cl(U2)) is β-θ-open. Further (x1, x2) ∈ f−1(Cl(U1))×
g−1(Cl(U2)) ⊂ (X1 × X2)\V . It follows that (X1 × X2)\V is β-θ-open.
Thus, V is β-θ-closed in the product space X1 ×X2.

Corollary 3.19. If f : X → Y is contra βθ-continuous, Y is a Urysohn
space and the product of two β-θ-open sets is β-θ-open, then
V = {(x1, x2)/f(x1) = f(x2)} is β-θ-closed in the product space X ×X.
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[2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38, pp. 24-32, (1986).

[3] M. Caldas and S. Jafari, Some properties of Contra-β-continuous func-
tions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22, pp. 19-28, (2001).

[4] M. Caldas, On θ-β-generalized closed sets and θ-β-generalized continu-
ity in topolological spaces, J. Adv. Math. Studies, 4, pp. 13-24, (2011).

[5] M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff
spaces, Creative Math. Inform., 20(2), pp. 112-123, (2011).

[6] M. Caldas, Functions with strongly β-θ-closed graphs, J. Adv. Studies
Topology, 3, pp. 1-6, (2012).

[7] M. Caldas, On characterizations of weak θ-β-openness, Antartica J.
Math., 9(3), pp. 195-203, (2012).

[8] M. Caldas: Other characterizations of β-θ-Ro topological spaces. (To
appear).



346 Miguel Caldas

[9] J. Dontchev,Contra-continuous functions and strongly s-closed spaces,
Internat. J. Math. & Math. Sci., 19, pp. 303-310, (1996).

[10] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math.
Pannonica 10, pp. 159-168, (1999).

[11] E. Ekici and T. Noiri, Contra δ-precontinuous functions (submitted).

[12] S. Jafari and T. Noiri, Contra-α-continuous functions between topolog-
ical spaces, Iran. Int. J. Sci. 2, pp. 153-167, (2001).

[13] S. Jafari and T. Noiri, On contra precontinuous functions, Bull.
Malaysian Math. Sci. Soc., 25, pp.115-128, (2002).

[14] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ.
Sci. Budapest. Eotvos Sect. Math. 42, pp. 27-34, (1999).

[15] M. Mrsevic, On pairwise R0 and pairwiseR1 bitopological spaces, Bull.
Math. Soc. Sci. Math RS Roumano, (N.S.) 30 (78), pp. 141-148,
(1986).

[16] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-
topological invariant, Proc. Pakistan. Acad. Sci., 27, 285-296, (1990).

[17] T. Noiri,Weak and strong forms of β-irresolute functions, Acta Math.
Hungar., 99, pp. 315-328, (2003).

[18] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of
topological spaces, 1971 General Topology and its Relation to Mod-
ern Analysis and Algebra. III, (Proc. Conf. Kanpur, 1968), Academia,
Prague, pp. 301-306, (1971).

[19] R. Staum, The algebra of bounded continuous functions into a nonar-
chimedean field, Pacific J. Math., 50 (1974), 169-85.

M. Caldas
Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga, s/n
24020-140, Niteroi,
RJ Brasil
e-mail: gmamccs@vm.uff.br




