Proyecciones Journal of Mathematics Vol. 32, N^o 4, pp. 333-346, December 2013. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172013000400003

On Contra $\beta\theta$ -Continuous Functions

Miguel Caldas Universidade Federal Fluminense, Brasil Received : October 2012. Accepted : October 2013

Abstract

In this paper, we introduce and investigate the notion of contra $\beta\theta$ -continuous functions by utilizing β - θ -closed sets. We obtain fundamental properties of contra $\beta\theta$ -continuous functions and discuss the relationships between contra $\beta\theta$ -continuity and other related functions.

2000 Mathematics Subject Classification : *Primary 54C08*, 54C10; Secondary: 54C05.

Key words and phrases : β - θ -closed, $\beta\theta$ -continuous, contra $\beta\theta$ -continuous.

1. Introduction and Preliminaries

In 1996, Dontchev [9] introduced a new class of functions called contracontinuous functions. He defined a function $f : X \to Y$ to be contracontinuous if the pre image of every open set of Y is closed in X. In 2007, Caldas and Jafari [3] introduced and investigated the notion of contra β continuity. In this paper, we present a new notion of a contra-continuity called contra $\beta\theta$ -continuity which is a strong form of contra β -continuity.

Throughout this paper (X, τ) , (Y, σ) and (Z, γ) will always denote topological spaces. Let S a subset of X. Then we denote the closure and the interior of S by Cl(S) and Int(S) respectively. A subset S is said to be β -open [1, 2] if $S \subset Cl(Int(Cl(S)))$. The complement of a β -open set is said to be β -closed. The intersection of all β -closed sets containing S is called the β -closure of S and is denoted by $\beta Cl(S)$. A subset S is said to be β -regular [17] if it is both β -open and β -closed. The family of all β -open sets (resp. β -regular sets) of (X, τ) is denoted by $\beta O(X, \tau)$ (resp. $\beta R(X,\tau)$). The β - θ -closure of S [17], denoted by $\beta Cl_{\theta}(S)$, is defined to be the set of all $x \in X$ such that $\beta Cl(O) \cap S \neq \emptyset$ for every $O \in \beta O(X, \tau)$ with $x \in O$. The set $\{x \in X : \beta Cl_{\theta}(O) \subset S \text{ for some } O \in \beta(X, x)\}$ is called the β - θ - interior of S and is denoted by $\beta Int_{\theta}(S)$. A subset S is said to be β - θ -closed [17] if $S = \beta C l_{\theta}(S)$. The complement of a β - θ -closed set is said to be β - θ -open. The family of all β - θ -open (resp. β - θ -closed) subsets of X is denoted by $\beta \theta O(X, \tau)$ or $\beta \theta O(X)$ (resp. $\beta \theta C(X, \tau)$). We set $\beta \theta O(X, x) = \{U : x \in U \in \beta \theta O(X, \tau)\}$ and $\beta \theta C(X, x) = \{U : x \in U \in U\}$ $\beta\theta C(X,\tau)$.

A function $f : (X, \tau) \to (Y, \sigma)$ is called, weakly β -irresolute [17] (resp. strongly β -irresolute [17]) if $f^{-1}(V)$ is β - θ -open (resp. β - θ -open) in X for every β - θ -open (resp. β -open) set V in Y.

We recall the following three results which were obtained by Noiri [17].

Lemma 1.1. Let A be a subset of a topological space (X, τ) . (i) If $A \in \beta O(X, \tau)$, then $\beta Cl(A) \in \beta R(X)$. (ii) $A \in \beta R(X)$ if and only if $A \in \beta \theta O(X) \cap \beta \theta C(X)$.

Lemma 1.2. For the β - θ -closure of a subset A of a topological space (X, τ) , the following properties are hold:

(i)
$$A \subset \beta Cl(A) \subset \beta Cl_{\theta}(A)$$
 and $\beta Cl(A) = \beta Cl_{\theta}(A)$ if $A \in \beta O(X)$.

(ii) If
$$A \subset B$$
, then $\beta Cl_{\theta}(A) \subset \beta Cl_{\theta}(B)$.

(iii) If $A_{\alpha} \in \beta \theta C(X)$ for each $\alpha \in A$, then $\bigcap \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta C(X)$.

(iv) If $A_{\alpha} \in \beta \theta O(X)$ for each $\alpha \in A$, then $\bigcup \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta O(X)$.

(v)
$$\beta Cl_{\theta}(\beta Cl_{\theta}(A)) = \beta Cl_{\theta}(A)$$
 and $\beta Cl_{\theta}(A) \in \beta \theta C(X)$.

The union of two β - θ -closed sets is not necessarily β - θ -closed as showed in the following example.

Example 1.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The subsets $\{a\}$ and $\{b\}$ are β - θ -closed in (X, τ) but $\{a, b\}$ is not β - θ -closed.

2. Contra $\beta\theta$ -continuous functions

Definition 1. A function $f : X \to Y$ is called contra $\beta\theta$ -continuous if $f^{-1}(V)$ is β - θ -closed in X for every open set V of Y.

Example 2.1. ([11]) 1) Let R be the set of real numbers, τ be the countable extension topology on R, i.e. the topology with subbase $\tau_1 \cup \tau_2$, where τ_1 is the Euclidean topology of R and τ_2 is the topology of countable complements of R, and σ be the discrete topology of R. Define a function $f: (R, \tau) \to (R, \sigma)$ as follows: f(x) = 1 if x is rational, and f(x) = 2 if x is irrational. Then f is not contra $\beta\theta$ -continuous, since $\{1\}$ is closed in (R, σ) and $f^{-1}(\{1\}) = Q$, where Q is the set of rationals, is not β - θ -open in (R, τ) . 2) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. We have $\beta O(X, \tau) = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. The β - θ -closed sets of (X, τ) are

 $\{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$. Let $f : (X, \tau) \to (X, \tau)$ be defined by f(a) = c, f(b) = b and f(c) = a. Then f is contra $\beta\theta$ -continuous.

Let A be a subset of a space (X, τ) . The set $\bigcap \{U \in \tau | A \subset U\}$ is called the kernel of A [15] and is denoted by ker(A).

Lemma 2.2. [14]. The following properties hold for subsets A, B of a space X: 1) $x \in ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$. 2) $A \subset ker(A)$ and A = ker(A) if A is open in X. 3) If $A \subset B$, then $ker(A) \subset ker(B)$.

Theorem 2.3. The following are equivalent for a function $f: X \to Y$:

1) f is contra $\beta\theta$ -continuous;

2) The inverse image of every closed set of Y is β - θ -open in X;

3) For each $x \in X$ and each closed set V in Y with $f(x) \in V$, there exists a β - θ -open set U in X such that $x \in U$ and $f(U) \subset V$; 4) $f(\beta Cl_{\theta}(A)) \subset Ker(f(A))$ for every subset A of X; 5) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(Ker(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let U be any closed set of Y. Since $Y \setminus U$ is open, then by (1), it follows that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is β - θ -closed. This shows that $f^{-1}(U)$ is β - θ -open in X.

(1) \Rightarrow (3): Let $x \in X$ and V be a closed set in Y with $f(x) \in V$. By (1), it follows that $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is β - θ -closed and so $f^{-1}(V)$ is β - θ -open. Take $U = f^{-1}(V)$ We obtain that $x \in U$ and $f(U) \subset V$.

(3) \Rightarrow (2): Let V be a closed set in Y with $x \in f^{-1}(V)$. Since $f(x) \in V$, by (3) there exists a β - θ -open set U in X containing x such that $f(U) \subset V$. It follows that $x \in U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is β - θ -open.

(2) \Rightarrow (4): Let A be any subset of X. Let $y \notin Ker(f(A))$. Then by Lemma 1.2, there exist a closed set F containing y such that $f(A) \cap F = \emptyset$. We have $A \cap f^{-1}(F) = \emptyset$ and since $f^{-1}(F)$ is β - θ -open then we have $\beta Cl_{\theta}(A) \cap f^{-1}(F) = \emptyset$. Hence we obtain $f(\beta Cl_{\theta}(A)) \cap F = \emptyset$ and $y \notin f(\beta Cl_{\theta}(A))$. Thus $f(\beta Cl_{\theta}(A)) \subset Ker(f(A))$.

 $(4) \Rightarrow (5)$: Let *B* be any subset of *Y*. By (4), $f(\beta Cl_{\theta}(f^{-1}(B))) \subset Ker(B)$ and $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(Ker(B))$.

(5) \Rightarrow (1): Let *B* be any open set of *Y*. By (5), $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(Ker(B)) = f^{-1}(B)$ and $\beta Cl_{\theta}(f^{-1}(B)) = f^{-1}(B)$. So we obtain that $f^{-1}(B)$ is β - θ -closed in *X*.

Definition 2. A function $f : X \to Y$ is said to be contra-continuous [9] (resp. contra- α -continuous [12], contra-precontinuous [13], contra-semicontinuous [10], contra- β -continuous [3] if for each open set V of Y, $f^{-1}(V)$ is closed (resp. α -closed, preclosed, semi-closed, β -closed) in X. For the functions defined above, we have the following implications:

$$\begin{array}{ccccccc} A & \Rightarrow & B & \Rightarrow & C \\ & & \downarrow & & \downarrow \\ & E & \Rightarrow & F & \Leftarrow & G \end{array}$$

Notation: $A = \text{contra-continuity}, B = \text{contra } \alpha\text{-continuity}, C = \text{contra } precontinuity, E = \text{contra semi-continuity}, F = \text{contra } \beta\text{-continuity}, G = \text{contra } \beta\theta\text{-continuity}.$

Remark 2.4. It should be mentioned that none of these implications is reversible as shown by the examples stated below.

Example 2.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is

1) contra α -continuous but not contra-continuous [12].

2) contra β -continuous but not contra $\beta\theta$ -continuous.

Example 2.6. ([10]) A contra semicontinuous function need not be contra precontinuous. Let $f : R \to R$ be the function f(x) = [x], where [x] is the Gaussian symbol. If V is a closed subset of the real line, its preimage $U = f^{-1}(V)$ is the union of the intervals of the form [n, n + 1], $n \in Z$; hence U is semi-open being union of semi-open sets. But f is not contra precontinuous, since $f^{-1}(0.5, 1.5) = [1, 2)$ is not preclosed in R.

Example 2.7. ([10]) A contra precontinuous function need not be contra semicontinuous. Let $X = \{a, b\}, \tau = \{\emptyset, X\}$ and $\sigma = \{\emptyset, \{a\}, X\}$. The identity function $f : (X, \tau) \to (Y, \sigma)$ is contra precontinuous as only the trivial subsets of X are open in (X, τ) . However, $f^{-1}(\{a\}) = \{a\}$ is not semi-closed in (X, τ) ; hence f is not contra semicontinuous.

Example 2.8. ([11]) Let R be the set of real numbers, τ be the countable extension topology on R, i.e. the topology with subbase $\tau_1 \cup \tau_2$, where τ_1 is the Euclidean topology of R and τ_2 is the topology of countable complements of R, and σ be the discrete topology of R. Define a function $f: (R, \tau) \to (R, \sigma)$ as follows: f(x) = 1 if x is rational, and f(x) = 2 if x is irrational. Then f is contra δ -precontinuous but not contra β -continuous, since $\{1\}$ is closed in (R, σ) and $f^{-1}(\{1\}) = Q$, where Q is the set of rationals, is not β -open in (R, τ) .

Example 2.9. ([3]) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $Y = \{p, q\}, \sigma = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = p and f(b) = f(c) = q. Then f is contra β -continuous but not contraprecontinuous since $f^{-1}(\{q\}) = \{b, c\}$ is β -open but not preopen.

Definition 3. A function $f: X \to Y$ is said to be

1) $\beta\theta$ -semiopen if $f(U) \in SO(Y)$ for every β - θ -open set U of X;

2) contra $I(\beta\theta)$ -continuous if for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \beta\theta O(X, x)$ such that $Int(f(U)) \subset F$;

3) $\beta\theta$ -continuous [17] if $f^{-1}(F)$ is β - θ -closed in X for every closed set F of Y;

4) β -continuous [1] if $f^{-1}(F)$ is β -closed in X for every closed set F of Y.

We note that, every contra $\beta\theta$ -continuous function is a contra $I(\beta\theta)$ continuous function but the converse need not be true as seen from the following example: Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and

 $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra $I(\beta\theta)$ -continuous but not contra $\beta\theta$ -continuous.

Theorem 2.10. If a function $f : X \to Y$ is contra $I(\beta\theta)$ -continuous and $\beta\theta$ -semiopen, then f is contra $\beta\theta$ -continuous.

Proof. Suppose that $x \in X$ and $F \in C(Y, f(x))$. Since f is contral $I(\beta\theta)$ -continuous, there exists $U \in \beta\theta O(X, x)$ such that $Int(f(U)) \subset F$. By hypothesis f is $\beta\theta$ -semiopen, therefore $f(U) \in SO(Y)$ and $f(U) \subset Cl(Int(f(U))) \subset F$. This shows that f is contra $\beta\theta$ -continuous.

Theorem 2.11. If a function $f : X \to Y$ is contra $\beta\theta$ -continuous and Y is regular, then f is $\beta\theta$ -continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exists an open set W in Y containing f(x) such that $Cl(W) \subset U$. Since f is contra $\beta\theta$ -continuous, there exists $U \in \beta\theta O(X, x)$ such that $f(U) \subset Cl(W)$. Then $f(U) \subset Cl(W) \subset V$. Hence f is $\beta\theta$ -continuous.

Theorem 2.12. Let $\{X_i : i \in \Omega\}$ be any family of topological spaces. If a function $f : X \to \prod X_i$ is contra $\beta\theta$ -continuous, then $Pr_i \circ f : X \to X_i$ is contra $\beta\theta$ -continuous for each $i \in \Omega$, where Pr_i is the projection of $\prod X_i$ onto X_i .

Proof. For a fixed $i \in \Omega$, let V_i be any open set of X_i . Since Pr_i is continuous, $Pr_i^{-1}(V_i)$ is open in $\prod X_i$. Since f is contra $\beta\theta$ -continuous, $f^{-1}(Pr_i^{-1}(V_i)) = (Pr_i \circ f)^{-1}(V_i)$ is β - θ -closed in X. Therefore, $Pr_i \circ f$ is contra $\beta\theta$ -continuous for each $i \in \Omega$.

Theorem 2.13. Let $f : X \to Y$, $g : Y \to Z$ and $g \circ f : X \to Z$ functions. Then the following hold:

1) If f is contra $\beta\theta$ -continuous and g is continuous, then $g \circ f$ is contra $\beta\theta$ -continuous;

2) If f is $\beta\theta$ -continuous and g is contra-continuous, then $g \circ f$ is contra $\beta\theta$ -continuous;

3) If f is contra $\beta\theta$ -continuous and g is contra-continuous, then $g \circ f$ is $\beta\theta$ -continuous;

4) If f is weakly β -irresolute and g is contra $\beta\theta$ -continuous, then $g \circ f$ is contra $\beta\theta$ -continuous;

5) If f is strongly β -irresolute and g is contra β -continuous, then $g \circ f$ is contra $\beta\theta$ -continuous.

3. Properties of contra $\beta\theta$ -continuous functions

Definition 4. [7, 5] A topological space (X, τ) is said to be:

1) $\beta\theta$ -T₀ (resp. $\beta\theta$ -T₁) if for any distinct pair of points x and y in X, there is a β - θ -open U in X containing x but not y or (resp. and) a β - θ -open set V in X containing y but not x.

2) $\beta\theta$ -T₂ (resp. β -T₂ [16]) if for every pair of distinct points x and y, there exist two β - θ -open (resp. β -open) sets U and V such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

From the definitions above, we obtain the following diagram:

 $\beta\theta - T_2 \Rightarrow \beta\theta - T_1 \Rightarrow \beta\theta - T_0.$

Theorem 3.1. [8] If (X, τ) is $\beta \theta - T_0$, then (X, τ) is $\beta \theta - T_2$.

Proof. For any points $x \neq y$ let V be a β - θ -open set that $x \in V$ and $y \notin V$. Then, there exists $U \in \beta O(X, \tau)$ such that $x \in U \subset \beta Cl_{\theta}(U) \subset V$.

By Lemma 1.1 and 1.2 $\beta Cl_{\theta}(U) \in \beta R(X, \tau)$. Then $\beta Cl_{\theta}(U)$ is β - θ -open and also $X \setminus \beta Cl_{\theta}(U)$ is a β - θ -open set containing y. Therefore, X is $\beta \theta$ - T_2 .

Remark 3.2. For a topological space (X, τ) the three properties in the diagram are equivalent.

Theorem 3.3. A topological space (X, τ) is $\beta \theta T_2$ if and only if the singletons are $\beta - \theta$ -closed sets.

Proof. Suppose that (X, τ) is $\beta \theta - T_2$ and $x \in X$. Let $y \in X \setminus \{x\}$. Then $x \neq y$ and so there exists a β - θ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset X \setminus \{x\}$ i.e., $X \setminus \{x\} = \bigcup \{U_y/y \in X \setminus \{x\}\}$ which is β - θ -open.

Conversely. Suppose that $\{p\}$ is β - θ -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies that $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a β - θ -open set containing y but not x. Similarly $X \setminus \{y\}$ is a β - θ -open set containing x but not y. From Remark 3.2, X is a $\beta\theta$ - T_2 space.

Theorem 3.4. For a topological space (X, τ) , the following properties are equivalent:

1) (X, τ) is $\beta \theta T_2$; 2) (X, τ) is βT_2 ; 3) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta O(X)$ such that $x \in U, y \in V$ and $\beta Cl(U) \cap \beta Cl(V) = \emptyset$; 4) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta R(X)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$. 5) For every pair of distinct points $x, y \in X$, there exist $U \in \beta \theta O(X, x)$ and $V \in \beta \theta O(X, y)$ such that $\beta Cl_{\theta}(U) \cap \beta Cl_{\theta}(V) = \emptyset$.

Proof. (1) \Rightarrow (2): Since $\beta \theta O(X) \subset \beta O(X)$, the proof is obvious. (2) \Rightarrow (3): This follows from Lemma 5.2 of [17].

(3) \Rightarrow (4): By Lemma 1.1, $\beta Cl(U) \in \beta R(X)$ for every $U \in \beta O(X)$ and the proof immediately follows.

(4) \Rightarrow (5): By Lemma 1.1, every β -regular set is β - θ -open and β - θ -closed. Hence the proof is obvious.

 $(5) \Rightarrow (1)$: This is obvious.

Theorem 3.5. Let X be a topological space. Suppose that for each pair of distinct points x_1 and x_2 in X, there exists a function f of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$. Moreover, let f be contra $\beta\theta$ -continuous at x_1 and x_2 . Then X is $\beta\theta$ -T₂.

Proof. Let x_1 and x_2 be any distinct points in X. Then suppose that there exist an Urysohn space Y and a function $f : X \to Y$ such that $f(x_1) \neq f(x_2)$ and f is contra $\beta\theta$ -continuous at x_1 and x_2 . Let $w = f(x_1)$ and $z = f(x_2)$. Then $w \neq z$. Since Y is Urysohn, there exist open sets U and V containing w and z, respectively such that $Cl(U) \cap Cl(V) = \emptyset$. Since f is contra $\beta\theta$ -continuous at x_1 and x_2 , then there exist β - θ -open sets A and B containing x_1 and x_2 , respectively such that $f(A) \subset Cl(U)$ and $f(B) \subset Cl(V)$. So we have $A \cap B = \emptyset$ since $Cl(U) \cap Cl(V) = \emptyset$. Hence, Xis $\beta\theta$ - T_2 .

Corollary 3.6. If f is a contra $\beta\theta$ -continuous injection of a topological space X into a Urysohn space Y, then X is $\beta\theta$ -T₂.

Proof. For each pair of distinct points x_1 and x_2 in X and f is a contra $\beta\theta$ -continuous function of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ because f is injective. Hence by Theorem 3.5, X is $\beta\theta$ - T_2 .

Recall, that a space X is said to be

1) weakly Hausdorff [18] if each element of X is an intersection of regular closed sets.

2) Ultra Hausdorff [19] if for each pair of distinct points x and y in X, there exist clopen sets A and B containing x and y, respectively such that $A \cap B = \emptyset$.

Theorem 3.7. 1) If $f : X \to Y$ is a contra $\beta\theta$ -continuous injection and Y is T_0 , then X is $\beta\theta$ - T_1 .

2) If $f: X \to Y$ is a contra $\beta\theta$ -continuous injection and Y is Ultra Hausdorff, then X is $\beta\theta$ -T₂.

Proof. 1) Let x_1 , x_2 be any distinct points of X, then $f(x_1) \neq f(x_2)$. There exists an open set V such that $f(x_1) \in V$, $f(x_2) \notin V$ (or $f(x_2) \in V$, $f(x_1) \notin V$). Then $f(x_1) \notin Y \setminus V$, $f(x_2) \in Y \setminus V$ and $Y \setminus V$ is closed. By Theorem 2.3 $f^{-1}(Y \setminus V) \in \beta \theta O(X, x_2)$ and $x_1 \notin f^{-1}(Y \setminus V)$. Therefore X is $\beta \theta - T_0$ and by Theorem 3.1 X is $\beta \theta - T_2$.

2) By Remark 3.2, (2) is an immediate consequence of (1).

Definition 5. A space (X, τ) is said to be $\beta\theta$ -connected if X cannot be expressed as the disjoint union of two non-empty β - θ -open sets.

Theorem 3.8. If $f : X \to Y$ is a contra $\beta\theta$ -continuous surjection and X is $\beta\theta$ -connected, then Y is connected which is not a discrete space

Proof. Suppose that Y is not a connected space. There exist non-empty disjoint open sets U_1 and U_2 such that $Y = U_1 \cup U_2$. Therefore U_1 and U_2 are clopen in Y. Since f is contra $\beta\theta$ -continuous, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are β - θ -open in X. Moreover, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are non-empty disjoint and $X = f^{-1}(U_1) \cup f^{-1}(U_2)$. This shows that X is not $\beta\theta$ -connected. This contradicts that Y is not connected assumed. Hence Y is connected. By other hand, Suppose that Y is discrete. Let A be a proper non-empty open and closed subset of Y. Then $f^{-1}(A)$ is a proper non-empty β -regular subset of X which is a contradiction to the fact that X is $\beta\theta$ -connected.

A topological space X is said to be $\beta\theta$ -normal if for each pair of nonempty disjoint closed sets can be separated by disjoint β - θ -open sets.

Theorem 3.9. If $f : X \to Y$ is a contra $\beta\theta$ -continuous, closed injection and Y is normal, then X is $\beta\theta$ -normal.

Proof. Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint open sets V_1 and V_2 . Since that Y is normal, for each i = 1, 2, There exists an open set G_i such that $f(F_i) \subset G_i \subset Cl(G_i) \subset V_i$. Hence $F_i \subset f^{-1}(Cl(G_i)), f^{-1}(Cl(G_i)) \in \beta\theta O(X)$ for i = 1, 2 and $f^{-1}(Cl(G_1)) \cap f^{-1}(Cl(G_2)) = \emptyset$. Thus X is $\beta\theta$ normal.

Definition 6. The graph G(f) of a function $f : X \to Y$ is said to be contra $\beta\theta$ -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a β - θ -open set U in X containing x and a closed set V in Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.10. A graph G(f) of a function $f: X \to Y$ is contra $\beta\theta$ -closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in \beta\theta O(X)$ containing x and $V \in C(Y)$ containing y such that $f(U) \cap V = \emptyset$.

Theorem 3.11. If $f : X \to Y$ is contra $\beta\theta$ -continuous and Y is Urysohn, G(f) is contra $\beta\theta$ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. It follows that $f(x) \neq y$. Since Y is Urysohn, there exist open sets V and W such that $f(x) \in V, y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra $\beta\theta$ -continuous, there exist a $U \in \beta\theta O(X, x)$ such that $f(U) \subset Cl(V)$ and $f(U) \cap Cl(W) = \emptyset$. Hence G(f) is contra $\beta\theta$ -closed in $X \times Y$.

Theorem 3.12. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra $\beta\theta$ -continuous, then f is contra $\beta\theta$ -continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. It follows that $f^{-1}(U) = g^{-1}(X \times U) \in \beta \theta C(X)$. Thus f is contra $\beta \theta$ continuous.

Theorem 3.13. Let $f : X \to Y$ have a contra $\beta\theta$ -closed graph. If f is injective, then X is $\beta\theta$ - T_1 .

Proof. Let x_1 and x_2 be any two distinct points of X. Then, we have $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Then, there exist a β - θ -open set U in X containing x_1 and $F \in C(Y, f(x_2))$ such that $f(U) \cap F = \emptyset$. Hence $U \cap f^{-1}(F) = \emptyset$. Therefore, we have $x_2 \notin U$. This implies that X is $\beta\theta$ - T_1 .

Definition 7. A topological space (X, τ) is said to be
1) Strongly S-closed [9] if every closed cover of X has a finite subcover.
2) Strongly βθ-closed if every β-θ-closed cover of X has a finite subcover.
3) βθ-compact [4] if every β-θ-open cover of X has a finite subcover.

4) $\beta\theta$ -space [8] if every β - θ -closed set is closed.

Theorem 3.14. Let (X, τ) be a $\beta\theta$ -space. If $f : X \to Y$ has a contra- $\beta\theta$ closed graph, then the inverse image of a strongly S-closed set K of Y is closed in (X, τ) .

Proof. Let K be a strongly S-closed set of Y and $x \notin f^{-1}(K)$. For each $k \in K, (x, k) \notin G(f)$. By Lemma 3.10, there exists $U_k \in \beta \theta O(X, x)$ and $V_k \in C(Y, k)$ such that $f(U_k) \cap V_k = \phi$. Since $\{K \cap V_k / k \in K\}$ is a closed cover of the subspace K, there exists a finite subset $K_0 \subset K$ such that $K \subset \bigcup \{V_k / k \in K_0\}$. Set $U = \cap \{U_k / k \in K_0\}$, then U is open since X is a $\beta \theta$ -space. Therefore $f(U) \cap K = \phi$ and $U \cap f^{-1}(K) = \phi$. This shows that $f^{-1}(K)$ is closed in (X, τ) .

Theorem 3.15. Contra $\beta\theta$ -continuous image of strongly $\beta\theta$ -closed spaces are compact.

Proof. Suppose that $f : X \to Y$ is a contra $\beta\theta$ -continuous surjection. Let $\{V_{\alpha}/\alpha \in I\}$ be any open cover of Y. Since f is contra $\beta\theta$ -continuous, then $\{f^{-1}(V_{\alpha})/\alpha \in I\}$ is a β - θ -closed cover of X. Since X is strongly $\beta\theta$ -closed, then there exists a finite subset I_{\circ} of I such that $X = \bigcup \{f^{-1}(V_{\alpha})/\alpha \in I_{\circ}\}$. Thus, we have $Y = \bigcup \{V_{\alpha}/\alpha \in I_{\circ}\}$ and Y is compact.

Theorem 3.16. 1) Contra $\beta\theta$ -continuous image of $\beta\theta$ -compact spaces are strongly S-closed.

2) Contra $\beta\theta$ -continuous image of a $\beta\theta$ -compact space in any $\beta\theta$ -space is strongly $\beta\theta$ -closed.

Proof. 1) Suppose that $f: X \to Y$ is a contra $\beta\theta$ -continuous surjection. Let $\{V_{\alpha}/\alpha \in I\}$ be any closed cover of Y. Since f is contra $\beta\theta$ -continuous, then $\{f^{-1}(V_{\alpha})/\alpha \in I\}$ is a β - θ -open cover of X. Since X is $\beta\theta$ -compact, then there exists a finite subset I_{\circ} of I such that $X = \bigcup \{f^{-1}(V_{\alpha})/\alpha \in I_{\circ}\}$. Thus, we have $Y = \bigcup \{V_{\alpha}/\alpha \in I_{\circ}\}$ and Y is strongly S-closed.

2) Suppose that $f : X \to Y$ is a contra $\beta\theta$ -continuous surjection. Let $\{V_{\alpha}/\alpha \in I\}$ be any β - θ -closed cover of Y. Since Y is a $\beta\theta$ -space, then $\{V_{\alpha}/\alpha \in I\}$ is a closed cover of Y. Since f is contra $\beta\theta$ -continuous, then $\{f^{-1}(V_{\alpha})/\alpha \in I\}$ is a β - θ -open cover of X. Since X is $\beta\theta$ -compact, then there exists a finite subset I_{\circ} of I such that $X = \bigcup \{f^{-1}(V_{\alpha})/\alpha \in I_{\circ}\}$. Thus, we have $Y = \bigcup \{V_{\alpha}/\alpha \in I_{\circ}\}$ and Y is strongly $\beta\theta$ -closed.

Theorem 3.17. If $f : X \to Y$ is a weakly β -irresolute surjective function and X is strongly $\beta\theta$ -closed then Y = f(X) is strongly $\beta\theta$ -closed.

Proof. Suppose that $f: X \to Y$ is a weakly β -irresolute surjection. Let $\{V_{\alpha}/\alpha \in I\}$ be any β - θ -closed cover of Y. Since f is a weakly β -irresolute, then $\{f^{-1}(V_{\alpha})/\alpha \in I\}$ is a β - θ -closed cover of X. Since X is strongly $\beta\theta$ -closed, then there exists a finite subset I_{\circ} of I such that $X = \bigcup \{f^{-1}(V_{\alpha})/\alpha \in I_{\circ}\}$. Thus, we have $Y = \bigcup \{V_{\alpha}/\alpha \in I_{\circ}\}$ and Y is strongly $\beta\theta$ -closed.

Theorem 3.18. Let $f : X_1 \to Y$ and $g : X_2 \to Y$ be two functions where Y is a Urysohn space and f and g are contra $\beta\theta$ -continuous functions. Assume that the product of two β - θ -open sets is β - θ -open. Then $\{(x_1, x_2)/f(x_1) = g(x_2)\}$ is β - θ -closed in the product space $X_1 \times X_2$.

Proof. Let V denote the set $\{(x_1, x_2)/f(x_1) = g(x_2)\}$. In order to show that V is β - θ -closed, we show that $(X_1 \times X_2) \setminus V$ is β - θ -open. Let $(x_1, x_2) \notin$

V. Then $f(x_1) \neq g(x_2)$, Since Y is Uryshon, there exist open sets U_1 and U_2 of Y containing $f(x_1)$ and $g(x_2)$ respectively, such that $Cl(U_1) \cap Cl(U_2) = \phi$. Since f and g are contra $\beta\theta$ -continuous, $f^{-1}(Cl(U_1))$ and $g^{-1}(Cl(U_2))$ are β - θ -open sets containing x_1 and x_2 in $X_i(i = 1, 2)$. Hence by hypothesis, $f^{-1}(Cl(U_1)) \times g^{-1}(Cl(U_2))$ is β - θ -open. Further $(x_1, x_2) \in f^{-1}(Cl(U_1)) \times g^{-1}(Cl(U_2)) \subset (X_1 \times X_2) \setminus V$. It follows that $(X_1 \times X_2) \setminus V$ is β - θ -open. Thus, V is β - θ -closed in the product space $X_1 \times X_2$.

Corollary 3.19. If $f: X \to Y$ is contra $\beta\theta$ -continuous, Y is a Urysohn space and the product of two β - θ -open sets is β - θ -open, then $V = \{(x_1, x_2)/f(x_1) = f(x_2)\}$ is β - θ -closed in the product space $X \times X$.

Acknowledgement. The author is very grateful to the referee for his comments and suggestions which improved the quality of this paper.

References

- M. E. Abd. El-Monsef, S. N. EL-Deeb and R. A. Mahmoud, β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, pp. 77-90, (1983).
- [2] D. Andrijević, *Semi-preopen sets*, Mat. Vesnik, **38**, pp. 24-32, (1986).
- [3] M. Caldas and S. Jafari, Some properties of Contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22, pp. 19-28, (2001).
- [4] M. Caldas, On θ-β-generalized closed sets and θ-β-generalized continuity in topolological spaces, J. Adv. Math. Studies, 4, pp. 13-24, (2011).
- [5] M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff spaces, Creative Math. Inform., 20(2), pp. 112-123, (2011).
- [6] M. Caldas, Functions with strongly β-θ-closed graphs, J. Adv. Studies Topology, 3, pp. 1-6, (2012).
- [7] M. Caldas, On characterizations of weak θ-β-openness, Antartica J. Math., 9(3), pp. 195-203, (2012).
- [8] M. Caldas: Other characterizations of β - θ - R_o topological spaces. (To appear).

- [9] J. Dontchev, Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. & Math. Sci., 19, pp. 303-310, (1996).
- [10] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica 10, pp. 159-168, (1999).
- [11] E. Ekici and T. Noiri, Contra δ -precontinuous functions (submitted).
- [12] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iran. Int. J. Sci. 2, pp. 153-167, (2001).
- [13] S. Jafari and T. Noiri, On contra precontinuous functions, Bull. Malaysian Math. Sci. Soc., 25, pp.115-128, (2002).
- [14] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 42, pp. 27-34, (1999).
- [15] M. Mrsevic, On pairwise R_0 and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math RS Roumano, (N.S.) **30** (78), pp. 141-148, (1986).
- [16] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and βtopological invariant, Proc. Pakistan. Acad. Sci., 27, 285-296, (1990).
- [17] T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99, pp. 315-328, (2003).
- [18] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, 1971 General Topology and its Relation to Modern Analysis and Algebra. III, (Proc. Conf. Kanpur, 1968), Academia, Prague, pp. 301-306, (1971).
- [19] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169-85.

M. Caldas

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil e-mail: gmamccs@vm.uff.br