Proyecciones Journal of Mathematics Vol. 32, N^o 4, pp. 321-332, December 2013. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172013000400002

Multiplication and Composition operators on $w_p(f)$

Kuldip Raj, Sunil K. Sharma and Seema Jamwal Shri Mata Vaishno Devi University, India Received : June 2012. Accepted : October 2013

Abstract

In this paper we characterize the boundedness, closed range, invertibility of the multiplication operators acting on sequence spaces $w_p(f)$ defined by a modulus function. We also make an efforts to study some properties of composition operators on these spaces.

Subjclass [2000] : Primary 47B20, Secondary 47B38.

Keywords : *Modulus function, multiplication operator, composition operator, closed range, invertibility.*

1. Introduction and Preliminaries

A modulus function is a function $f: [0, \infty) \to [0, \infty)$ such that

- 1. f(x) = 0 if and only if x = 0;
- 2. $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$;
- 3. f is increasing;
- 4. f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x}{x+1}$, then f(x) is bounded. If $f(x) = x^p$, 0 , then the modulus <math>f(x) is unbounded. Subsequently, modulus function has been discussed in ([2], [7], [9]) and many others.

For any sequence x, write

$$d_{mn} = d_{mn}(x) = \frac{1}{m+1} \sum_{i=0}^{m} x_{n+i}.$$

G. G. Lorentz [6] proved that

$$\hat{c} = \left\{ x : \lim_{m \to \infty} d_{mn}(x) \text{ exists uniformly in } n \right\}.$$

Khan M. A. [3] extend the definition of d_{mn} to m = -1 by taking $d_{-1,n} = x_{n-1}$, then write for $m, n \ge 0$

$$t_{mn} = t_{mn}(x) = d_{mn}(x) - d_{m-1,n}(x)$$

A straight forward calculation then show that

$$t_{mn} = \frac{1}{m(m+1)} \sum_{v=1}^{m} v(x_{n+v} - x_{n+v-1}).$$

If f is a modulus function and homogeneous of degree 1, then we define a sequence space as

$$w_p(f) = \Big\{ x : \sup_n \sum_m m^{p-1} f(|t_{mn}(x)|^p) < \infty \Big\}.$$

The space $w_p(f)$ with the norm

$$||x|| = \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f(|t_{mn}(x)|^p) \right\}^{1/p}, \quad p \ge 1 \text{ for } x \in w_p(f)$$

is a Banach space.

Let $v : \mathbf{N} \to \mathbf{N}$ and $u : \mathbf{N} \to \mathbf{C}$ be two mappings. Then the bounded linear transformations

$$T_v: w_p(f) \to w_p(f)$$

and

$$M_u: w_p(f) \to w_p(f)$$

defined by $(T_vh)(x) = h(v(x))$ and $(M_uh)(x) = u(x)h(x)$ are called composition and multiplication operators respectively. By $B(w_p(f))$, we denote the set of all bounded linear operators from $w_p(f)$ into itself and [z(u)]denote, the set $\{n \in \mathbf{N} : u(n) = 0\}$. For more details about the study of multiplication and composition operators see ([1], [4], [5], [8], [10], [11]).

In this paper we study multiplication and composition operators acting on sequence spaces $w_p(f)$ defined by a modulus function.

2. Multiplication operators acting on sequence spaces defined by a modulus function

In this section we characterize multiplication operators acting on $w_p(f)$.

Theorem 2.1. Let $M_u : w_p(f) \to w_p(f)$ be a linear transformation. Then M_u is a bounded operator if and only if there exists M > 0 such that

$$f(|u(m)t_{mn}(x)|^p) \le Mf(|t_{mn}(x)|)^p$$

for all $m \in N$.

Proof. Suppose that the condition of the theorem is true. For $x \in w_p(f)$, we have

$$\sup_{n} \sum_{m=1}^{\infty} m^{p-1} f\Big(|u(m)t_{mn}(x)|^p \Big) \le M \sup_{n} \sum_{m=1}^{\infty} m^{p-1} f\Big(|t_{mn}(x)|^p \Big) < \infty.$$

Thus $M_u x \in w_p(f)$. Further,

$$||M_{u}(x)|| = \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f\left(|u(m)t_{mn}(x)|^{p}\right) \right\}^{1/p} \\ \leq M \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f\left(|t_{mn}(x)|^{p}\right) \right\}^{1/p} \\ \leq M||x||.$$

This proves the continuity of M_u at the origin and hence everywhere in view of linearity of M_u .

Conversely, if the condition of the theorem were false, then for every integer k > 0 there exists $n_k \in N$ and $y_k = y \in \mathbf{R}^+$ such that

$$f\left(|u(n_k)t_{mn}(y_k)|^p\right) > kf\left(|t_{mn}(y_k)|^p\right)$$

Let $g_k = t_{mn}(y_k)\chi_{\{n_k\}}$. Then

$$k||g_k|| = k \left\| t_{mn}(y_k)\chi_{\{n_k\}} \right\|$$

= $k \Big(\sup_{n} \sum_{m=1}^{\infty} m^{p-1} f\Big(|t_{mn}(y_k)| \Big)^p \Big)^{1/p}$

$$< \left(\sup_{n} \sum_{m=1}^{\infty} m^{p-1} f\left(|u(n_{k})t_{mn}(y_{k})| \right)^{p} \right)^{1/p} \\ = \left(\sup_{n} \sum_{m=1}^{\infty} m^{p-1} f |M_{u}g_{k}|^{p} \right)^{1/p} \\ = \|M_{u}g_{k}\|.$$

This proves that M_u is not bounded. Hence the condition must be true.

Theorem 2.2. Let $AM_u = M_uA$. Then A is a multiplication operator.

Proof. Let V = Ae. Then

$$Ae_n = AM_{e_n}e = M_{e_n}Ae = M_{e_n}V = e_nV = Ve_n = M_Ve_n.$$

We now prove that V induces a multiplication operator. If V does not induce a bounded operator, then for every $k \in N$, there exists $n_k \in N$ such that

$$f\Big(|V(n_k)t_{mn}(y_k)|^p\Big) > mf\Big(|t_{mn}(y_k)|^p\Big).$$

Let $g_k = t_{mn}(y_k)e_{n_k}$. Then

$$\begin{aligned} k||g_{k}|| &= k||t_{mn}(y_{k})e_{n_{k}}|| \\ &= k\Big(\sup_{n}\sum_{m=1}^{\infty}m^{p-1}f\Big(|t_{mn}(y_{k})|\Big)^{p}\Big)^{1/p} \\ &< \Big(\sup_{n}\sum_{m=1}^{\infty}m^{p-1}f\Big(|V(n_{k})t_{mn}(y_{k})|\Big)^{p}\Big)^{1/p} \\ &= \Big(\sup_{n}\sum_{m=1}^{\infty}m^{p-1}f|Ag_{k}|^{p}\Big)^{1/p} \\ &= ||Ag_{k}||, \end{aligned}$$

which contradicts the continuity of A. Hence A must be a bounded operator and $A = M_V$.

Theorem 2.3. Let $M_u \in B(w_p(f))$. Then M_u is invertible if and only if there exists $\epsilon > 0$ such that

$$f(|u(k)t_{mn}(y)|^p) \ge \epsilon f(|t_{mn}(y)|^p), \ \forall p \in \mathbf{N} \ and \ y \in \mathbf{R}^+.$$

Proof. We first assume that there exists $\epsilon > 0$ such that

$$f(|u(k)t_{mn}(y)|^p) \ge \epsilon f(|t_{mn}(y)|^p), \ \forall p \in \mathbf{N} \text{ and } y \in \mathbf{R}^+.$$

Now

$$\epsilon f\Big[\frac{|t_{mn}(y)|^p}{|u(k)|^p}\Big] \leq f\Big[|u(k)|^p \cdot \frac{|t_{mn}(y)|^p}{|u(k)|^p}\Big]$$
$$= f\Big(-t_{mn}(y)|^p\Big) \text{or}$$
$$f\Big[|\frac{1}{|u(k)|^p}t_{mn}(y)|^p\Big] \leq \frac{1}{\epsilon}f\Big(|t_{mn}(y)|^p\Big), \ \forall p \in \mathbf{N}.$$

This proves that M_V is a bounded operator, where $V = \frac{1}{u}$. Clearly M_V is inverse of M_u .

Conversely, suppose that M_u is invertible with M_V as its inverse. Clearly $V = \frac{1}{u}$. Hence by continuity of M_V , there exists M > 0 such that

$$f(|V(k)t_{mn}(y)|^p) \le Mf(|t_{mn}(y)|^p), \ \forall k \in \mathbf{N} \ \text{and} \ y \in \mathbf{R}^+.$$

Or equivalently

$$f\Big[|\frac{1}{|u(k)|}t_{mn}(y)|^p\Big] \le Mf\Big(|t_{mn}(y)|^p\Big).$$

Taking

$$|t_{mn}(y)| = |u(k)t_{mn}(y)|,$$

we get

$$f(|t_{mn}(y)|^p) \le Mf(|u(k)t_{mn}(y)|^p)$$

or

$$f(|u(k)t_{mn}(y)|^p) \ge \frac{1}{M}f(|t_{mn}(y)|^p) \quad \forall k \in \mathbf{N}.$$

Taking $\epsilon = \frac{1}{M}$, we get

$$f(|u(k)t_{mn}(y)|^p) \ge \epsilon f(|t_{mn}(y)|^p).$$

Hence the condition must be true.

Theorem 2.4. Let $M_u \in B(w_p(f))$. Then M_u is Fredholm if and only if

(i) [Z(u)] is a finite set (ii) there exists $\epsilon > 0$ such that

$$f(|u(k)t_{mn}(y)|^p) \ge \epsilon f(|t_{mn}(x)|^p) \quad \forall \ m \in [Z(u)]'$$

Proof. If [Z(u)] is a finite set, then ker M_u is finite dimensional. From the condition (ii), M_u has closed range.

Moreover $\dim(w_p(f)/\operatorname{ran} M_u)$ is finite. This proves that M_u is Fredholm.

The converse of the theorem is obvious.

Corollary 2.5. Let $M_u \in B(w_p(f))$. Then M_u has closed range if and only if there exists $\delta > 0$ such that

$$f(|u(k)t_{mn}(y)|^p) \ge \delta f(|t_{mn}(y)|^p), \quad \forall \ k \in [Z(u)]' \text{ and } y \in \mathbf{R}^+$$

Proof. Assume that the condition of the theorem is true. Let $h \in \overline{\operatorname{ran} M_u}$.

Then there exists a sequence $\{h_n\}$ such that $M_u h_n \to h$ that is $||M_u h_n - M_u h|| \to 0$ as $n \to \infty$. Now $\{M_u h_n\}$ is a Cauchy sequence. Therefore for every $\epsilon > 0$ there exists $n_0 \in N$ such that

$$||M_u t_{mn} h_n - M_u t_{mn} h_k|| < \epsilon \ \forall n, k \ge n_0.$$

Now

$$\delta \sup_{n \in [Z(u)]'} \sum_{m=1}^{\infty} m^{p-1} f\Big(|t_{mn}(h_n - h_k)|^p \Big) \le \sup_{n \in [Z(u)]'} \sum_{m=1}^{\infty} m^{p-1} f\Big(|u(m)t_{mn}(h_n - h_k)|^p \Big) < \epsilon \quad \forall n, k \ge n_0.(1)$$

Define

$$\tilde{h_n}(k) = \begin{cases} h_n(k), & \text{if } m \in [Z(u)]' \\ 0, & \text{elsewhere.} \end{cases}$$

Then from (1) it follows that $\{\tilde{h_n}\}$ is a Cauchy sequence in $w_p(f)$. But $w_p(f)$ is complete.

Therefore there exists $\tilde{h} \in w_p(f)$ such that $\tilde{h_n} \to \tilde{h}$. Hence by continuity of M_u , we get $M_u h_n = M_u \tilde{h_n} \to M_u \tilde{h}$. Hence $h = M_u \tilde{h}$ so that $h \in \operatorname{ran} M_u$. Thus M_u has closed range.

Conversely, if the condition of the theorem were false, then for every positive integer k there exists $n_k \in N$ and $y_k \in \mathbf{R}^+$ such that

$$f\left(|u(n_k)t_{mn}(y_k)|^p\right) < 1/kf\left(|t_{mn}y_k|^p\right).$$

Let $g_k = t_{mn} y_k \chi_{\{n_k\}}$. Then

$$||M_{u}g_{k}|| = \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f(|u.g_{k}|^{p}) \right\}^{1/p}$$
$$= \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f(|u(n_{k})t_{mn}(y_{k})|^{p}) \right\}^{1/p}$$
$$\leq 1/k \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f(|t_{mn}(y_{k})|^{p}) \right\}^{1/p}$$
$$= 1/k ||g_{k}||.$$

This proves that M_u is not bounded away from zero so that M_u does not have closed range.

3. Composition operators acting on sequence spaces defined by a modulus function

In this section we study some properties of composition operators on $w_p(f)$.

Theorem 3.1. Let $T_v : w_p(f) \to w_p(f)$ be a linear transformation. Then T_v is a bounded operator if there exists M > 0 such that

$$\sum_{k \in v^{-1}(n)} m^{p-1} f\Big(|t_{mk}(x)|^p \Big) \le M m^{p-1} f\Big(|t_{mn}(x)|^p \Big).$$

Proof. Suppose that the condition of the theorem is true. If $x \in w_p(f)$, then

$$\sup_{n} \sum_{m=1}^{\infty} \sum_{k \in v^{-1}(n)} m^{p-1} f\Big(|t_{mk}(x)|^p \Big) \leq M \sup_{n} \sum_{m=1}^{\infty} m^{p-1} f\Big(|t_{mn}(x)|^p \Big)$$

 $< \infty$, which shows that $T_v x \in w_p(f)$. Further,

$$||T_{v}x||_{f} = \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f\left(|t_{mn}(x \circ v(k))|^{p}\right) \right\}^{1/p}$$

$$= \sup_{n} \left\{ \sum_{m=1}^{\infty} \sum_{k \in v^{-1}(n)} m^{p-1} f\left(|t_{mk}x|^{p}\right) \right\}^{1/p}$$

$$\leq M \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f\left(|t_{mn}(x)|^{p}\right) \right\}^{1/p}$$

$$\leq M ||x||_{f}.(2)$$

The continuity of T_v at origin follows from the inequality (2). Since T_v is linear, so it is continuous everywhere.

Theorem 3.2. Let $T_v \in B(w_p(f))$. Then T_v has closed range if there exists $\delta > 0$ such that

$$\sum_{k \in v^{-1}(n)} m^{p-1} f\left(|t_{mk}(x)|^p \right) \ge \delta m^{p-1} f\left(|t_{mn}(x)|^p \right) \text{ for every } m \in \mathbf{N}.(3)$$

Proof. We assume that the condition (3) is true. We have to show that T_v has closed range. Let $x \in \overline{\operatorname{ran} T_v}$ and let $\{x^i\}$ be a sequence in $w_p(f)$ such that $T_v x^n \to x$. Then for every $\epsilon > 0$ there exists positive integer n_0 such that

$$||T_v x^i - T_v x^j|| < \epsilon \ \forall i, j \ge n_0.$$

Equivalently,

$$\epsilon > \sup_{n} \left\{ \sum_{m=1}^{\infty} \sum_{k \in v^{-1}(n)} m^{p-1} f\left(|t_{mk}(x^{i} \circ v(k) - x^{j} \circ v(k))|^{p} \right) \right\}^{1/p}$$

$$\geq \delta \sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f\left(|t_{mn}(x^{i} - x^{j})|^{p} \right) \right\}^{1/p} \\ = \delta ||x^{i} - x^{j}||, \quad \forall i, j \geq n_{0}(4)$$

from (4) it follows that $\{x^i\}$ is a Cauchy sequence in $w_p(f)$. In view of completeness of $w_p(f)$, there exists $y \in w_p(f)$ such that $x^i \to y$. From the continuity of $T_v, T_v x^i \to T_v y$. Hence $x = T_v y$ so that $x \in \operatorname{ran} T_v$. Hence ran T_v is closed.

Theorem 3.3. Let $T_v \in B(w_p(f))$. Then T_v is an isometry if

$$\sum_{k \in v^{-1}(n)} m^{p-1} f\Big(|t_{mk}(x)|^p \Big) = m^{p-1} f\Big(|t_{mn}(x)|^p \Big).$$

Proof. If the condition of the theorem is satisfied, then for every $x \in w_p(f)$, we have

$$||T_{v}x|| = \sup_{n} \left\{ \sum_{m=1}^{\infty} \sum_{k \in v^{-1}(m)} m^{p-1} f(|t_{mk}x|^{p}) \right\}^{1/p}$$

=
$$\sup_{n} \left\{ \sum_{m=1}^{\infty} m^{p-1} f(|t_{mn}(x)|^{p}) \right\}^{1/p}$$

=
$$||x||.$$

Hence T_v is an isometry.

Theorem 3.4. Let $T_v \in B(w_p(f))$. If T_v is an isometry, then

$$\sup_{n} \sum_{k \in v^{-1}(m)} k^{p-1} f\Big(|t_{nk}(x)|^p \Big) = \sup_{n} m^{p-1} f\Big(|t_{mn}x|^p \Big).$$

Proof. The proof is trivial.

References

- [1] M. B. Abrahmse, Multiplication operators, Hilbert space operators. Lecture notes in Mathematics, 693 : pp. 17-36, (1978).
- [2] T. Bilgen, On statistical convergence. An. Univ. Timisoara Ser. Math. Inform., 32: pp. 3-7, (1994).
- [3] M. A. Khan, Some sequence spaces with an index defined by a modulus function. *Thai J. Math.*, 2 : 259-264, (2004).
- [4] B. S. Komal and Kuldip Raj, Multiplication operators induced by operator valued maps. Int. J. Contemp. Math. Sci., Vol.3: pp. 667-673, (2008).
- [5] B. S. Komal and P. S. Singh, Composition operators on the space of entire functions. *Kodai Math. J.*, 14: pp. 463-469, (1991).
- [6] G. G. Lorentz, A contribution to the theory of divergent series. Acta. Math., 80 : pp. 167-190, (1948).
- [7] E. Malkowsky and E. Savas, Some λ -sequence spaces defined by a modulus. *Arch. Math.*, 36 : pp. 219-228, (2000).
- [8] Kuldip Raj, B. S. Komal and Vinay Khosla, Composition operators on sequence spaces of entire functions. Int. Electron. J. Pure Appl. Math., 1: pp. 469-474, (2010).
- [9] E. Savas, On some generalized sequence spaces defined by a modulus. *Indian J. pure Appl. Math.*, 30: pp. 459-464, (1999).
- [10] R. K. Singh and J. S. Manhas, Composition operators on function spaces. North-Holland, (1993).
- [11] H. Takagi and K. Yokouchi, Multiplication and composition operators between L^p-spaces. Contemp. Math., 232 : pp. 321-338, (1999).

Kuldip Raj

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India e-mail : kuldipraj68@gmail.com Sunil K. Sharma School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India e-mail : sunilksharma42@yahoo.co.in

and

Seema Jamwal

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India e-mail : seemajamwal8@gmail.com