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Abstract

Using a generalized spherical mean operator, we obtain a general-
ization of Titchmarsh’s theorem for the Dunkl transform for functions
satisfying the (1, o, 3)-Dunkl Lipschitz condition in L*(RY, wy,(z)dz).
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1. Intoduction and preliminaries

In [10], E. C. Titchmarsh characterized the set of functions in L?(R) satis-
fying the Cauchy Lipschitz condition for the Fourier transform, namely we
have

Theorem 1.1. Let a € (0,1) and assume that f € L*(R). Then the
following are equivalents

L | f(x+h)— f(eT)Hp(R) =O(h*) as h — 0,
2. Jysr [F)PAN = O(r—2®) as r — +o0,
where F' stands for the Fourier transform of f.

The main aim of this paper is to establish a generalization of Theorem
1.1 in the Dunkl transform setting by means of the generalized spherical
mean operator.

In this paper we consider the Dunkl operators T}, j =1,2,...,d, which
are the differential-difference operators introduced by C.F. Dunkl in [3].
These operators are very important in pure mathematics and in physics.

In the first we collect some notations and results on Dunkl operators
and the Dunkl kernel (see [3], [4], [6]).

We consider RY with the Euclidean scalar product (.,.) and |z| =
V{z,x). For a € RN{0}, let o, be the reflection in the hyperplane
H, c R% orthogonal to a.
ie.,

oa(z) =2 — 2<oz,x>

[?

A finite set R C R\ {0} is called a root system, if R N R.a = {a, —a}
and o,R = R for all @ € R. For a given root system R the reflection
Oa, @ € R, generate a finite group W C O(d), the reflection group associ-
ated with R. We fix 8 € R Unecr Hy and define a positive root system
R, ={ae€ R/ (a,p) >0}

A function k : R — C on a root system R is called a multiplicity func-
tion, if it is invariant under the action of the associated reflection group W.
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If one regards k as a function on the corresponding reflections, this means
that k is constant on the conjugacy classes of reflections in W.

We consider the weight function
wi(e) = [T o),
aER,
where wy is W-invariant and homogeneous of degree 2y where
v=> k().
a€RL

We let 77 be the normalized surface measure on the unit sphere S4~1 in
R? and set

dne(y) = wr(y)dn(y).

Then 7y, is a W-invariant measure on S, we let dj, = n(S41).

Introduced by C.F. Dunkl in [3] the Dunkl operators T}, 1 < j < d, on
R? associated with the reflection group W and the multiplicity function k
are the first-order differential-difference operators given by

T f () OF (1) + 3 k(a)ajf(:v)—f(aa(m))’ feC\(RY),

N 0z Eh, (o, x)

where a; = (@, ej); (e1,...., eq) being the canonical basis of R and C*(R?)
is the space of functions of class C! on R%.

The Dunkl kernel Ej, on R% x R? has been introduced by C.F. Dunkl in
[5]. For y € R the function z — Ej(x,%) can be viewed as the solution
on R? of the following initial problem

Tju(z,y) = yju(z,y) for 1<j<d
u(0,y) =1 for all y e R4

This kernel has unique holomorphic extension to C% x C¢.

M. Résler has proved in [8] the following integral representation for the
Dunkl kernel



94 Radouan Daher and Mohamed El Hamma

Ex(z,z) = / e<y’z>d,ux(y), zeR? zeC,

Rd

where s, is a probability measure on R? with support in the closed ball
B(0, |z]) of center 0 and raduis |z|.

Proposition 1.2. [6]: Let z,w € C% and A € C. Then
1. Ep(2,0) =1,
2. Ex(z,w) = Ex(w, z),
3. Ex(Az,w) = Ei(z, \w),

4. For allv = (vi,.....,1q) € N4, z € R?, 2 € C?, we have
| DY By (x, 2)| < |a|"lexp(|a|| Rez]),
where
lv| =11 + ... +vg.

In particulier

| DY Ey(iz, 2)| < |z]",
for all z,z € R4,
The Dunkl transform is defined for f € Li(RY) = LY(RY, wy,(x)dzr) by

f(f) = c,;l /Rd f(z)Ep(—i&, x)wg(z)dz,

where the constant ¢ is given by

lz|?
Ck :/ e 2 wi(z)dz.
Rd

According to [4, 6, 9] we have the following results:
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1. When both f and f are in L} (R%), we have the inversion formula

f@) = [ OBz, Qui)de. v e R,

2. (Plancherel’s theorem) The Dunkl transform on S(R?), the space of
Schwartz functions, extends uniquely to an isometric isomorphism on
LZ(RY).

K. Trimeche has introduced [11] the Dunkl translation operators 7, x €
R4, For f € L2(RY) and we have

— —~

(7= (F))(E) = Er(iz,£) f(£),

and

()W) =" [ FOBin. ) Buliy, € wn(©)de.

The generalized spherical mean operator for f € LZ(R?) is defined by

My, f(z) 72 (hy)dni(y), © € R h > 0.

dy Jsi
From [7], we have M), f € L?(R%) whenever f € L?(R%) and

[IMufllrz < [1fllLz-

For p > —%, we introduce the normalized Bessel functuion j, defined
by

N — (=1)"(z/2)*"
Jp(z) =T(p+1) 7;) AT+ p+ 1)’

z € C,

where I' is the gamma-function.

Lemma 1.3. [1] The following inequalities are fulfilled

L |jp()] <1,

2. 1—jy(z)=0(z%); 0<z < 1.
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Lemma 1.4. The following inequality is true

1= Jgp(x)| = ¢,

with |x| > 1, where ¢ > 0 is a certain constant.
(Analog of lemma 2.9 in [2])

Proposition 1.5. Let f € L2(RY). Then
(Mnf)(E) = a1 (BIEDF(E).
(See [7])

For any function f(z) € L2(R?) we define differences of the order m
(m € {1,2,...}) with a step h > 0.

(1.1) Ap'f(x) = (M — )™ f(x),

here I is the unit operator.

Lemma 1.6. Let f € L3(R%). Then
AR S @) = [ 113, q - RIEDPIFOPun(€)de.

From formula (1.1) and proposition 1.5, we have

~

(AFE) = (g (RIED = ().

By Parseval’s identity, we obtain

A7 1@y = [ 1= gy (BIEDPIFOPun()de.

The lemma is proved

2. Main Results

In this section we give the main result of this paper. We need first to define
(v, o, B)-Dunkl Lipschitz class.
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Definition 2.1. Let o > 0 and 3 > 0. A function f € L}(R%) is said to
be in the (¢, «, §)-Dunkl Lipschitz class, denoted by Lip(, o, B); if:

1A f (@) 2 = O(h*y(RP)) as b — 0; m € {1,2, ...},

where 1(t) is a continuous increasing function on [0,00), (0) = 0 and
P(ts) = P(t)Y(s) for all t, s € [0,00) and this function verify

1/h
/ 2201y (=28 g = O(h2*~2™yp(h?)) as h — 0.
0

Theorem 2.2. Let f € L2(RY). Then the following are equivalents

1. f € Lip(¢, o, B),
2. Sz [ F©)Pwi(€)dg = O(s724(s7%7)) as s — +o0.
1) = 2) Assume that f € Lip(¢, a, 8). Then we have
IA7 f (@)l 2 = O(h*¢(h7)) as b — 0,
From lemma 1.6, we have
AR5 @y = [ 11— gy (BIEDPIFOPun(€)de.

If |¢| € [+, 2] then h|¢| > 1 and lemma 1.4 implies that

1
1< 5l =gy (RIEDP™
Then
Iy 2 L . 2m| z 2
f s FOPIOE < g [ =g oGNP P
1 —~
< G Jo T e a A (BIEDPTIF©) Puon(€)d
< CR*((h"))? = CR**¢(h?).
Therefore

|, F©OPwr()de < Cs7 (s,
s<|€|<2s
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Furthermore, we have

Sz 1 F©)Puwr(€)de

<C (s_Qaw(s_Qﬁ) + (25) 72 ((25)720) + (225) 229 ((225)72F) + ...
<C (S—Qaw(S—Q,B) 9720520y, (3=28) 4 (2720)25—2ay)(5—28) 4 )
< 08720‘1#(872’8)(1 L 92 (27204)2 4 (27201)3 I )

< Kos720q)(s728),
where K, = C(1 —272%)~1,
This proves that
/Islzs |F(©)Pwr(€)de = O(s2(s™%)) as s — +00
2) = 1) Suppose now that
/élzs F©Pwr(€)de = O(s72(s7)) as s — +o0.

We have to show that

/Ooo r27+d—1|1 _ j,y+%_1(h7')|2m¢(7“)d7' _ O(hQa’(,Z)(hQB))a

where we have set

o) = [ 1) Py,

We write

1/h
= [T et
and
Iy = /1/hr ! 1 _J”/+§—1(hr)‘ AAr)dr.

Firstly, from (1) in lemma 1.3 we see that

Ip < 4™ / PG () e — O(R2(h2%)) as h — 0.
1/h

Set
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g(r) = /Too 21 (1) da

From (2) in lemma 1.3, an integration by parts yields

_ 2m 1/h 2m /
L < —-Cih g’ (r)dr
0

1/h
< —Ci9(1/h) + QmCthm/ 2L (r)dr
0

1/h

< 2mC’1h2m/ r2m_1r_2aw(r_25)dr
0
1/h

< 2m01h2m/ r2m*2a*1¢(r*25)dr
0

< CQthhQQ_Qmw(hQB)

< Gl p(h*),

where C7 and Cs are positive constants, and this ends the proof
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