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Abstract

Using a generalized spherical mean operator, we obtain a general-
ization of Titchmarsh’s theorem for the Dunkl transform for functions
satisfying the (ψ,α, β)-Dunkl Lipschitz condition in L2(Rd, wk(x)dx).
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1. Intoduction and preliminaries

In [10], E. C. Titchmarsh characterized the set of functions in L2(R) satis-
fying the Cauchy Lipschitz condition for the Fourier transform, namely we
have

Theorem 1.1. Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the
following are equivalents

1. kf(x+ h)− f(x)kL2(R) = O(hα) as h −→ 0,

2.
R
|λ|≥r |F (λ)|2dλ = O(r−2α) as r −→ +∞,

where F stands for the Fourier transform of f .

The main aim of this paper is to establish a generalization of Theorem
1.1 in the Dunkl transform setting by means of the generalized spherical
mean operator.

In this paper we consider the Dunkl operators Tj , j = 1, 2, ..., d, which
are the differential-difference operators introduced by C.F. Dunkl in [3].
These operators are very important in pure mathematics and in physics.

In the first we collect some notations and results on Dunkl operators
and the Dunkl kernel (see [3], [4], [6]).

We consider Rd with the Euclidean scalar product h., .i and |x| =p
hx, xi. For α ∈ Rd\{0}, let σα be the reflection in the hyperplane

Hα ⊂ Rd orthogonal to α.
i.e.,

σα(x) = x− 2hα, xi|x|2 α.

A finite set R ⊂ Rd\{0} is called a root system, if R ∩R.α = {α,−α}
and σαR = R for all α ∈ R. For a given root system R the reflection
σα, α ∈ R, generate a finite group W ⊂ O(d), the reflection group associ-
ated with R. We fix β ∈ Rd\ ∪α∈R Hα and define a positive root system
R+ = {α ∈ R/ hα, βi > 0}.

A function k : R −→ C on a root system R is called a multiplicity func-
tion, if it is invariant under the action of the associated reflection groupW .
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If one regards k as a function on the corresponding reflections, this means
that k is constant on the conjugacy classes of reflections in W .

We consider the weight function

wk(x) =
Y

α∈R+
|hα, xi|2k(α),

where wk is W -invariant and homogeneous of degree 2γ where

γ =
X
α∈R+

k(α).

We let η be the normalized surface measure on the unit sphere Sd−1 in
Rd and set

dηk(y) = wk(y)dη(y).

Then ηk is a W -invariant measure on Sd−1, we let dk = ηk(S
d−1).

Introduced by C.F. Dunkl in [3] the Dunkl operators Tj , 1 ≤ j ≤ d, on
Rd associated with the reflection group W and the multiplicity function k
are the first-order differential-difference operators given by

Tjf(x) =
∂f

∂xj
(x) +

X
α∈R+

k(α)αj
f(x)− f(σα(x))

hα, xi , f ∈ C1(Rd),

where αj = hα, eji; (e1, ...., ed) being the canonical basis of Rd and C1(Rd)
is the space of functions of class C1 on Rd.

The Dunkl kernel Ek on R
d×Rd has been introduced by C.F. Dunkl in

[5]. For y ∈ Rd the function x 7−→ Ek(x, y) can be viewed as the solution
on Rd of the following initial problem(

Tju(x, y) = yju(x, y) for 1 ≤ j ≤ d
u(0, y) = 1 for all y ∈ Rd

This kernel has unique holomorphic extension to Cd ×Cd.

M. Rösler has proved in [8] the following integral representation for the
Dunkl kernel
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Ek(x, z) =

Z
Rd

ehy,zidµx(y), x ∈ Rd, z ∈ Cd,

where µx is a probability measure on R
d with support in the closed ball

B(0, |x|) of center 0 and raduis |x|.

Proposition 1.2. [6]: Let z, w ∈ Cd and λ ∈ C. Then

1. Ek(z, 0) = 1,

2. Ek(z, w) = Ek(w, z),

3. Ek(λz,w) = Ek(z, λw),

4. For all ν = (ν1, ....., νd) ∈Nd, x ∈ Rd, z ∈ Cd, we have

|Dν
zEk(x, z)| ≤ |x||ν|exp(|x||Rez|),

where

Dν
z =

∂|ν|

∂zν11 .....∂zνdd
; |ν| = ν1 + ...+ νd.

In particulier

|Dν
zEk(ix, z)| ≤ |x||ν|,

for all x, z ∈ Rd.

The Dunkl transform is defined for f ∈ L1k(R
d) = L1(Rd, wk(x)dx) by

bf(ξ) = c−1k

Z
Rd

f(x)Ek(−iξ, x)wk(x)dx,

where the constant ck is given by

ck =

Z
Rd

e−
|z|2
2 wk(z)dz.

According to [4, 6, 9] we have the following results:
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1. When both f and bf are in L1k(R
d), we have the inversion formula

f(x) =

Z
Rd

bf(ξ)Ek(ix, ξ)wk(ξ)dξ, x ∈ Rd,

2. (Plancherel’s theorem) The Dunkl transform on S(Rd), the space of
Schwartz functions, extends uniquely to an isometric isomorphism on
L2k(R

d).

K. Trimèche has introduced [11] the Dunkl translation operators τx, x ∈
Rd. For f ∈ L2k(R

d) and we have

d(τx(f))(ξ) = Ek(ix, ξ) bf(ξ),
and

τx(f)(y) = c−1k

Z
Rd

bf(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ.

The generalized spherical mean operator for f ∈ L2k(R
d) is defined by

Mhf(x) =
1

dk

Z
Sd−1

τx(hy)dηk(y), x ∈ Rd, h > 0.

From [7], we have Mhf ∈ L2k(R
d) whenever f ∈ L2k(R

d) and

kMhfkL2k ≤ kfkL2k .

For p ≥ −12 , we introduce the normalized Bessel functuion jp defined
by

jp(z) = Γ(p+ 1)
∞X
n=0

(−1)n(z/2)2n
n!Γ(n+ p+ 1)

, z ∈ C,

where Γ is the gamma-function.

Lemma 1.3. [1] The following inequalities are fulfilled

1. |jp(x)| ≤ 1,

2. 1− jp(x) = O(x2); 0 ≤ x ≤ 1.
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Lemma 1.4. The following inequality is true

|1− jp(x)| ≥ c,

with |x| ≥ 1, where c > 0 is a certain constant.

(Analog of lemma 2.9 in [2])

Proposition 1.5. Let f ∈ L2k(R
d). Then

d(Mhf)(ξ) = jγ+ d
2
−1(h|ξ|) bf(ξ).

(See [7])

For any function f(x) ∈ L2k(R
d) we define differences of the order m

(m ∈ {1, 2, ...}) with a step h > 0.

∆m
h f(x) = (Mh − I)mf(x),(1.1)

here I is the unit operator.

Lemma 1.6. Let f ∈ L2k(R
d). Then

k∆m
h f(x)k2L2

k
=

Z
Rd
|1− jγ+ d

2
−1(h|ξ|)|

2m| bf(ξ)|2wk(ξ)dξ.

From formula (1.1) and proposition 1.5, we have

d(∆m
h f)(ξ) = (jγ+d

2
−1(h|ξ|)− 1)

m bf(ξ).
By Parseval’s identity, we obtain

k∆m
h f(x)k2L2

k
=

Z
Rd
|1− jγ+ d

2
−1(h|ξ|)|

2m| bf(ξ)|2wk(ξ)dξ.

The lemma is proved

2. Main Results

In this section we give the main result of this paper. We need first to define
(ψ,α, β)-Dunkl Lipschitz class.
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Definition 2.1. Let α > 0 and β > 0. A function f ∈ L2k(R
d) is said to

be in the (ψ,α, β)-Dunkl Lipschitz class, denoted by Lip(ψ,α, β); if:

k∆m
h f(x)kL2

k
= O(hαψ(hβ)) as h −→ 0; m ∈ {1, 2, ...},

where ψ(t) is a continuous increasing function on [0,∞), ψ(0) = 0 and
ψ(ts) = ψ(t)ψ(s) for all t, s ∈ [0,∞) and this function verifyZ 1/h

0
r2m−2α−1ψ(r−2β)dr = O(h2α−2mψ(h2β)) as h −→ 0.

Theorem 2.2. Let f ∈ L2k(R
d). Then the following are equivalents

1. f ∈ Lip(ψ,α, β),

2.
R
|ξ|≥s | bf(ξ)|2wk(ξ)dξ = O(s−2αψ(s−2β)) as s −→ +∞.

1) =⇒ 2) Assume that f ∈ Lip(ψ,α, β). Then we have

k∆m
h f(x)kL2

k
= O(hαψ(hβ)) as h −→ 0,

From lemma 1.6, we have

k∆m
h f(x)k2L2k =

Z
Rd
|1− jγ+ d

2
−1(h|ξ|)|

2m| bf(ξ)|2wk(ξ)dξ.

If |ξ| ∈ [ 1h ,
2
h ] then h|ξ| ≥ 1 and lemma 1.4 implies that

1 ≤ 1

c2m
|1− jγ+ d

2
−1(h|ξ|)|

2m.

Then

Z
1
h
≤|ξ|≤ 2

h

| bf(ξ)|2wk(ξ)dξ ≤ 1

c2m

Z
1
h
≤|ξ|≤ 2

h

|1− jγ+ d
2
−1(h|ξ|)|

2m| bf(ξ)|2wk(ξ)dξ

≤ 1

c2m

Z
Rd
|1− jγ+ d

2
−1(h|ξ|)|

2m| bf(ξ)|2wk(ξ)dξ

≤ Ch2α(ψ(hβ))2 = Ch2αψ(h2β).

Therefore Z
s≤|ξ|≤2s

| bf(ξ)|2wk(ξ)dξ ≤ Cs−2αψ(s−2β).
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Furthermore, we haveR
|ξ|≥s | bf(ξ)|2wk(ξ)dξ

=
³R

s≤|ξ|≤2s+
R
2s≤|ξ|≤4s+

R
4s≤|ξ|≤8s+.....

´
| bf(ξ)|2wk(ξ)dξ

≤ C
³
s−2αψ(s−2β) + (2s)−2αψ((2s)−2β) + (22s)−2αψ((22s)−2β) + ......

´
≤ C

³
s−2αψ(s−2β) + 2−2αs−2αψ(s−2β) + (2−2α)2s−2αψ(s−2β) + ....

´
≤ Cs−2αψ(s−2β)(1 + 2−2α + (2−2α)2 + (2−2α)3 + .....)
≤ Kαs

−2αψ(s−2β),
where Kα = C(1− 2−2α)−1.

This proves thatZ
|ξ|≥s

| bf(ξ)|2wk(ξ)dξ = O(s−2αψ(s−2β)) as s −→ +∞

2) =⇒ 1) Suppose now thatZ
|ξ|≥s

| bf(ξ)|2wk(ξ)dξ = O(s−2αψ(s−2β)) as s −→ +∞.

We have to show thatZ ∞
0

r2γ+d−1|1− jγ+ d
2
−1(hr)|

2mφ(r)dr = O(h2αψ(h2β)),

where we have set

φ(r) =

Z
Sd−1

| bf(ry)|2wk(y)dy.

We write

I1 =

Z 1/h

0
r2γ+d−1|1− jγ+d

2
−1(hr)|

2mφ(r)dr,

and

I2 =

Z ∞
1/h

r2γ+d−1|1− jγ+ d
2
−1(hr)|

2mφ(r)dr.

Firstly, from (1) in lemma 1.3 we see that

I2 ≤ 4m
Z ∞
1/h

r2γ+d−1φ(r)dr = O(h2αψ(h2β)) as h −→ 0.

Set
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g(r) =

Z ∞
r

x2γ+d−1φ(x)dx.

From (2) in lemma 1.3, an integration by parts yields

I1 ≤ −C1h2m
Z 1/h

0
r2mg0(r)dr

≤ −C1g(1/h) + 2mC1h
2m
Z 1/h

0
r2m−1g(r)dr

≤ 2mC1h
2m
Z 1/h

0
r2m−1r−2αψ(r−2β)dr

≤ 2mC1h
2m
Z 1/h

0
r2m−2α−1ψ(r−2β)dr

≤ C2h
2mh2α−2mψ(h2β)

≤ C2h
2αψ(h2β),

where C1 and C2 are positive constants, and this ends the proof
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University of Hassan II, Casablanca,
Morocco
e-mail: m elhamma@yahoo.fr




