Proyecciones Journal of Mathematics
Vol. 33, N° 1, pp. 77-90, March 2014.
Universidad Catdlica del Norte

Antofagasta - Chile
DOI: 10.4067/S0716-09172014000100006

Some Umbral Calculus Presentations of the
Chan-Chyan-Srivastava Polynomials and the
Erkus-Srivastava Polynomials

H. M. Srivastava
University of Victoria, Canada
K. S. Nisar
Salman Bin Abdu-Aziz University, Saudi Arabia
and
Mumtaz Ahmad Khan

Aligarh Muslim University, India

Recewed : February 2013. Accepted : March 2013

Abstract

In their recent investigation involving differential operators for the
generalized Lagrange polynomials, Chan et. al. [3] encountered and
proved a certain summation identity and several other results for the
Lagrange polynomials in several variables, which are popularly known
in the literature as the Chan-Chyan-Srivastava polynomials. These
multivariable polynomials have been studied systematically and exten-
sively in the literature ever since then (see, for example, [1], [4], [9],
[11], [12] and [13]). In the present paper, we investigate umbral calcu-
lus presentations of the Chan-Chyan-Srivastava polynomials and also
of their substantially more general form, the Erkus-Srivastava poly-
nomials [9]. Some other closely-related results are also considered.
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1. Introduction, Definitions and Notations

The familiar (two-variable) polynomials g7(Z o )( y), which are generated by
o0
(1—22) " (1—y2) 7 =3 i (z,y)2"
n=0
(1.1) (e, 8 € C; |2 < minflz| ™, [y]7"}),

are known as the Lagrange polynomials which occur in certain problems in
statistics (cf., e.g., Erdélyi et al. [8, p. 267]; see also [15, p. 441 et seq.]).
The (three-variable) Lagrange polynomials g7(l a:8:7) (x,y,z), which are
defined by means of the generating function:
o0 tn

(1.2) (Q—at) 1 —yt) P —2t)” Z 87 (g 9:2)

(8.7 € Cs [t] < minla| ™ |y 7 12171},

were studied recently by Khan and Shukla [10]. Subsequently, Chan et al.

[3] introduced and investigated the multivariable extension of the classical
Lagrange polynomials g7(l o) (x,y) generated by (1.1).

These multivariable Lagrange polynomials gq(l L )(xl, -++,x,), which
are popularly known in the literature as the Chan-Chyan-Srivastava poly-

nomials, are generated by (see, for details, [3]; see also [4], [12] and [13])
(13) H{ (L= a2 = 3 gl o o )"

(yeC G=1,,m); |o| <minflea| 7 fa, 1),

so that, upon comparison with the generating function (1.2), we have the
following relationship:

gﬁLa,/BfY) (x’y, Z) =n! gga’BKY) ($7y’ Z)
(n € No:=NU{0}; N:i={1,2,3,--})

with the (three-variable) Lagrange polynomials gr(Z b, 7)(

Khan and Shukla [10].
Clearly, the defining generating function (1.3) yields the explicit repre-
sentation given by [3, p. 140, Eq. (6)]

x,y, z) studied by



Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava ..79

k
(a1,m+00) . z71 Zhr
S (1, 2;) = X () (), oy -+~ 227
k1, kr€Ng
ki+-+kr—1<n
_ Z = (al)’ﬂfk]_*---fkyfl(aQ)kl'"(o‘T)kT,l
- _ e — i I... !
Fet e Fom1=0 (n k1 k?r—l)- kilk_q!
B SR 3
(1.4) cxp T Lk g
or, equivalently, by [11, p. 522, Eq. (17)]
Nyr—1 n9
(011,“~,a7~) _ n < (Oél)nl (042)n27n1"'(a'r)n7nr71
an (x1, yTyp) = nTE:O nr§:0 mZ;O n1(nz—n1) - (n—nr—1)!
_3371113:;12—711 . x:}*nrfl
no b M2 (n)niy (02)ky by (@),

KZokZ0  kreo (v RR—R)boRed]
(1.5) R ghemh et
where, as usual, (\),, denotes the Pochhammer symbol given by

(Ao =1 and N =AXA+1)---(A+n—-1) (n € N).

Altin and Erkug [1] presented a multivariable extension of the so-
called Lagrange-Hermite polynomials generated by (see [1, p. 239, Eq.

(1.2)])

(1.6) [Tt = aj2)™) = 37 Ao (o )"
j=1 n=0

€C (j=1,---,7);lz| < min {|z;|79} ).
(aj (G il < min })

The case r = 2 of the polynomials given by (1.6) corresponds to the fa-
miliar (two-variable) Lagrange-Hermite polynomials considered by Dattoli

et al. [6].
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The multivariable (Erkus-Srivastava) polynomials
Z/{Tgaell ’jr)(znl, .-+, ), which are defined by the following generating func-

tion [9, p. 268, Eq. (3)]:

(1.7) H{l—xj %}—Z U (2, ) 2"

n=0
(ozjeC (G=1,-,r); €N (j=1,---,7);

2] < minglaa| 74, - VY,

are a unification (and generalization) of several known families of multivari-
able polynomials including (for example) the Chan-Chyan-Srivastava poly-
nomials gfl L )(:Ul, -+, x,) defined by (1.3) (see, for details, [9]). Obvi-

L) (g -y follow

ously, the Chan-Chyan-Srivastava polynomials g7(l
as the special case of the Erkug-Srivastava polynomials Z/{ ( 1’ W )(xl, e, y)
when ;=1 (j=1,---,r).

Moreover, the Lagrange Hermite polynomials h( Lra
low as a special case of the Erkug-Srivastava polynomials
1/{720211 ’,ar)(xl, ~,zp)when b =37 (j=1,---,r).

The generating function (1.7) yields the following explicit representa~
tion [9, p. 268, Eq. (4)]:

)(xl,---,asr) fol-

k1 k
) G :I:l "
u}t?zllv"':zr)(xl7”.7xr) - Z (al)kl (aT)krk_:l‘ k:"
k1, kr-€Np
(£1k1++é'rk7“:n)
(1.8)
which, in the special case when ¢; =1 (j =1,---,7), corresponds to the

first expression in (1.4).

Each of the above families of multivariable polynomials has been in-
vestigated systematically and extensively in the literature ever since the
publication of the work by Chan et al. [9] (see, for example, [1], [4],
[9], [11], [12] and [13]). The main objective of the present paper is to
derive umbral calculus presentations of the Chan-Chyan-Srivastava poly-

(o ’a’")(a:l, .-+, x,) generated by (1.3) and also of the substan-

tially more general Erkus-Srivastava polynomials U, (o 1’ f ’a:) (x1,---,z,) gen-
erated by (1.7). Upon suitable specialization, this last umbral calculus pre-

sentation is shown to yield the corresponding result for the polynomials
hglom-nar)(

nomials gy,

x1,---,x,) generated by (1.6).
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2. Umbral Calculus Presentations

The Chan-Chyan-Srivastava polynomials in (1.3) exhibits a structure which,
according to the prescription provided in [7], can be viewed as the umbral
image of ordinary monomials. Indeed, by using the generating function in
(1.3) and an elementary integral identity in the form [2] :

21) K= ﬁ /0 Te e tar (minfR(n), Rw)} > 0)),

we can easily derive the following integral representation of the Chan-
Chyan-Srivastava polynomials:

g’r(laly.u,ar)(xl, . 737’(‘) — F ar / / §1+ +§r

(2.2) R ey ) (Y PR e/ SRR/
where .
’Pn(xly . 7-'57") — (371 + . .‘—i- .’L'r)
n!
‘ n! ki, ...k, )1 T
k1,,kr€Ng

in terms of the multinomial coefficients given by

n n!
(kl,“',kr> kil k! (n,k1,---, kr € Np)

Alternatively, the multinomial theorem (see, for example, [15, p. 87,
Problem 5]) used in (2.3) can indeed be restated as follows:

T n—ki n—ky—-—kr_2 n n— ki
e = S5 T8 (@)

k1=0 k2=0 k-_1=0

n_kl_“'_kr—2
kr—l

B
(2.4) sy et ghe g
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It is immediately seen from the integral representation (2.2) that [see
Eq. (1.4)]

) (g ) = Z ( ™ +k:ki1 -1 > ( ar +l<:]? -1 ) otk

k1,,kr€Np
(k1+"'+kr:n)
_ 3 ”iﬂ ”"“ﬁf’“-? (@) g ooy 1 (02 (00,
- [y S Tkl 1
W0 =0 W (" Ty |y oY B
n—ki——kr_1_k yp_
(2.5) - T lagtex

which follows also from the second explicit expression in (1.4).

We now define the umbral quantities (a121), - - -, (a,2,) together with
their properties given by (see, for details, [5] ; see also [14])

()" = (aj)n ]  (j=1,---,7; n € Ny)

and the pairs of operators Xj and ij (j =1,---,r) such that

X {laja)"} = (aga;)™ and Py {{oy;)"} = n (o)

so that, obviously,
X;Py {{ojz)"} = n{oyz)"  and Py X {(ajz;)"} = (n+1) {oyz;)"

G=1,m)

We thus find that the Chan-Chyan-Srivastava polynomials

gy(Lal""’aT)(xl, -+, x,) satisfy the following operational formula:

(Xle +oeee 4 erm_) {ggalmar)(zl’ . 73;7,)}

(2.6) = ngﬁlal""’ar)(xl, Ce Ty )y
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which, in the special case when
r=2, a=a aq=0, x1==2 and To =1,

would provide the corrected version of a result stated by Dattoli et al. [6,
p. 182, Eq. (10)].

It is also clear that the umbral image of the generating function (1.3)
is given by

2.7) ellan)ttlarer)le = S gloanenan) (g o g)2m,
n=0

In our next section (Section 3), we will show that the above notion and
formalism of monoumbrality (that is, monomiality together with umbrality)
can be extended to a large family of polynomials as well as of functions
and that this principle of monoumbrality will provide a powerful tool for
simplifying calculations (see also [5], [6] and [7]).

3. Applications of the Principle of Monoumbrality

In the preceding section, we have noted that the umbral image of the gen-
erating function (1.3) of the Chan-Chyan-Srivastava polynomials

g,(ﬁ““"“r)(xl,---,xr) is, in fact, of the exponential type given by (2.7).
Here, in this section, we begin by recalling the following easily understand-

able decomposition rules for the umbral algebra (see [5], [6] and [7]):

(31) e<0¢1l‘1>+-~~+<arxr> = e<a1z1> ce e<a7’x7‘>’
and
(3.2) ella(@rttaen)l £ gloar) . lawr)

that is, more explicitly,

o k1 0 Ky
(33)  ellotmitail o (Z (), %) (Z (), Z!) .

k1=0 k=

We also note that

6<0119€1>Z _ e(alxl)eru-Jr(aTzr)z . 6(7&2{172)2 . 6(7017«957«)2

(3.4) _ cllaazn)+otlamn)]z | l(—azwe)+t(—apa,)]z
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By applying this last umbral relationship (3.4) in conjunction with
(2.5) and (2.7), we find that

> (a1)n

n=0

(Z gleren) (g ,:Br)zn>
[ee)

n=0

(35) — Z Z g(a17 “ wl; , L )gfl__a% o ar)(;UQ) e 7%‘7‘)7
n=0

so that, upon equating the coefficients of z™ from both sides in (3.5), we
finally obtain

1 n n—kp n—ky—-—kr_2 n n—kl
- 25 () (1)

<C¥1)n k1=0 k2=0 kr—1=0

n_k;l_'”_kr—2
kr—l

ge O @y ) (—agw) TR TR (—agag)? o (—ana)
(3.6)
where, just as in the preceding section,
ey MN—ag+n—Fky—-—kr—1) nekj——
o n—ki kr_1 _ 2 1 r—1 n—=ki kr_1
< 052$2> F(—O{g) Lo
k1—-—kp_
(3.7) = (—02)n—ky by Ty '
and
. D(—aj +kj—1) & kj .
kj— 1

(—oyz;)™ ! = —I‘(j—aj)J z;’ t= (_O‘J')k:j,l x;’ ! (j=3,---,7).
(3.8)

Formula (3.6) provides the expansion of an ordinary monomial z' in
terms of the Chan-Chyan-Srivastava polynomials

(a17 Qo

9n )(mla'”vxT)

involving such umbral quantities as those specified in (3.7) and (3.8).
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Next, for Erkusg-Srivastava polynomials L{( o o )(xl, -+-,x,) gener-
ated by (1.7), it is easily seen that

U )
o ) )
(39) - Z un(il];gl,?tr’(r (xla e a:UT) uk(fglllli: (1:17 e 7x7‘)a
k=0
which, for /; =1 (j =1,---,r), was given by Chan et al. [3, p. 147, Eq.

(35)]. Moreover, the generatlng function (1.7) together with the integral
formula (2.1) would yield the following analogue of the integral representa-
tion (2.2):

u(a1+517"'7ar+5r)

n;[17...7£T (x]_7 e ,x'r) — F aT / / £1+ +5r

(3'10) al L. frr IQn(l‘lfla"'aSUT&“) dgl dfm

where the polynomials Q, (1, --,x,) are essentially the same as the mul-
tivariable Hermite-Kampé de Fériet polynomials given by

. n k Ky
(311) Qn(mla‘”aw?") *m Z <k17...7]{;>x11“.$7”

k1, kr€Ng
(fllir“'JrErk?r:n)

in terms of the multinomial coefficients involved also in (2.3).
If we now make use of the principle of monoumbrality as detailed
above, we can show similarly that

lin
n! (a1,e-00)
] = (1) Z Z u/fl;lflf",fr (@1, 27)
" k1=0 k2, kr€No

(boko+++Lrkr=Lin—F1)

<_0‘2$2>k2 <_0‘rxr>kr
ko! k! ’

(3.12)
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which, in the special case when ¢; =1 (j = 1,---,r), the monoumbral
expansion given by (3.6). Moreover, if we simply assume that ¢, = 1, we
can easily rewrite the monoumbral expansion (3.12) as follows:

[élnfh} |:£1”_k1_42162_"'_[7'72]“7'72:|
n' lin 2 L1
Un =0 ke=0 ker—1=0
(313) : u]gilgi;:ff)}r)ihl(mla T 7'1"7‘)
<_a2$2>€1n_k1_Z2k2_"'_£r71kr71 (—0431‘3>k2 <—Oér$r>kpl
'(Em—kzl —Ezk‘g — —&,11@«,1)! k‘z' k/‘r,ﬂ
or, equivalently,
‘ ‘i [fl’gkl} [@w*h*fzkethl“*frfzkrfz]
n n!
" k=0 ko=0 k-_1=0
U a)
kl'(ggkg)' s (Er—lkr—l)! Eln Zln — kl
kol - k._q! k1 O ko
(bl =k —laky — - — Lok o
erflkrfl

(314) . <_a2x2>€1n—k1—Egkg—--~—€7_71k771 <—043i173>k2 . <_O[T$T>kr71

in terms of the notations and conventions given by (3.7) and (3.8). Indeed,
when we further set £; =1 (j =1,---,r — 1), this last result (3.14) would
correspond precisely to the monoumbral expansion (3.6).

Finally, upon setting ¢/; = j (j = 1,---,r) in our general result
(3.12), we are led at once to the following monoumbral expansion for the
multivariable Lagrange-Hermite polynomials hﬁ?lﬁ""a”(ml, .o, ,) in (1.6),
which were studied by (for example) Altin and Erkus [1] :

n! L
] = ) Z Z hl(c(fl’ 7ar)(3717 SRREY)
" k=0

(a1
ko, kr€No
(2k2+~~+'f‘]€r=n71{31)
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) <_O‘2332>k2 <_O‘T$T>kT

(3.15) o] R ol

4. Concluding Remarks and Observations

In this work, we have investigated the umbral calculus presentations of
the Chan-Chyan-Srivastava polynomials g,(ﬁ“”"’"‘)(xl, -+, z,) generated by

(1.3) and also of the substantially more general Erkus-Srivastava polynomi-

als L{q(f}llcg:) (1, -+, z) generated by (1.7). One of our main monoumbral
expansions asserted by (3.12) has been shown to yield the corresponding
monoumbral expansion (3.15) for the multivariable Lagrange-Hermite poly-
nomials hEﬁl’“"“"‘)(xl, -+, 2y) in (1.6), which were studied by (for example)
Altin and Erkus [1].

We need hardly emphasize upon the fact that the notion and formalism
of monoumbrality can be extended to a large family of polynomials as well
as of functions and that the underlying principle of monoumbrality would
provide a powerful tool for simplifying calculations.

We conclude our present investigation by remarking further that, in

the special case when ¢; = 1, we find from (1.8) that

U )= Y (e fara)*

k! k!
k1,-,kr€No "
(k1+-Ll2ka+---+Lrkr=n)

l2k2+...+lrkrfn Ok ok 5
= Z T (o) (aowg) . (aray

(n—loky — - — bky)l kol Kyl

o] (] i

k1=0  ko=0 kr—1=0

(1) (am)" B )t o)
' (TL - Egkl — = E,«k‘,«_l)! ]{1' k‘r_ll ’
which readily yields the following generalization of the operational formula

(2.6):

)

k2,...,kr=0

(lexl + Z2X2px2 +---+ ETXTP:ET) {u(?ﬁ%g:a:ﬂz« (xlv e awr)}

n
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(42) = nur(flly’[;;’.(.)irg)r (xla e 7377")‘

In particular, if we set £; =3 (j =2,---,) in this last result (4.2), we
immediately obtain

(lel’l + QXQPQ;Q + -+ T‘era;r) {h%al’m’a’“)(xl, e ,at,n)}

(4.3) _ nh,glal""’ar)(l'ly . 751:7")

for the multivariable Lagrange-Hermite polynomials hﬁ?l"”"‘”(:fsl, )
in (1.6), which were studied by (for example) Altin and Erkus [1]. Indeed,
in its further special case when

r=2, ag=a, aq=p§8 x1==1 and To =1,

the operational formula (4.3) would provide the corrected version of another
result stated by Dattoli et al. [6, p. 184, Eq. (22)].
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