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Universidad Católica del Norte
Antofagasta - Chile

Abstract

The computation of the field of moduli of a given closed Riemann
surface is in general a very difficult task. In this note we consider the
family of closed Riemann surfaces of genus three admitting the sym-
metric group in four letters as a group of conformal automorphisms
and we provide the computations of the corresponding field of moduli.
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1. Introduction

There is a natural one to one correspondence between birational isomor-
phism classes of non-singular irreducible projective complex algebraic curves
and conformal classes of closed Riemann surfaces. If C1 and C2 are non-
singular complex irreducible projective algebraic curves, we denote by the
symbol C1 ∼= C2 to indicate that they are birationally equivalent (that is,
the corresponding closed Riemann surfaces are conformally equivalent). We
denote by Gal(C/Q) the group of field automorphisms of C and, if K is
a subfield of C, then we denote by Gal(C/K) the subgroup of Gal(C/Q)
formed by those elements acting as the identity on K. It is known that the
fixed subfield of Gal(C/K) stillK (since C is algebraically closed of charac-
teristic zero). If P ∈ C[x0, ..., xn] is any polynomial and if σ ∈ Gal(C/Q),
then P σ ∈ C[x0, ..., xn] will denote the polynomial obtained by applying σ
to each of the coefficients of P .

Let C ⊂ Pn be a non-singular irreducible projective complex algebraic
curve, say defined by the homogeneous polynomials P1, ..., Pr ∈ C[x0, ..., xn].
If σ ∈ Gal(C/Q), then the polynomials P σ

1 , ..., P
σ
r define a new non-singular

irreducible projective complex algebraic curve Cσ. The field of moduli of C,
denoted byM(C), is the fixed subfield of the group GC = {σ ∈ Gal(C/Q) :
Cσ ∼= C}. Notice from the definition that if C ∼= bC and σ ∈ Gal(C/Q)
then Cσ ∼= bCσ; in particular GC = GbC . In this way, if S is a closed Rie-
mann surface and C is any non-singular irreducible projective algebraic
curve defining S, then we may set GS = GC and define the field of moduli
of S asM(S) =M(C).

A field of definition of a closed Riemann surface S is a subfield K
of C for which it is possible to find a non-singular irreducible projective
complex algebraic curve C, whose Riemann surface structure is conformally
equivalent to S, defined by homogeneous polynomials with coefficients in
K; it is said that S is definable over K. If the closed Riemann surface S is
definable over K, say by the algebraic curve C, and σ ∈ Gal(C/K), then
Cσ = C; so it follows that M(S) < K, that is, every field of definition of
S contains its field of moduli. By results of Koizumi [13] it is also known
that M(S) is equal to the intersection of all the fields of definition of S
and, by results of Hammer-Herrlich [8], S is always definable over a finite
extension of its field of moduli.

If the genus of S is zero, then S is conformally equivalent to the Riemann
sphere bC; so it can be defined over its field of moduli Q. If S has genus one,
then it can be described by a curve of the form (Legendre normal form)
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Eλ : y
2 = x(x−1)(x−λ), where λ ∈ C−{0, 1}. A direct consequence of the

fact that any two conformal automorphisms of order two with fixed points
(necessarily four fixed points) of Eλ are conjugate in the group of conformal
automorphisms, is that the field of moduli of Eλ is Q(j(λ)), where j is the
classical j-function. It is also known that Eλ can be defined over Q(j(λ))
[17, Chapter III, Prop. 1.4].

Let us assume, from now on, that S has genus at least two and let
Aut(S) be its full group of conformal automorphisms. It is a well known
fact that |Aut(S)| ≤ 84(g − 1) (Hurwitz’s bound) [11]. In this case,M(S)
is not in general a field of definition of S, as it is shown by explicit examples
provided by Earle [4] and Shimura [16] in the case of hyperelliptic case and
by the author [9] in the non-hyperelliptic case. Sufficient conditions for S
to be definable over its field of moduli are given by Weil’s Galois descent
theorem [19]. If Aut(S) is trivial, then (as a direct consequence of Weil’s
Galois descent theorem) S can be defined over its field of moduli. Unfor-
tunately, Weil’s conditions are in general very difficult to check if Aut(S)
is non-trivial. But, in the particular case that S/Aut(S) has signature of
the form (0; a, b, c) (one says that S is quasiplatonic), Wolfart [21] proved
that S can be defined over its field of moduli (which is a number field by
Belyi’s theorem [1]). The computation of the field of moduli of S is in gen-
eral a difficult task. Moreover, if we have computed explicitly the field of
moduli, to determine if S can be defined over it is also a difficult problem
(except for some simple cases). Even, if we already have explicitly the field
of moduli and we know that the surface can be defined over it, it is a very
hard problem to compute an algebraic curve defined over it that represents
the surface.

In this paper we work out the family of closed Riemann surfaces of
genus three admitting the symmetric group in four letters S4 as a group of
conformal automorphisms. It is well known that, up to conformal equiv-
alence, there is only one such hyperelliptic surface; which is described by
the hyperelliptic curve C : y2 = x8 + 14x4 + 1; so it is already defined
over its field of moduli Q. In the non-hyperelliptic case, there are ex-
actly two conformal classes for which the full group of conformal automor-
phisms is bigger than S4: Fermat’s curve F : x

4 + y4 + z4 = 0 and Klein’s
curve K : x3y + y3z + z3x = 0. It is well known that |Aut(F )| = 96 and
that |Aut(K)| = 168 and that F/Aut(F ) has signature (0; 2, 4, 8) and that
K/Aut(K) has signature (0; 2, 3, 7). Again, these quasiplatonic surfaces are
defined over their field of moduli Q. In [15] there is provided a pencil of
non-singular quartic curves Cλ, where λ ∈ P = C− {−2,−1, 2}, called the
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KFT family. Each non-hyperelliptic Riemann surface of genus three admit-
ting S4 as a group of conformal automorphisms is represented by a quartic
in the KFT family and, conversely, every member of the KFT family is
of such type of Riemann surfaces. For three especial values of λ ∈ P the
quartics correspond to Klein’s quartic and Fermat’s quartic. For the rest of
the parameters, they correspond to closed Riemann surfaces of genus three
with full group of automorphisms isomorphic to S4; the quotient orbifold
of signature (0; 2, 2, 2, 3). In Section 2 we will compute the field of moduli
of each memeber of the KFT family and will notice that the quartics pro-
vided in the KFT family, with the exception of Klein’s quartic, are already
defined over them.

Recently, we have noticed the paper [6] on which the KFT family (and
also other families of genus three curves) has been considered and their
results may also be used to compute the corresponding fields of moduli.

2. The field of moduli of the KFT Family

In this section we consider the family of closed Riemann surfaces of genus
three admitting the symmetric group S4 as a group of conformal automor-
phisms and we provide the field of moduli of these surfaces and explicit
equations in these fields.

2.1. The hyperelliptic case

As the hyperelliptic involution is in the center of the group of conformal
automorphisms of a hyperelliptic Riemann surface, it is not difficult to see
that there is exactly one, up to biholomorphisms, hyperelliptic Riemann
surface S0 of genus 3 with a group of conformal automorphisms isomorphic
to S4. If we quotient S0 by the hyperelliptic involution, then we obtain
that the 8 cone points of order 2 should be invariant under the action of
a group of Möbius transformations isomorphic to S4. This permits to see
that Aut(S0) = S4 ⊕ Z/2Z and that S0/Aut(S0) has signature (0; 2, 4, 6).
Using the above information, one can see that S0 can be represented by the
algebraic curve C : y2 = x8 + 14x4 + 1, that is, S0 can be defined over Q.

2.2. The non-hyperelliptic case

A well known fact is the topological rigidity property on the action of the
group S4 as group of conformal automorphisms of closed non-hyperelliptic
Riemann surfaces of genus g = 3.
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Theorem 1 (Broughton 2). If (S,H) and (R,K) are so that S and R
are non-hyperelliptic Riemann surfaces of genus 3 and H ∼= K ∼= S4 are
respective group of conformal automorphisms, then there is an orientation
preserving homeomorphism between the surfaces conjugating the groups.

In Section 3 we provide a simple proof, based on Fuchsian groups, of
Theorem 1 as a matter of completeness.

Remark 2. The hyperelliptic Riemann surface C : y2 = x8 + 14x4 + 1
admits two different subgroups H1 and H2 inside Aut(C) with Hj

∼= S4 so
that C/H1 has signature (0; 2, 4, 6) and C/H2 has signature (0; 2, 2, 2, 3).
If (S,H) is so that S is non-hyperelliptic Riemann surface and S4 ∼= H <
Aut(S), then there is a an orientation preserving homeomorphism f : S →
C so that H2 = fHf−1. A description of these Riemann surfaces, from the
point of view of Schottky uniformizations, can be found in [10].

Let S be a non-hyperelliptic closed Riemann surface of genus g = 3
and let S4 ∼= H < Aut(S). As a consequence of the Riemann-Hurwitz
formula [5], the orbifold S/H has signature (0; 2, 2, 2, 3). It follows that
the locus, in the moduli space of genus three Riemann surfaces, of the
classes of Riemann surfaces admitting the non-hyperelliptic action of S4 is
one-complex dimensional.

As a consequence of Singerman’s list [18] of maximal Fuchsian groups,
one has that either Aut(S) = H or S/Aut(S) has signature of the form
(0; a, b, c).

If S/Aut(S) has signature of the form (0; a, b, c), then S is quasiplatonic
and so it can be defined over its field of moduli [21]. The set of these
quasiplatonic surfaces form a finite subset up to conformal equivalence.
Apart from the hyperelliptic case, there are only other two such Riemann
surfaces; Fermat’s curve F : x4 + y4 + z4 = 0 and Klein’s curve K : x3y +
y3z + z3x = 0. It is well known that |Aut(F )| = 96 and that |Aut(K)| =
168 and that F/Aut(F ) has signature (0; 2, 4, 8) and that K/Aut(K) has
signature (0; 2, 3, 7). All of these quasiplatonic surfaces are defined over
their field of moduli, that is, over Q. If Aut(S) = H, the generic situation,
then we will see that S can be defined over its field of moduli and we will
in fact compute it.

2.2.1. The KFT family

It is well known that the canonical embedding of a non-hyperelliptic Rie-
mann surface of genus 3 is a non-singular projective algebraic curves of
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degree 4 (a quartic) in the complex projective plane P2. A description of
such quartics for the family of non-hyperelliptic Riemann surfaces of genus
3 admitting S4 as group of conformal automorphisms has been done in [15];
called the KFT family. A study of such a family from the point of view of
idempotents has been done in [7]. This family has been studied in [3, 14,
20]. The quartics in the KFT family are of the form [15]

Cλ =
n
x4 + y4 + z4 + λ(x2y2 + y2z2 + z2x2) = 0

o
⊂ P2,

where λ ∈ P = C − {−2,−1, 2}. The curves Cλ, where λ ∈ {±2,−1} are
singular quartics.

The group H ∼= S4, for each member of of the KFT family, is generated
by the transformations

A([x : y : z]) = [y : −x : −z], B([x : y : z]) = [x : z : y].

As a consequence of Theorem 1, every non-hyperelliptic Riemann sur-
face of genus 3 admitting a group of conformal automorphisms isomorphic
to S4 is represented by one of the curves in the KFT family. Conversely, ev-
ery curve Cλ, with λ ∈ P, is a closed Riemann surface of genus 3 admitting
the group H as a group of conformal automorphisms.

Remark 3. The quartic C0 corresponds to Fermat’s curve x
4+y4+z4 = 0,

for which |Aut(C0)| = 96 and C0/Aut(C0) has signature (0; 2, 3, 8). The
quartics C3α ∼= C3α, where α = (−1+i

√
7)/2, correspond to Klein’s quartic

and C3α/Aut(C3α) has signature (0; 2, 3, 7). An extra automorphism of
order 7 of this quartic is given by C([x : y : z]) = [−x+ y + αz : α(x+ y) :
−x+ y − αz].

As for each σ ∈ Gal(C/Q) one has that Cσ
λ = Cσ(λ), it follows that the

orbits under the action of Gal(C/Q) of such a family are given as:

1. the orbit of Cπ (containing exactly all curves of the form Cλ, where
λ is transcendental); and

2. the orbits of the curves Cλ1 ,. . . , Cλn ,. . . , where λ1, . . . , λn, . . . ∈ Q is
a maximal collection of algebraic numbers non-equivalent under the
absolute Galois group Gal(Q/Q)

2.2.2. Equivalence of curves

In order to find explicitly the field of moduliM(Cλ), we first need to provide
conditions on λ1 and λ2 for Cλ1 and Cλ2 to be conformally equivalent.
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Let G = hη(z) = z/(z − 1)i ∼= Z2 and let F (z) = z2/(z − 1). The map
F is a regular branched cover with G as Deck group.

As λ ∈ P, we have that λ2 − λ − 2 6= 0. In this way, for each simply-
connected subset D of P we may choose one of the branchs of

√
λ2 − λ− 2

to get an analytic map f(λ) =
√
λ2 − λ− 2 defined over D.

Let us fix λ ∈ P and let us consider the map Q : Cλ → bC defined as

Q([x : y : z]) =
x2y2z2

(x2 + y2 + z2)3
.

As the polynomials x2y2z2 and x2 + y2 + z2 are invariant under A and
B, we obtain that Q ◦ A = Q = Q ◦ B. It follows from Bezout’s theorem
that Q has degree 24. In particular, Q : Cλ → bC is a regular branched
cover with H as Deck group of cover transformations.

If we fix one of the two values of
√
λ2 − λ− 2, then the branch values of

Q are given by the points ∞ (of order 3), 0 (of order 2) and the following
two points (each of order 2)

l1(λ) =
(2 + λ)

³
λ+
√
λ2 − λ− 2

´2
³
2− λ− 2

√
λ2 − λ− 2

´3

l2(λ) =
(2 + λ)

³
λ−
√
λ2 − λ− 2

´2
³
2− λ+ 2

√
λ2 − λ− 2

´3
Notice that the branch value 0 is the projection under Q of the fixed

points of the conjugates of A2 and that the branch values l1(λ) and l2(λ) are
the projections of the fixed points of those elements of order two conjugate
to B.

Let us consider the Möbius transformation Tλ so that Tλ(0) = 0, Tλ(l1(λ)) =
∞ and Tλ(l2(λ)) = 1, that is,

Tλ(z) =

µ
l2(λ)− l1(λ)

l2(λ)

¶
z

z − l1(λ)
.

The map πλ = Tλ ◦Q defines a regular branched cover with H as Deck
group of cover transformations whose branch values of order 2 are ∞, 0
and 1 and the one of order 3 is

µ(λ) =
4(2 + λ)2

³√
λ2 − λ− 2

´3
³
λ−
√
λ2 − λ− 2

´2 ³
λ− 2 + 2

√
λ2 − λ− 2

´3 ∈ C− {0, 1}.
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Remark 4. If we change to the other value of
√
λ2 − λ− 2 the roles of

l1(λ) and l2(λ) get interchanged. In this case, the Möbius transformation
that fixes 0 and sends l1(λ) to ∞ and l2(λ)) to 1 is given by

bT (z) = η(Tλ(z)) =

µ
l1(λ)− l2(λ)

l1(λ)

¶
z

z − l2(λ)

and the branch values of the cover map bT ◦Qλ : Cλ → bC are ∞, 0 and 1
(of order 2) and the one of order 3 is η(µ(λ)) = µ(λ)/(µ(λ) − 1). In this
way, to each λ ∈ P we have associated the two values µ(λ) and η(µ(λ))
depending on the choice of

√
λ2 − λ− 2. Let us also notice that

µ(λ) + η(µ(λ)) = µ(λ)2/(µ(λ)− 1) = F (µ(λ)) = G(λ) =
16(1 + λ)3

27(2 + λ)

is well defined over all P.

Let P0 be the subset of P consisting of those values for which Aut(Cλ) 6=
H. Then P0 is a set of isolated points. Notice that if Cλ1

∼= Cλ2 , then
λ1 ∈ P0 if and only if λ2 ∈ P0. Parts (1) and (3) of the next result was also
obtained, by a different method, in [6].

Theorem 5.

1. If λ1, λ2 ∈ P − P0, then Cλ1 and Cλ2 are conformally equivalent if
and only if λ1 = λ2.

2. If λ1, λ2 ∈ P − P0, then Cλ1 and Cλ2 are anticonformally equivalent
if and only if λ1 = λ2.

3. P0 = {0, 3(−1± i
√
7)/2}. The curves C3(−1−i√7)/2 and C3(−1+i

√
7)/2

are equivalent to Klein’s curve and the curve C0 is Fermat’s curve.

Proof. Given any two points λ1, λ2 ∈ P, we may consider a simply
connected domain D ⊂ P containing the points λ1 and λ2. Once this is
done, we make a choice for a analytic branch of

√
λ2 − λ− 2 in D. Using

such a choice, we have fixed the choices of πλ(z) and of µ(λ) for λ ∈ D
(both are analytic on the parameter λ ∈ D).



Computing the Field of Moduli of the KFT family 69

Case(1)

We assume λ1, λ2 ∈ D−P0. If Cλ1
∼= Cλ2 , then there is a conformal home-

omorphism f : Cλ1 → Cλ2 . As Aut(Cλ1) = H = Aut(Cλ2), it follows that
there is a Möbius transformation M so that πλ2 ◦ f =M ◦ πλ1 . Moreover,
M(0) = 0, M(µ(λ1)) = µ(λ2) and M({1,∞}) = {1,∞)}. It follows that
either M(z) = z (in which case µ(λ2) = µ(λ1)) or M(z) = η(z) (in which
case µ(λ2) = η(µ(λ1))). We have obtained that necessarily G(λ1) = G(λ2).
In this way, we obtain that

λ2 ∈

⎧⎨⎩λ1,−
⎛⎝6 + 5λ1 + λ21 − (1 + λ1)

q
λ21 − 4

2(2 + λ1)

⎞⎠ ,

−

⎛⎝6 + 5λ1 + λ21 + (1 + λ1)
q
λ21 − 4

2(2 + λ1)

⎞⎠
Notice that if λ1 = −5/2, then λ2 = λ1 as λ2 6= −1. We assume now

on that λ1 6= −5/2.
Let us consider the Riemann orbifolds Oj = Cλj/hABi which has signa-

ture (1; 3, 3). It was obtained in [15] that the j-invariant of the underlying
Riemann surface structure Tj of Oj is

j3(λ) =
(16λ2 + 48λ+ 33)3

108(1 + λ)(2 + λ)

Similarly, we may consider the orbifolds (all of them of genus one)
obtained by quotient Cλj by the cyclic groups hAi, hBi and hA2i. The
corresponding j-invariantes are

j4(λ) =
(λ2 + 18λ+ 33)3

108(1 + λ)4(2 + λ)

j2(λ) =
−(λ2 − 12λ− 12)3
108(1 + λ)(2 + λ)4

j2,2(λ) =
4(λ2 + 3λ+ 3)3

27(1 + λ)2(2 + λ)2

Next we make a comparison of j2, j3, j4, j2,2 for the three above possible
values for λ2 and those for λ1 (this can be done with any computational
software) and we obtain that the only possibility is λ2 = λ1 (as λ1 6= −5/2)
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Case(2)

The anticonformal situation is worked in a similar fashion as the previous
case.

Case (3)

Now we assume that λ1, λ2 ∈ D ∩ P0. We know that Cλ1 is conformally
equivalent to either Klein’s curve (which is given by λ = 3(−1 + i

√
7)/2

[15]) or Fermat’s curve (given with λ = 0). As each of them can be defined
over R, each of them is conformally equivalent to their conjugates, that is,
Cλj
∼= Cλj

, for j = 1, 2.

If Cλ1
∼= Cλ2 , then there exist sequences λ1,n, λ2,n ∈ D − P0 so that

λ1,n → λ1 and λ2,n → λ2 as n → +∞ and so that Cλ1,n
∼= Cλ2,n . By the

previous case, we have that λ2,n = λ1,n. It follows that λ2 = λ1. 2

It follows from Theorem 5 that the locus in M3 (the moduli space
of genus 3) of the classes of non-hyperelliptic Riemann surfaces admitting
S4 as a group of conformal automorphisms is given by the set P after
identification of the points 3(−1−i

√
7)/2 with its conjugate 3(−1+i

√
7)/2.

Corollary 6. The normalization of the locus in moduli space of genus 3
consisting of classes of non-hyperelliptic Riemann surfaces admitting the
symmetric group S4 as group of conformal automorphisms is isomorphic
to the P = C− {−2,−1, 2}. The puncture corresponding to the point −2
corresponds to the hyperelliptic curve admitting S4 as a group of conformal
automorphisms.

2.2.3. Fields of moduli

The following result states that, except for the Klein curve, the KFT family
provides equations on the corresponding field of moduli.

Corollary 7.

1. If λ ∈ P − P0, thenM(Cλ) = Q(λ).

2. If λ ∈ P0, thenM(Cλ) = Q.
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Proof. If λ ∈ P0, then Cλ is either Klein’s curve or Fermat’s curve, both
of them can be defined over Q.

Let λ ∈ P −P0. If σ ∈ Gal(C/Q), then, as Cσ
λ = Cσ(λ), it follows from

Theorem 5 that Cσ
λ
∼= Cλ if and only if σ(λ) = λ. 2

3. Fuchsian uniformization of the KFT family

For each λ1 ∈ P there are three values for λ ∈ P so that G(λ) = G(λ1);
one of them being clearly λ1 and the others two are given by

λ2 = −

⎛⎝6 + 5λ1 + λ21 − (1 + λ1)
q
λ21 − 4

2(2 + λ1)

⎞⎠

λ3 = −

⎛⎝6 + 5λ1 + λ21 + (1 + λ1)
q
λ21 − 4

2(2 + λ1)

⎞⎠ .

We have that in P there is no solution for λ1 = λ3 or for λ2 = λ3
and there is exactly one solution for λ1 = λ2, this being for λ1 = −5/2.
Notice that in this case λ3 = 2 /∈ P corresponds to the hyperelliptic curve
admitting S4 as a group of conformal automorphisms.

The curves Cλ1 , Cλ2 and Cλ3 can also be seen as follows from a Fuchsian
uniformization’s point of view. Let us consider the orbifold of signature
(0; 2, 2, 2, 3) whose cone points of order 2 are given by∞, 0, 1 and the cone
point of order 3 is µ(λ1) = µ1 (once we have fixed a value for

√
λ2 − λ− 2).

Let us consider a Fuchsian group

Γ = hx1, x2, x3 : x21 = x22 = x23 = (x1x2x3)
3 = 1i

acting on the unit disc D and a universal branched cover P : D→ bC with
Γ as Deck group of covering transformations so that the fixed point of x3
projects by P to 0, the fixed point of x1 projects to ∞ and the fixed point
of x2 projects to 1. The fixed point of x1x2x3 projects to µ1.

As a consequence of results due to L. Keen [12] there is a fundamental
domain for Γ given by a suitable hyperbolic triangle ∆1, say with sides s11,
s12 and s13 counted in counterclockwise order, so that xj is an involution
with fixed point at the middle side of s1j .

In order to find the torsion free normal subgroups F of Γ so that Γ/F ∼=
S4, up to inner conjugation in Γ, we only need to find all possible different
surjective homomorphisms Θ : Γ→ S4 with torsion free kernel up to post-
composition with automorphisms of S4.
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Since S4 = hA,B : A4 = B2 = (BA)3 = 1i, up to post-composition by
a suitable automorphism of S4, we may assume that Θ(x1x2x3) = (BA)

−1

and Θ(x3) = A2. As there is no non-trivial automorphism of S4 that fixes
A2 and BA, we have that we cannot post-compose with other non-trivial
automorphisms of S4 without destroying the above choices.

Now, in order for the kernel of Θ to be torsion free, we need to have
that Θ(x1) and Θ(x2) are order two elements of S4 so that Θ(x1)Θ(x2) =
A−1BA2.

By direct inspection one obtains that the only possible choices are given
by:

1. Θ(x1) = B, Θ(x2) = ABA−1;

2. Θ(x1) = ABA−1, Θ(x2) = (BA)B(BA)−1;

3. Θ(x1) = (BA)B(BA)
−1, Θ(x2) = B.

Each of the above three choices provides a Fuchsian group F as desired
(they can be computed with GAP). These three Fuchsian groups provide
the uniformization of Cλ1 , Cλ2 and Cλ3 .

If we consider the elements y1 = x2, y2 = (x1x2x3)
−1x1(x1x2x3) and

y3 = x3, then we have the relations y
2
1 = y22 = y23 = (y1y2y3)

3 = 1 and that
Γ = hy1, y2, y3i.

Again, by the results in [12], there is another fundamental domain for
Γ given by a suitable hyperbolic triangle ∆2, say with sides s21, s22 and
s23 counted in counterclockwise order, so that yj is an involution with
fixed point at the middle side of s2j . This permits to see that there is an
orientation preserving self-homeomorphism h1 : : D → D that h1 ◦ xj ◦
h−11 = yj , for each j = 1, 2, 3; in particular, h1 self-conjugates Γ into itself.
Next we observe that if Θ(x1) = B, Θ(x2) = ABA−1 and Θ(x3) = A2,
then Θ(y1) = ABA−1, Θ(y2) = (BA)B(BA)−1 and Θ(y3) = A2. In this
way, both Fuchsian groups obtained in (1) and (2) are conjugated by the
orientation preserving homeomorphism h1.

If we consider the elements z1 = x1x2x1, z2 = x1 and z3 = x3, then we
have the relations z21 = z22 = z23 = (z1z2z3)

3 = 1 and that Γ = hz1, z2, z3i.
Again, as a consequence of [12] a fundamental domain for Γ is given by
a suitable hyperbolic triangle ∆3, say with sides s31, s32 and s33 counted
in counterclockwise order, so that zj is an involution with fixed point at
the middle side of s3j . This permits to see that there is an orientation
preserving self-homeomorphism h2 : D → D that h2 ◦ xj ◦ h−12 = zj ,
for each j = 1, 2, 3; in particular, h2 self-conjugates Γ into itself. Next
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we observe that if Θ(x1) = B, Θ(x2) = ABA−1 and Θ(x3) = A2, then
Θ(y1) = (BA)B(BA)−1, Θ(y2) = B and Θ(y3) = A2. In this way, both
Fuchsian groups obtained in (1) and (3) are conjugated by the orientation
preserving homeomorphism h2.

All of the above also provides a proof of Theorem 1.

Remark 8. Let us denote the internal angles of the triangle ∆1 by θ1,
θ2 and θ3, so that θ1 is the angle between the sides s11 and s12, θ2 is the
angle between s12 and s13 and θ3 is the angle between s13 and s11. Clearly,
θ1 + θ2 + θ3 = 2π/3. In the particular case when θ1/2 = θ2 = θ3 = π/6,
there is a conformal automorphism U : D → D of order 4 with the same
fixed points as for x3 (so U

2 = x3). The image under U of the triangle ∆1
is a new triangle, say ∆4, whose sides, counted in counterclockwise order
are s41 = U(s12), s42 = U(s11) and s43 = s13. Let w1 = x2, w2 = x3x1x3
and w3 = x3. Then wj is an involution with a fixed point in the middle of
the side s4j .

If

(Θ(x1),Θ(x2),Θ(x3)) = (B,ABA
−1, A2),

then

(Θ(w1),Θ(w2),Θ(w3)) = (ABA
−1, A2BA2, A2),

so

(A−1Θ(w1)A,A
−1Θ(w2)A,A

−1Θ(w3)A) = (B,ABA
−1, A2).

If

(Θ(x1),Θ(x2),Θ(x3)) = (ABA
−1, (BA)B(BA)−1, A2),

then

(Θ(w1),Θ(w2),Θ(w3)) = ((BA)B(BA)
−1, A−1BA,A2),

so

(A2Θ(w1)A
2, A2Θ(w2)A

2, A2Θ(w3)A
2) = ((BA)B(BA)−1, ABA−1, A2).

As a consequence, this is the case corresponding to G(λ) = 4. The
curve C−5/2 is uniformized by any of the two Fuchsian groups appearing in
(2) and (3) and a hyperelliptic one is uniformized by the one appearing in
(1).
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