Proyecciones Journal of Mathematics
Vol. 33, ${ }^{o}$ 1, pp. 43-59, March 2014.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172014000100004

Hardy-Type Spaces and its Dual

René Erlín Castillo
Universidad Nacional de Colombia, Colombia and
Julio C. Ramos Fernández and Eduard Trousselot
Universidad de Oriente, Venezuela
Received: August 2012. Accepted: October 2013

Abstract

In this paper we defined a new Hardy-type spaces using atoms on homogeneous spaces which we call $H^{\varphi, q}$. Also we prove that under certain conditions $B M O_{\varphi}^{(p)}$ is the dual of $H^{\varphi, q}$.

Keywords : BMO, Dual space, Hardy space, Space of homogeneous type.

Subjclass [2010] : 32A37; 43A85.

1. Introduction

The Hardy space H^{p} were first studied on the unit disk in the complex plane. In their 1968 paper Duren, Romberg and Shield (see [4]) make the following definitions and comments about H^{p}. For $0<p \leq \infty, H^{p}$ is the linear space of functions $f(z)$ analytic in $|z|<1$ such that

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}, \quad 0<p<\infty
$$

or

$$
M_{\infty}(r, f)=\max _{0 \leq \theta<2 \pi}\left|f\left(r e^{i \theta}\right)\right|
$$

remains bounded as $r \rightarrow 1$. If $1 \leq p \leq \infty, H^{p}$ is a Banach space under the norm

$$
\|f\|_{p}=\lim _{r \rightarrow 1} M_{p}(r, f)
$$

For $0<p<1$, this is not a norm, but H^{p} is still a complete metric space with a translation invariant metric

$$
d(f, g)=\|f-g\|_{p}^{p}
$$

A linear functional φ on H^{p} is bounded $\left(\varphi \in\left(H^{p}\right)^{*}\right)$ if

$$
\|\varphi\|=\sup _{\|f\|_{p}=1}|\varphi(f)|<\infty
$$

It is easily verify that $\left(H^{p}\right)^{*}$ is a Banach space. Duren, Romberg and Shield (see [4]) were the first to study the linear space structure of the H^{p} space with $0<p<1$. These H^{p} spaces are not Banach spaces and are not locally convex.

They may be regarded as closed subspaces of L_{p} for $0<p<1$; however, it is interesting to note that although there are no continuous linear functionals on L_{p} for $0<p<1$, there are many on H^{p}. Duren, Romberg and Shield (see [4]) prove for $1 / 2<p<1$, that $\left(H^{p}\right)^{*}=\Lambda_{\alpha}$ the Lipschitz space of order $\alpha=\frac{1}{p}-1$. For $p \leq \frac{1}{2}$, the results are similar. Even though H^{p} is not locally convex, there are still enough linear functionals to distinguish elements. For example as noted in [4], $g(z)=(1-\xi z)^{-1}$ generates the functional $\varphi(f)=f(\xi)$.

Later, the study of H^{p} spaces was extended to $H^{p}\left(\mathbf{R}^{n}\right)$. The results were highly specialized to \mathbf{R}^{n} until Latter (see [5]), Coifman and Weiss (see [3]) defined $H^{p}\left(\mathbf{R}^{n}\right)$ using the notion of an atom and proved that the
atomic $H^{p}\left(\mathbf{R}^{n}\right)$ space were equivalent to the original $H^{p}\left(\mathbf{R}^{n}\right)$. Roughly speaking, an atom is a "building block" function which is supported on a ball, has zero integral and has a bounded average.

By thinking of the H^{p} spaces in terms of atoms Coifman and Weiss (see [2]) were able to prove that the dual of H^{p} is again a Lipschitz space of order $\alpha=\frac{1}{p}-1$ not only in \mathbf{R}^{n}, but on any homogeneous space \mathcal{X}. The H^{p} space for $0<p \leq 1$ on \mathbf{R}^{n} were first characterized in terms of atoms by Coifman (see [3]) and Latter (see [6]). Coifman and Weiss (see [2]) then used this characterization to define $H^{p}(\mathcal{X})$, where \mathcal{X} is a homogeneous space.

In this paper, we extend the work of Coifman and Weiss (see [3]) by defining new Hardy-type spaces using atoms on homogeneous space which we call $H^{\varphi, q}$. The main result of this paper is the following.

Theorem 1.1. Suppose φ and w are related by

$$
w^{-1}(t)=\frac{t}{\varphi\left(\frac{1}{t}\right)}
$$

or equivalent by

$$
\varphi(t)=\frac{1}{t w^{-1}\left(\frac{1}{t}\right)}
$$

Suppose also that $\frac{\varphi(t)}{t}$ is a decreasing function of t and that $\frac{\varphi(t)}{t^{\epsilon}}$ is an increasing function for some $0<\epsilon<1$. Let $1 \leq q<\infty$, and let p be conjugate of q. Then the dual of $H^{\varphi, q}$ is $B M O_{\varphi}^{p}$.

2. Atoms

We begin by defining atoms. The idea for the relationship between w and φ functions come from Janson's paper (see [5]). Throughout this paper, we will assume that the measure μ is a regular measure.

Definition 2.1. A measurable function a is said to be a (φ, q) atom if it satisfies:

1. The support of a is contained in a ball $B\left(x_{0}, r\right)$,
2. $\int a d \mu=0$,
3. $\left(\frac{1}{\mu(B)} \int_{B}|a|^{q} d \mu\right)^{\frac{1}{q}} \leq w^{-1}\left(\frac{1}{\mu(B)}\right)$,
where w and φ are related by

$$
w^{-1}(t)=\frac{1}{\varphi\left(\frac{1}{t}\right)} \quad \text { or } \quad \varphi(t)=\frac{1}{t w^{-1}\left(\frac{1}{t}\right)}
$$

Note that

$$
w^{-1}\left(\frac{1}{\mu(B)}\right)=\frac{1}{\mu(B) \varphi(\mu(B))}
$$

and that (3) can be written as

$$
\|a\|_{q} \leq \mu(B)\left(w^{-1}\left(\frac{1}{\mu(B)}\right)\right)^{q}
$$

where $B=B\left(x_{0}, r\right)$.

3. Spaces of Homogeneous type

Let us begin by recalling the notion of space of homogeneous type.
Definition 3.1. A quasimetric d on a set \mathcal{X} is a function $d: \mathcal{X} \times \mathcal{X} \rightarrow$ $[0, \infty)$ with the following properties:

1. $d(x, y)=0$ if and only if $x=y$.
2. $d(x, y)=d(y, x)$ for all $x, y \in \mathcal{X}$.
3. There exists a constant K such that

$$
d(x, y) \leq K[d(x, z)+d(z, y)]
$$

for all $x, y, z \in \mathcal{X}$.
A quasimetric defines a topology in which the balls

$$
B(x, r)=\{y \in \mathcal{X}: d(x, y)<r\}
$$

form a base. These balls may be not open in general; anyway, given a quasimetric d, is easy to construct an equivalent quasimetric d^{\prime} such that the d^{\prime}-quasimetric balls are open (the existence of d^{\prime} has been proved by using topological arguments in [7]). So we can assume that the quasimetric balls are open. A general method of constructing families $\{B(x, \delta)\}$ is in terms of a quasimetric.

Example 3.1. A space of homogeneous type (\mathcal{X}, d, μ) is a set \mathcal{X} with a quasimetric d and a Borel measure μ finite on bounded sets such that, for some absolute positive constant A the following doubling property holds

$$
\mu(B(x, 2 r)) \leq A \mu(B(x, r))
$$

for all $x \in \mathcal{X}$ and $r>0$.

Next, we are ready to give some example of a space of homogeneous type.

Example 3.2. Let $\mathcal{X} \subset \mathbf{R}^{n}, \mathcal{X}=\{0\} \cup\{x:|x|=1\}$, put in \mathcal{X} the euclidean distance and the following measure μ : μ is the usual surface measure on $\{x:|x|=1\}$ and $\mu(\{0\})=1$. Then μ is doubling so that (\mathcal{X}, d, μ) is a homogeneous space.

Example 3.3. In \mathbf{R}^{n}, let $C_{k}(k=1,2, \cdots)$ be the point $\left(k^{k}+1 / 2,0, \cdots, 0\right)$, for $k \geq 2$, let B_{k} be the ball $B\left(C_{k}, 1 / 2\right)$ and $B_{1}=B(0,1 / 2)$. Let $\mathcal{X}=$ $\cup_{k=1}^{\infty} B_{k}$ with the euclidean distance and the measure μ such that $\mu\left(B_{k}\right)=$ 2^{k} and on each ball B_{k}, μ is uniformly distributed.
Claim 1. μ satisfies the doubling condition. Let $B_{r}=B(P, r)$ with $P=$ $\left(P_{1}, \ldots, P_{n}\right)$ and $r>0$.
Case 1. Assume for some $k, B_{k} \subset B_{r}$ and let $k_{0}=\max \left\{k: B_{k} \subset B_{r}\right\}$. Then certainly $P_{1}+r \leq b_{k_{0}+1}=\left(k_{0}+1\right)^{k_{0}+1}+1$ and $\mu\left(B_{r}\right) \geq 2^{k_{0}}$. But, then

$$
\begin{aligned}
P_{1}+2 r & \leq 2\left(\left(k_{0}+1\right)^{k_{0}+1}+1\right) \\
& \leq\left(k_{0}+2\right)^{k_{0}+2}=a_{k_{0}+2}
\end{aligned}
$$

Therefore $B_{2 r} \subset B_{a_{k_{0}+2}}(0) \equiv B_{0}$. But

$$
\mu\left(B_{0}\right)=\sum_{k=0}^{k_{0}+1} 2^{k} \leq 2^{k_{0}+2} \leq 4 \mu\left(B_{r}\right)
$$

Hence the doubling condition holds with $A=4$.
Case 2. If for all $k, B_{k} B_{r}$, then $r<1$ so that B_{r} and $B_{2 r}$ intersect only on ball B_{k}. Then the doubling condition holds.

4. φ-Lipschitz space

We define the φ-Lipschitz space and denoted it by \mathcal{L}_{φ} to be the space for all measurable functions f on \mathcal{X} for which

$$
|f(x)-f(y)| \leq C \varphi(\mu(B)),
$$

where B is any ball containing both x and y and C is a constant depending only of f.

Let $\gamma(f)$ be the inf over all C for which the above inequality holds. Then if we define

$$
\|f\|_{\varphi}^{\mathcal{L}}=\left\{\begin{array}{lll}
\gamma(f) & \text { if } & \mu(\mathcal{X})=\infty \\
\gamma(f)+\int_{\mathcal{X}} f d \mu & \text { if } & \mu(\mathcal{X})=1
\end{array}\right.
$$

a straightforward argument shows that \mathcal{L}_{φ}, with this norm, is a Banach space. To simplify calculations, we assume that if $\mu(\mathcal{X})$ is finite, then $\mu(\mathcal{X})=1$. We now define $H^{\varphi, q}$ to be the subspace of $\left(\mathcal{L}_{\varphi}\right)^{*}$ consisting of those linear functionals admitting an atomic decomposition as follows:
$h \in H^{\varphi, q}$ if h can be written as a sum $h=\sum_{j \in N} \lambda_{j} a_{j}$, where a_{j} is a (φ, q) atom, and $\sum_{j \in N} w\left(\left|\lambda_{j}\right|\right)<\infty$. We denote by the symbol $\|h\|_{\varphi, q}$ the quantity (which is not, in general a norm)

$$
\|h\|_{\varphi, q}=\inf _{\text {alldescompof } f} w^{-1}\left(\sum_{j \in N} w\left(\left|\lambda_{j}\right|\right)\right)
$$

Example. If $\varphi(t)=t^{\frac{1}{p}-1}$, then $w(t)=t^{p}$ and $H^{\varphi, q}(\mathcal{X})=H^{p}(\mathcal{X})$.

5. Functions of Bounded (φ, p) mean Oscillation

In this section, we recall the definition of the space of functions of bounded (φ, p) mean oscillation, $B M O_{\varphi}^{(p)}(\mathcal{X})$, where \mathcal{X} is a space of homogeneous type. Let φ be a nonnegative function on $[0, \infty)$. A locally μ-integrable function $f: \mathcal{X} \rightarrow \mathbf{R}$ is said to belong to the class $B M O_{\varphi}^{(p)}(\mathcal{X}), 1 \leq p<\infty$, if

$$
\sup \left(\frac{1}{\mu(B)[\varphi(\mu(B))]^{p}} \int_{B}\left|f(x)-f_{B}\right|^{p} d \mu(x)\right)^{\frac{1}{p}}<\infty
$$

Where the sup is taken over all balls $B \subset \mathcal{X}$ and

$$
f_{B}=\frac{1}{\mu(B)} \int_{B} f(y) d \mu
$$

For more detail on functions of bounded (φ, p) mean oscillation see Castillo, Ramos Fernández and Trousselot [1].

6. Quasi-Concavity

In this section, we study the notion of quasi-concavity, which is the condition that we will need to prove our main result.

Definition 6.1. A non-negative function ϕ is said to be quasi-convex if there exists a convex function A and a constant $C>1$ such that

$$
A(t) \leq \phi(t) \leq C A(t)
$$

Definition 6.2. A function ψ is said to be quasi-concave if there exists a constant $C>1$ and a concave function M such that

$$
C M(C t) \leq \psi(t) \leq M(t)
$$

We will use the following Lemmas to prove that the function W as introduced in the definition of a (φ, q) atom is quasi-concave under appropriate conditions on φ.

Lemma 6.1. Suppose that $\frac{\varphi(x)}{x}$ is a decreasing function of x, and suppose also that $\frac{\varphi(x)}{x^{\epsilon}}$ is an increasing function for some $0<\epsilon<1$. Let

$$
\psi(x)=\int_{0}^{x} \frac{\varphi(t)}{t} d t .
$$

Then ψ is concave, φ is quasi-concave, and $x \psi(x)$ is quasi-convex.
Proof: The derivative

$$
\psi^{\prime}(x)=\frac{\varphi(x)}{x}
$$

is decreasing by hypothesis. Therefore, ψ is concave. To show that φ is quasi-concave, first note that $\varphi(x) \leq \psi(x)$ since

$$
\psi(x)=\int_{0}^{x} \frac{\varphi(t)}{t} d t \geq \int_{0}^{x} \frac{\varphi(x)}{x} d t=\varphi(x)
$$

To show the other inequality, we estimate $\psi(C x)$, for $C<1$ by

$$
\begin{aligned}
\psi(C x) & =\int_{0}^{C x} \frac{\varphi(t)}{t} d t=\int_{0}^{C x} \frac{\varphi(t)}{t^{\epsilon} t^{1-\epsilon}} d t \leq \frac{\varphi(x)}{x^{\epsilon}} \int_{0}^{C x} t^{\epsilon-1} d t \\
& =\frac{\varphi(x)}{x^{\epsilon}} \frac{(C x)^{\epsilon}}{\epsilon}=\varphi(x) \frac{C^{\epsilon}}{\epsilon}
\end{aligned}
$$

Therefore, we have

$$
\frac{\epsilon}{C^{\epsilon}} \psi(x) \leq \varphi(x)
$$

Next, we choose C by letting $C=\epsilon^{\frac{1}{\epsilon+1}}$.
Since $0<\epsilon<1, C$ also satisfies $C<1$ and $C \psi(C x) \leq \varphi(x)$. Thus, we have shown that φ is quasi-concave.

To show that $x \psi(x)$ is quasi-convex, let $g(x)=x \psi(x)$. Note that $\frac{g(x)}{x}=$ $\psi(x)$ is increases, so

$$
A(x)=\int_{0}^{x} \frac{g(u)}{u} d u
$$

is convex. Also,

$$
A(x)=\int_{0}^{x} \frac{g(u)}{u} d u \leq \frac{g(x)}{x} x=g(x),
$$

so $A(x) \leq g(x)$.
We also have

$$
A(2 x)=\int_{0}^{2 x} \frac{g(u)}{u} d u \geq \int_{x}^{2 x} \frac{g(u)}{u} d u \geq \frac{g(x)}{x} x=g(x),
$$

thus

$$
g(x) \leq A(2 x) \leq 2 A(2 x),
$$

and we have shown that

$$
A(x) \leq g(x) \leq 2 A(2 x)
$$

Therefore, g is quasi-convex, which completes the proof.
Lemma 6.2. 1. φ is quasi-concave if and only if there exists a constant $C<1$ such that

$$
\frac{\varphi\left(t_{1}\right)}{t_{1}} \geq \frac{C \varphi\left(C t_{2}\right)}{t_{2}}
$$

for all $0 \leq t_{1} \leq t_{2}$.
2. ψ is quasi-convex if and only if there exists a $C>1$ such that

$$
\frac{\varphi\left(t_{1}\right)}{t_{1}} \geq \frac{C \varphi\left(C t_{2}\right)}{t_{2}}
$$

for all $0<t_{1} \leq t_{2}$.

Proof: of $(1)(\Rightarrow)$ since φ is quasi-concave, we have M concave and $C<1$ such that

$$
C M(C t) \leq \varphi(t) \leq M(t)
$$

Now, $\frac{M(t)}{t}$ is a non-increasing function of t, so, for all $0<t_{1} \leq t_{2}$, we have

$$
\frac{M\left(t_{1}\right)}{t_{1}} \geq \frac{M\left(t_{2}\right)}{t_{2}}
$$

Thus,

$$
\begin{aligned}
\frac{\varphi\left(t_{1}\right)}{t_{1}} & \geq \frac{C M\left(C t_{1}\right)}{t_{1}} \geq \frac{C^{2} M\left(C t_{1}\right)}{C t_{1}} \geq \frac{C^{2} M\left(C t_{2}\right)}{C t_{2}} \\
& =\frac{C M\left(C t_{2}\right)}{t_{2}} \geq \frac{C \varphi\left(C t_{2}\right)}{t_{2}}
\end{aligned}
$$

(\Leftarrow) Let $C<1, t_{1} \leq t_{2}$, and suppose $\frac{\varphi\left(t_{1}\right)}{t_{1}} \geq \frac{C \varphi\left(C t_{2}\right)}{t_{2}}$. Consider the function

$$
\psi(t)=\frac{1}{C} \int_{0}^{\frac{t}{C}} \inf _{x<s<\frac{t}{C}} \frac{\varphi(s)}{s} d x
$$

Then ψ is concave by Lemma 6.1. Also, as in the proof of Lemma 1, we have

$$
\begin{aligned}
& C \psi(t)=\int_{0}^{\frac{t}{C}} \frac{\varphi(x)}{x} d x=\int_{0}^{\frac{t}{C}} \frac{\varphi(x)}{x^{\epsilon} x^{1-\epsilon}} d x \\
& \leq \frac{\varphi\left(\frac{t}{C}\right)}{\left(\frac{t}{C}\right)^{\epsilon}}\left(\frac{t}{C}\right)^{\epsilon}=\varphi\left(\frac{t}{C}\right)
\end{aligned}
$$

Thus, $C \psi(C t) \leq \varphi(t)$, which gives us the first inequality in the quasiconcavity definition. For the other inequality, note that since $\frac{\varphi(t)}{t}$ decreases, and $C<1$,

$$
\psi(t)=\int_{0}^{\frac{t}{C}} \frac{\varphi(x)}{x} d x \geq \int_{0}^{t} \frac{\varphi(x)}{x} d x \geq \varphi(t)
$$

Thus, we have shown that $C \psi(C t) \leq \varphi(t) \leq \psi(t)$, where ψ is concave, proving that φ is quasi-concave.

The proof of (2) is similar to the above proof of (1).

7. Duality

Theorem 1.1 and its proof are modeled on $H^{\varphi, q}$, where $\varphi(t)=t^{1 / p-1}$ and $w(t)=t^{p}$. Clearly, in this case, $\frac{\varphi(t)}{t}$ decreases and $\frac{\varphi(t)}{t^{\epsilon}}$ increases for some $0<\epsilon<1$. To prove Theorem 1.1, we let L be a bounded linear functional on $H^{\varphi, q}$, and we fix a ball B in \mathcal{X}. We show first that L is a bounded linear functional on the subspace

$$
L_{0}^{q}(B)=\left\{f \in L^{q}(B): \int_{B} f d \mu=0\right\}
$$

of $L^{q}(B)$. Then, using the Hahn-Banach Theorem and the Riesz Representation Theorem, we extend L to $L^{q}(B)$ with the same norm, and we uniquely represent L by an integral with L^{p} function g. Using an increasing sequence of balls converging to \mathcal{X}, we then find a unique function g such that if $f \in L^{q}(B)$,

$$
L f=\int_{B} f g d \mu
$$

for any ball B. Finally, by making a (φ, q) atom from $f-f_{B}$, we show that $g \in B M O_{\varphi}^{(p)}$, and we note that by Hölder Inequality, $B M O_{\varphi}^{(p)} \subset B M O_{\varphi}$.

To show that any $g \in B M O_{\varphi}^{(p)}$ defines a bounded linear functional on $H^{\varphi, q}$, we first show for an atom $a \in H^{\varphi, q}$, supported on a ball B,

$$
\left|\int_{B} \operatorname{gad} \mu\right| \leq\|g\|_{B M_{\varphi}^{(p)}}
$$

for $h \in H^{\varphi, q}$, we decompose h into a sum of (φ, q)-atoms and we use the quasi-concavity of w to show that

$$
\left|\int_{B} g h d \mu\right| \leq\|g\|_{B M O_{\varphi}^{(p)}} w^{-1}\left(\frac{2}{C^{4}}\|h\|_{H^{\varphi, q}}\right) .
$$

Therefore, g defines a bounded linear functional on $H^{\varphi, q}$ given by

$$
L_{g}(H)=\int g h d \mu
$$

and

$$
\|L\| \leq C\|g\|_{B M O_{\varphi}^{(p)}} .
$$

This shows that L_{g} is a bounded linear functional on $H^{\varphi, q}$.

Proof of Theorem 1.1 The proof of this Theorem follows along the same lines as the proof of [2]. Let L be a bounded linear functional on $H^{\varphi, q}$, and let $\|L\|$ be the norm of L. Fix a ball B in \mathcal{X}. Let

$$
L_{0}^{q}(B)=\left\{f \in L^{q}(B): \int_{B} f d \mu=0\right\} .
$$

It follows that if $f \in L_{0}^{q}(B)$, then

$$
a(x)=\frac{[\mu(B)]^{1 / q}}{\|f\|_{L^{q}(B)}} w^{-1}\left(\frac{1}{\mu(B)}\right) f(x)
$$

is a (φ, q) atom, since, by (2) of the atomic definition

$$
\begin{aligned}
\left(\frac{1}{\mu(B)} \int_{B}|a(x)|^{q} d \mu(x)\right)^{\frac{1}{q}} & \leq \frac{[\mu(B)]^{1 / q}}{[\mu(B)]^{1 / q}\|f\|_{L^{q}(B)}} w^{-1}\left(\frac{1}{\mu(B)}\right)\|f\|_{L^{q}(B)} \\
& \leq w^{-1}\left(\frac{1}{\mu(B)}\right)
\end{aligned}
$$

We also have

$$
\|f\|_{H^{\varphi, q}} \leq \frac{1}{w^{-1}\left(\frac{1}{\mu(B)}\right)} \frac{\|f\|_{L^{q}(B)}}{[\mu(B)]^{1 / q}} .
$$

Hence, $L f$ is defined and

$$
\|L f\| \leq\|L\| \frac{\|f\|_{L^{q}(B)}}{[\mu(B)]^{1 / q}} .
$$

That is, L is a bounded linear functional on $L_{0}^{q}(B)$. By the Hahn-Banach Theorem, we can extend L to $L^{q}(B)$ with the same norm and by the Riesz Representation Theorem, we can conclude that there exists $g \in L^{p}(B)$ such that $L f=\int_{B} f g d \mu$ for all $f \in L_{0}^{q}(B)$.

The function g is uniquely determined up to a constant, or, equivalently if $\int_{B} f g d \mu=0$ for all $f \in L_{0}^{q}(B)$, then it follows that g is a constant. To see this, suppose $\int_{B} f g d \mu=0$ for all $f \in L_{0}^{q}(B)$. Choose $h \in L^{q}(B)$.

Since $h-h_{B} \in L_{0}^{q}(B)$, we have

$$
0=\int_{B} g\left(h-h_{B}\right) d \mu=\int_{B}\left(g h-g h_{B}\right) d \mu=\int h\left(g-g_{B}\right) d \mu
$$

Since this equality holds for all $h \in L^{q}(B)$, it must be true that $g(x)=g_{B}$ a.e. x in B.

Let $\left\{B_{j}\right\}_{j=1}^{\infty}$ be an increasing sequence of balls converging to \mathcal{X}, such that $\mu\left(B_{1}\right)>0$. We obtain a function \tilde{g}_{j} satisfying

$$
\begin{equation*}
L f=\int_{B_{j}} f \tilde{g}_{j} d \mu \tag{7.1}
\end{equation*}
$$

for each j. Now, let

$$
g_{j}=\tilde{g}_{j}-\left(\tilde{g}_{j}\right)_{B_{1}}
$$

Then, $\int_{B_{1}} g_{j} d \mu=0$. It remains to show that $\left.g_{j}\right|_{B_{k}}=g_{k}$ for all $k \leq j$. By the above remark, we know that on $B_{k} \supset B_{1}$, we have $g_{j}-g_{k}=C$. Now, integrate both sides over B_{1} to obtain

$$
\int_{B_{1}}\left(g_{j}-g_{k}\right) d \mu=\int_{B_{1}} C d \mu,
$$

which implies that $0=\mu\left(B_{1}\right)$. Therefore, $C=0$, and we conclude that $\left.g_{j}\right|_{B_{k}}=g_{k}$ for $k \leq j$.

We now have a unique function g such that if $f \in L^{q}(B)$, then

$$
L f=\int_{B} f g d \mu
$$

which holds for any ball B.
In particular, if a is a (φ, q) atom supported in B, we have

$$
\begin{equation*}
\|L\| \geq|L a|=\left|\int_{B} g a d \mu\right|=\left|\int_{B}\left(g-g_{B}\right) a d \mu\right| \tag{7.2}
\end{equation*}
$$

if f is supported in B and $\|f\|_{L^{q}}=1$, then

$$
a=\frac{[\mu(B)]^{1 / q}}{2} w^{-1}\left(\frac{1}{\mu(B)}\right)\left(f-f_{B}\right)
$$

is a (φ, q) atom, since

$$
\begin{aligned}
\left(\frac{1}{\mu(B)} \int_{B}|a(x)|^{q} d \mu\right)^{\frac{1}{q}} & =\frac{[\mu(B)]^{1 / q}}{2[\mu(B)]^{1 / q}} w^{-1}\left(\frac{1}{\mu(B)}\right)\left(\int_{B}\left|f-f_{B}\right|^{q} d \mu\right)^{\frac{1}{q}} \\
& \leq \frac{w^{-1}\left(\frac{1}{\mu(B)}\right)}{2} 2\left(\int_{B}|f|^{q} d \mu\right)^{\frac{1}{q}} \\
& \leq w^{-1}\left(\frac{1}{\mu(B)}\right) .
\end{aligned}
$$

Now, using this atom in (7.2) above, and using the fact that $g-g_{B}$ has mean zero on B, we obtain

$$
\left|\int_{B}\left(g-g_{B}\right) \frac{[\mu(B)]^{1 / q}}{2} w^{-1}\left(\frac{1}{\mu(B)}\right)\left(f-f_{B}\right) d \mu\right| \leq\|L\|,
$$

which implies that

$$
\left|\int_{B}\left(g-g_{B}\right) \frac{[\mu(B)]^{1 / q}}{2} w^{-1}\left(\frac{1}{\mu(B)}\right) f d \mu\right| \leq\|L\|,
$$

which in turn implies that

$$
\left|\int_{B}\left(g-g_{B}\right) f d \mu\right| \leq \frac{2\|L\|}{[\mu(B)]^{1 / q} w^{-1}\left(\frac{1}{\mu(B)}\right)}
$$

If we now take the supremum of all f supported in B such that $\|f\|_{L^{q}}=$ 1, we obtain

$$
\begin{aligned}
\left\|g-g_{B}\right\|_{L^{p}} & \leq \frac{2\|L\|}{[\mu(B)]^{1 / q} w^{-1}\left(\frac{1}{\mu(B)}\right)} \\
& =\frac{2\|L\|}{[\mu(B)]^{1 / q}} \mu(B) \varphi(\mu(B)) \\
& =2\|L\|[\mu(B)]^{1 / q} \varphi(\mu(B))
\end{aligned}
$$

Rewriting this inequality, we obtain

$$
\left(\frac{1}{\mu(B)[\varphi(\mu(B))]^{p}} \int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}} \leq 2\|L\|,
$$

so $g \in B M O_{\varphi}^{(p)}$. By Hölder's inequality, we also have

$$
\begin{aligned}
\frac{1}{\varphi(\mu(B)) \mu(B)} \int_{B}\left|g(x)-g_{B}\right| d \mu(x) & \leq \frac{[\mu(B)]^{1 / q}}{\mu(B) \varphi(\mu(B))}\left(\int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}} \\
& \leq\left(\frac{1}{\mu(B)[\varphi(\mu(B))]^{p}} \int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}}
\end{aligned}
$$

So $g \in B M O_{\varphi}$, also.
We have now shown that

$$
\left(H^{\varphi, q}\right)^{*} \subset B M O_{\varphi}^{(p)} \subset B M O_{\varphi}
$$

Now, suppose that $g \in B M O_{\varphi}^{(p)}$. We will show that g defines a bounded linear functional on $H^{\varphi, q}$. Let a be a (φ, q) atom. Then

$$
\begin{aligned}
\left|\int_{B} g a d \mu\right| & =\left|\int_{B}\left(g-g_{B}\right) a(u) d \mu\right| \leq \int\left|g-g_{B}\right| a(u) d \mu \\
& \leq\left(\int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{B}|a(u)|^{q} d \mu\right)^{\frac{1}{q}} \\
& \leq\left(\int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}}[\mu(B)]^{1 / q} w^{-1}\left(\frac{1}{\mu(B)}\right) \\
& \leq \frac{[\mu(B)]^{1 / q}}{\mu(B) \varphi(\mu(B))}\left(\int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}} \\
& \leq\left(\frac{1}{\mu(B)[\varphi(\mu(B))]^{p}} \int_{B}\left|g-g_{B}\right|^{p} d \mu\right)^{\frac{1}{p}} \\
& \leq\|g\|_{B M O_{\varphi}^{(p)} .}
\end{aligned}
$$

Therefore, we have shown that

$$
\begin{equation*}
\left|\int_{B} \operatorname{gad} \mu\right| \leq\|g\|_{B M O_{\varphi}^{(p)}} \tag{7.3}
\end{equation*}
$$

Now, let $h \in H^{\varphi, q}$ and let $h=\sum_{j=1}^{\infty} \alpha_{j} a_{j}$ be decomposition of h into (φ, q) atom such that

$$
w^{-1}\left(\sum w\left(\left|\alpha_{j}\right|\right)\right) \leq\left(1+C^{4}\right)\|h\|_{H^{\varphi}, q},
$$

where $C<1$ is the quasi-concavity constant for w. Since $C<1$ then

$$
\begin{aligned}
\sum\left|\alpha_{j}\right| & \leq w^{-1}\left(\frac{1}{C} \sum w\left(\frac{\left|\alpha_{j}\right|}{C}\right)\right) \\
& \leq w^{-1}\left(\frac{1}{C} \sum w\left(\frac{C\left|\alpha_{j}\right|}{C^{2}}\right)\right)
\end{aligned}
$$

Now, let $t_{1}=\left|\alpha_{j}\right|$, and let $t_{2}=\frac{\left|\alpha_{j}\right|}{C^{2}}$. Since $C<1$, we have $t_{1}<t_{2}$ and by Lemma 6.2 implies that

$$
C \frac{w\left(C t_{2}\right)}{t_{2}} \leq \frac{w\left(t_{1}\right)}{t_{1}} .
$$

Therefore, we have

$$
w\left(C t_{2}\right) \leq \frac{t_{2}}{t_{1}} \frac{w\left(t_{1}\right)}{C}
$$

which implies that

$$
w\left(C \frac{\left|\alpha_{j}\right|}{C^{2}}\right) \leq \frac{\left|\alpha_{j}\right|}{C^{2}\left|\alpha_{j}\right|} \frac{w\left(\left|\alpha_{j}\right|\right)}{C}=\frac{w\left(\left|\alpha_{j}\right|\right)}{C^{3}} .
$$

Thus

$$
\begin{aligned}
\sum\left|\alpha_{j}\right| & \leq w^{-1}\left(\frac{1}{C} \sum \frac{w\left(\left|\alpha_{j}\right|\right)}{C^{3}}\right)=w^{-1}\left(\frac{1}{C^{4}} \sum w\left(\left|\alpha_{j}\right|\right)\right) \\
& \leq w^{-1}\left(\frac{1}{C^{4}}\left(1+C^{4}\right)\|h\|_{H^{\varphi, q}}\right) \\
& \leq w^{-1}\left(\frac{2}{C^{4}}\|h\|_{H^{\varphi, q}}\right)
\end{aligned}
$$

Now, if $g \in \mathrm{BMO}_{\varphi}^{(p)}$, since $C<1$, we have

$$
\begin{aligned}
& \left|\int g h d \mu\right| \leq \sum\left|\alpha_{j}\right|\left|\int g a_{j} d \mu\right| \\
& \leq\|g\|_{B M O_{\varphi}^{(p)} w^{-1}}\left(\frac{2}{C^{4}}\|h\|_{H^{\varphi, q}}\right) .
\end{aligned}
$$

Therefore, g defines a bounded linear functional L on $H^{\varphi, q}$ given by

$$
L_{g}(h)=\int g h d \mu
$$

which satisfies

$$
\left\|L_{g}\right\|=\sup _{\|h\|_{H} \varphi, q_{=1}}\left|L_{g}(h)\right| \leq w^{-1}\left(\frac{2}{C^{4}}\right)\|g\|_{B M O_{\varphi}^{(p)}} .
$$

Thus,

$$
B M O_{\varphi}^{(p)} \subset\left(H^{\varphi, q}\right)^{*}
$$

and the Theorem is proved.

References

[1] Castillo, R. E., Ramos Fernández, J. C. and Trousselot, E. Functions of Bounded (φ, p) Mean Oscillation. Proyecciones Journal of Math. Vol 27, No. 2, pp. 163-177, August (2008).
[2] Coifman, R. R, A real variable characterization of H^{p}. Studia Math. 51, pp. 269-274, (1974).
[3] Coifman, R. R and Weiss, G. Extensions of Hardy spaces and their use in Analysis. Bull. Amer. Math. Soc. 83, pp. 99-157, (1977).
[4] Duren, P. L., Romberg, B. W. and Shields, A. L., Linear functionals on H^{p} spaces with $0<p<1$. J. Reine Angew, Math 238, pp. 32-60, (1969).
[5] Janson, S. Generalization of Lipschitz spaces and an application to Hardy space and bounded mean oscillation. Duke Math. 47, pp. 959982, (1980).
[6] Latter, R. A. A characterization of $H^{p}\left(\mathbf{R}^{n}\right)$ in terms of atoms. Shidia Math 62 (1978) pp. 93-101, (1978).
[7] Macias, R. and Segovia, C. Lipschitz functions on space of homogeneous type, Avd. Math., 33, pp. 257-270, (1979).

René Erlín Castillo

Departamento de Matemáticas,
Universidad Nacional de Colombia
AP360354 Bogotá
e-mail : recastillo@unal.edu.co

Julio C. Ramos Fernández

Departamento de Matemáticas, Universidad de Oriente 6101 Cumaná, Edo. Sucre,
Venezuela
e-mail : jcramos@udo.edu.ve
and

Eduard Trousselot

Departamento de Matemáticas,
Universidad de Oriente 6101 Cumaná, Edo. Sucre,
Venezuela
e-mail : eddycharles2007@hotmail.com

