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1. Introduction

The Hardy space Hp were first studied on the unit disk in the complex
plane. In their 1968 paper Duren, Romberg and Shield (see [4]) make the
following definitions and comments about Hp. For 0 < p ≤ ∞, Hp is the
linear space of functions f(z) analytic in |z| < 1 such that

Mp(r, f) =

µ
1

2π

Z 2π

0
|f(reiθ)|pdθ

¶ 1
p

, 0 < p <∞

or
M∞(r, f) = max

0≤θ<2π
|f(reiθ)|

remains bounded as r→ 1. If 1 ≤ p ≤ ∞, Hp is a Banach space under the
norm

kfkp = lim
r→1

Mp(r, f).

For 0 < p < 1, this is not a norm, but Hp is still a complete metric
space with a translation invariant metric

d(f, g) = kf − gkpp.

A linear functional ϕ on Hp is bounded (ϕ ∈ (Hp)∗) if

kϕk = sup
kfkp=1

|ϕ(f)| <∞.

It is easily verify that (Hp)∗ is a Banach space. Duren, Romberg and Shield
(see [4]) were the first to study the linear space structure of the Hp space
with 0 < p < 1. These Hp spaces are not Banach spaces and are not locally
convex.

They may be regarded as closed subspaces of Lp for 0 < p < 1; how-
ever,it is interesting to note that although there are no continuous linear
functionals on Lp for 0 < p < 1, there are many on Hp. Duren, Romberg
and Shield (see [4]) prove for 1/2 < p < 1, that (Hp)∗ = Λα the Lipschitz
space of order α = 1

p − 1. For p ≤
1
2 , the results are similar. Even though

Hp is not locally convex, there are still enough linear functionals to distin-
guish elements. For example as noted in [4], g(z) = (1 − ξz)−1 generates
the functional ϕ(f) = f(ξ).

Later, the study of Hp spaces was extended to Hp(Rn). The results
were highly specialized to Rn until Latter (see [5]), Coifman and Weiss
(see [3]) defined Hp(Rn) using the notion of an atom and proved that the
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atomic Hp(Rn) space were equivalent to the original Hp(Rn). Roughly
speaking, an atom is a “building block” function which is supported on a
ball, has zero integral and has a bounded average.

By thinking of the Hp spaces in terms of atoms Coifman and Weiss (see
[2]) were able to prove that the dual ofHp is again a Lipschitz space of order
α = 1

p−1 not only in Rn, but on any homogeneous space X . The Hp space
for 0 < p ≤ 1 on Rn were first characterized in terms of atoms by Coifman
(see [3]) and Latter (see [6]). Coifman and Weiss (see [2]) then used this
characterization to define Hp(X ), where X is a homogeneous space.

In this paper, we extend the work of Coifman and Weiss (see [3]) by
defining new Hardy-type spaces using atoms on homogeneous space which
we call Hϕ,q. The main result of this paper is the following.

Theorem 1.1. Suppose ϕ and w are related by

w−1(t) =
t

ϕ
³
1
t

´
or equivalent by

ϕ(t) =
1

tw−1(1t )
.

Suppose also that
ϕ(t)

t
is a decreasing function of t and that

ϕ(t)

t�
is an

increasing function for some 0 < � < 1. Let 1 ≤ q < ∞, and let p be
conjugate of q. Then the dual of Hϕ,q is BMOp

ϕ.

2. Atoms

We begin by defining atoms. The idea for the relationship between w and
ϕ functions come from Janson’s paper (see [5]). Throughout this paper, we
will assume that the measure µ is a regular measure.

Definition 2.1. A measurable function a is said to be a (ϕ, q) atom if it
satisfies:

1. The support of a is contained in a ball B(x0, r),

2.
R
adµ = 0,

3.
³

1
µ(B)

R
B |a|qdµ

´ 1
q ≤ w−1

³
1

µ(B)

´
,
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where w and ϕ are related by

w−1(t) =
1

ϕ
³
1
t

´ or ϕ(t) =
1

tw−1(1t )
.

Note that

w−1
µ

1

µ(B)

¶
=

1

µ(B)ϕ(µ(B))

and that (3) can be written as

kakq ≤ µ(B)

µ
w−1

µ
1

µ(B)

¶¶q
,

where B = B(x0, r).

3. Spaces of Homogeneous type

Let us begin by recalling the notion of space of homogeneous type.

Definition 3.1. A quasimetric d on a set X is a function d : X × X →
[0,∞) with the following properties:

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X .

3. There exists a constant K such that

d(x, y) ≤ K [d(x, z) + d(z, y)] ,

for all x, y, z ∈ X .

A quasimetric defines a topology in which the balls

B(x, r) = {y ∈ X : d(x, y) < r}

form a base. These balls may be not open in general; anyway, given a
quasimetric d, is easy to construct an equivalent quasimetric d0 such that
the d0-quasimetric balls are open (the existence of d0 has been proved by
using topological arguments in [7]). So we can assume that the quasimetric
balls are open. A general method of constructing families {B(x, δ)} is in
terms of a quasimetric.



Hardy-Type Spaces and its Dual 47

Example 3.1. A space of homogeneous type (X , d, µ) is a set X with a
quasimetric d and a Borel measure µ finite on bounded sets such that, for
some absolute positive constant A the following doubling property holds

µ (B(x, 2r)) ≤ Aµ (B(x, r))

for all x ∈ X and r > 0.

Next, we are ready to give some example of a space of homogeneous
type.

Example 3.2. Let X ⊂ Rn, X = {0} ∪ {x : |x| = 1} , put in X the
euclidean distance and the following measure µ: µ is the usual surface
measure on {x : |x| = 1} and µ ({0}) = 1. Then µ is doubling so that
(X , d, µ) is a homogeneous space.

Example 3.3. InRn, let Ck (k = 1, 2, · · ·) be the point (kk+1/2, 0, · · · , 0),
for k ≥ 2, let Bk be the ball B(Ck, 1/2) and B1 = B(0, 1/2). Let X =
∪∞k=1Bk with the euclidean distance and the measure µ such that µ (Bk) =
2k and on each ball Bk, µ is uniformly distributed.

Claim 1. µ satisfies the doubling condition. Let Br = B(P, r) with P =
(P1, . . . , Pn) and r > 0.

Case 1. Assume for some k, Bk ⊂ Br and let k0 = max {k : Bk ⊂ Br}.
Then certainly P1 + r ≤ bk0+1 = (k0 + 1)

k0+1 + 1 and µ(Br) ≥ 2k0 . But,
then

P1 + 2r ≤ 2
³
(k0 + 1)

k0+1 + 1
´

≤ (k0 + 2)
k0+2 = ak0+2.

Therefore B2r ⊂ Bak0+2
(0) ≡ B0. But

µ(B0) =
k0+1X
k=0

2k ≤ 2k0+2 ≤ 4µ(Br).

Hence the doubling condition holds with A = 4.

Case 2. If for all k, BkBr, then r < 1 so that Br and B2r intersect only on
ball Bk. Then the doubling condition holds.
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4. ϕ-Lipschitz space

We define the ϕ-Lipschitz space and denoted it by Lϕ to be the space for
all measurable functions f on X for which

|f(x)− f(y)| ≤ Cϕ(µ(B)),

where B is any ball containing both x and y and C is a constant depending
only of f .

Let γ(f) be the inf over all C for which the above inequality holds.
Then if we define

kfkLϕ =
(

γ(f) if µ(X ) =∞
γ(f) +

R
X fdµ if µ(X ) = 1,

a straightforward argument shows that Lϕ, with this norm, is a Banach
space. To simplify calculations, we assume that if µ(X ) is finite, then
µ(X ) = 1. We now define Hϕ,q to be the subspace of (Lϕ)∗ consisting of
those linear functionals admitting an atomic decomposition as follows:

h ∈ Hϕ,q if h can be written as a sum h =
P

j∈N λjaj , where aj is a
(ϕ, q) atom, and

P
j∈N w(|λj |) <∞. We denote by the symbol khkϕ,q the

quantity (which is not, in general a norm)

khkϕ,q = inf
alldescompof f

w−1

⎛⎝X
j∈N

w(|λj |)

⎞⎠ .

Example. If ϕ(t) = t
1
p
−1, then w(t) = tp and Hϕ,q(X ) = Hp(X ).

5. Functions of Bounded (ϕ, p) mean Oscillation

In this section, we recall the definition of the space of functions of bounded

(ϕ, p) mean oscillation, BMO
(p)
ϕ (X ), where X is a space of homogeneous

type. Let ϕ be a nonnegative function on [0,∞). A locally µ-integrable

function f : X → R is said to belong to the class BMO
(p)
ϕ (X ), 1 ≤ p <∞,

if

sup

µ
1

µ(B)[ϕ(µ(B))]p

Z
B
|f(x)− fB|pdµ(x)

¶ 1
p

<∞.

Where the sup is taken over all balls B ⊂ X and

fB =
1

µ(B)

Z
B
f(y)dµ.

For more detail on functions of bounded (ϕ, p) mean oscillation see Castillo,
Ramos Fernández and Trousselot [1].
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6. Quasi-Concavity

In this section, we study the notion of quasi-concavity, which is the condi-
tion that we will need to prove our main result.

Definition 6.1. A non-negative function φ is said to be quasi-convex if
there exists a convex function A and a constant C > 1 such that

A(t) ≤ φ(t) ≤ CA(t).

Definition 6.2. A function ψ is said to be quasi-concave if there exists a
constant C > 1 and a concave function M such that

CM(Ct) ≤ ψ(t) ≤M(t).

We will use the following Lemmas to prove that the functionW as intro-
duced in the definition of a (ϕ, q) atom is quasi-concave under appropriate
conditions on ϕ.

Lemma 6.1. Suppose that
ϕ(x)

x
is a decreasing function of x, and suppose

also that
ϕ(x)

x�
is an increasing function for some 0 < � < 1. Let

ψ(x) =

Z x

0

ϕ(t)

t
dt.

Then ψ is concave, ϕ is quasi-concave, and xψ(x) is quasi-convex.

Proof: The derivative

ψ0(x) =
ϕ(x)

x

is decreasing by hypothesis. Therefore, ψ is concave. To show that ϕ is
quasi-concave, first note that ϕ(x) ≤ ψ(x) since

ψ(x) =

Z x

0

ϕ(t)

t
dt ≥

Z x

0

ϕ(x)

x
dt = ϕ(x).

To show the other inequality, we estimate ψ(Cx), for C < 1 by

ψ(Cx) =

Z Cx

0

ϕ(t)

t
dt =

Z Cx

0

ϕ(t)

t�t1−�
dt ≤ ϕ(x)

x�

Z Cx

0
t�−1dt

=
ϕ(x)

x�
(Cx)�

�
= ϕ(x)

C�

�
.
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Therefore, we have
�

C�
ψ(x) ≤ ϕ(x).

Next, we choose C by letting C = �
1

�+1 .
Since 0 < � < 1, C also satisfies C < 1 and Cψ(Cx) ≤ ϕ(x). Thus, we

have shown that ϕ is quasi-concave.

To show that xψ(x) is quasi-convex, let g(x) = xψ(x). Note that
g(x)

x
=

ψ(x) is increases, so

A(x) =

Z x

0

g(u)

u
du

is convex. Also,

A(x) =

Z x

0

g(u)

u
du ≤ g(x)

x
x = g(x),

so A(x) ≤ g(x).
We also have

A(2x) =

Z 2x

0

g(u)

u
du ≥

Z 2x

x

g(u)

u
du ≥ g(x)

x
x = g(x),

thus

g(x) ≤ A(2x) ≤ 2A(2x),

and we have shown that

A(x) ≤ g(x) ≤ 2A(2x).

Therefore, g is quasi-convex, which completes the proof.

Lemma 6.2. 1. ϕ is quasi-concave if and only if there exists a constant
C < 1 such that

ϕ(t1)

t1
≥ Cϕ(Ct2)

t2

for all 0 ≤ t1 ≤ t2.

2. ψ is quasi-convex if and only if there exists a C > 1 such that

ϕ(t1)

t1
≥ Cϕ(Ct2)

t2

for all 0 < t1 ≤ t2.
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Proof: of (1) (⇒) since ϕ is quasi-concave, we have M concave and C < 1
such that

CM(Ct) ≤ ϕ(t) ≤M(t).

Now,
M(t)

t
is a non-increasing function of t, so, for all 0 < t1 ≤ t2, we have

M(t1)

t1
≥ M(t2)

t2
.

Thus,

ϕ(t1)

t1
≥ CM(Ct1)

t1
≥ C2M(Ct1)

Ct1
≥ C2M(Ct2)

Ct2

=
CM(Ct2)

t2
≥ Cϕ(Ct2)

t2
.

(⇐) Let C < 1, t1 ≤ t2, and suppose
ϕ(t1)

t1
≥ Cϕ(Ct2)

t2
. Consider the

function

ψ(t) =
1

C

Z t
C

0
inf

x<s< t
C

ϕ(s)

s
dx.

Then ψ is concave by Lemma 6.1. Also, as in the proof of Lemma 1, we
have

Cψ(t) =

Z t
C

0

ϕ(x)

x
dx =

Z t
C

0

ϕ(x)

x�x1−�
dx

≤ ϕ( tC )
( tC )

�

¡
t
C

¢�
= ϕ

¡
t
C

¢
.

Thus, Cψ(Ct) ≤ ϕ(t), which gives us the first inequality in the quasi-

concavity definition. For the other inequality, note that since
ϕ(t)

t
de-

creases, and C < 1,

ψ(t) =

Z t
C

0

ϕ(x)

x
dx ≥

Z t

0

ϕ(x)

x
dx ≥ ϕ(t).

Thus, we have shown that Cψ(Ct) ≤ ϕ(t) ≤ ψ(t), where ψ is concave,
proving that ϕ is quasi-concave.

The proof of (2) is similar to the above proof of (1).
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7. Duality

Theorem 1.1 and its proof are modeled on Hϕ,q, where ϕ(t) = t1/p−1 and

w(t) = tp. Clearly, in this case,
ϕ(t)

t
decreases and

ϕ(t)

t�
increases for some

0 < � < 1. To prove Theorem 1.1, we let L be a bounded linear functional
on Hϕ,q, and we fix a ball B in X .We show first that L is a bounded linear
functional on the subspace

Lq
0(B) =

½
f ∈ Lq(B) :

Z
B
fdµ = 0

¾
of Lq(B). Then, using the Hahn-Banach Theorem and the Riesz Repre-
sentation Theorem, we extend L to Lq(B) with the same norm, and we
uniquely represent L by an integral with Lp function g. Using an increas-
ing sequence of balls converging to X , we then find a unique function g
such that if f ∈ Lq(B),

Lf =

Z
B
fgdµ,

for any ball B. Finally, by making a (ϕ, q) atom from f −fB, we show that
g ∈ BMO

(p)
ϕ , and we note that by Hölder Inequality, BMO

(p)
ϕ ⊂ BMOϕ.

To show that any g ∈ BMO
(p)
ϕ defines a bounded linear functional on

Hϕ,q, we first show for an atom a ∈ Hϕ,q, supported on a ball B,¯̄̄̄Z
B
gadµ

¯̄̄̄
≤ kgk

BM
(p)
ϕ

for h ∈ Hϕ,q, we decompose h into a sum of (ϕ, q)-atoms and we use the
quasi-concavity of w to show that¯̄̄̄Z

B
ghdµ

¯̄̄̄
≤ kgk

BMO
(p)
ϕ
w−1

µ
2

C4
khkHϕ,q

¶
.

Therefore, g defines a bounded linear functional on Hϕ,q given by

Lg(H) =

Z
ghdµ

and

kLk ≤ Ckgk
BMO

(p)
ϕ
.

This shows that Lg is a bounded linear functional on Hϕ,q.
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Proof of Theorem 1.1 The proof of this Theorem follows along the
same lines as the proof of [2]. Let L be a bounded linear functional on
Hϕ,q, and let kLk be the norm of L. Fix a ball B in X . Let

Lq
0(B) =

½
f ∈ Lq(B) :

Z
B
fdµ = 0

¾
.

It follows that if f ∈ Lq
0(B), then

a(x) =
[µ(B)]1/q

kfkLq(B)
w−1

µ
1

µ(B)

¶
f(x)

is a (ϕ, q) atom, since, by (2) of the atomic definitionµ
1

µ(B)

Z
B
|a(x)|qdµ(x)

¶ 1
q

≤ [µ(B)]1/q

[µ(B)]1/qkfkLq(B)
w−1

µ
1

µ(B)

¶
kfkLq(B)

≤ w−1
µ

1

µ(B)

¶
.

We also have

kfkHϕ,q ≤ 1

w−1
³

1
µ(B)

´ kfkLq(B)
[µ(B)]1/q

.

Hence, Lf is defined and

kLfk ≤ kLk
kfkLq(B)
[µ(B)]1/q

.

That is, L is a bounded linear functional on Lq
0(B). By the Hahn-Banach

Theorem, we can extend L to Lq(B) with the same norm and by the Riesz
Representation Theorem, we can conclude that there exists g ∈ Lp(B) such
that Lf =

R
B fgdµ for all f ∈ Lq

0(B).
The function g is uniquely determined up to a constant , or, equivalently

if
R
B fgdµ = 0 for all f ∈ Lq

0(B), then it follows that g is a constant. To
see this, suppose

R
B fgdµ = 0 for all f ∈ Lq

0(B). Choose h ∈ Lq(B).
Since h− hB ∈ Lq

0(B), we have

0 =

Z
B
g(h− hB)dµ =

Z
B
(gh− ghB)dµ =

Z
h(g − gB)dµ.

Since this equality holds for all h ∈ Lq(B), it must be true that g(x) = gB
a.e. x in B.
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Let {Bj}∞j=1 be an increasing sequence of balls converging to X , such
that µ(B1) > 0. We obtain a function g̃j satisfying

Lf =

Z
Bj

fg̃jdµ(7.1)

for each j. Now, let
gj = g̃j − (g̃j)B1 .

Then,
R
B1

gjdµ = 0. It remains to show that gj |Bk
= gk for all k ≤ j.

By the above remark, we know that on Bk ⊃ B1, we have gj − gk = C.
Now, integrate both sides over B1 to obtainZ

B1
(gj − gk)dµ =

Z
B1

Cdµ,

which implies that 0 = µ(B1). Therefore, C = 0, and we conclude that
gj |Bk

= gk for k ≤ j.
We now have a unique function g such that if f ∈ Lq(B), then

Lf =

Z
B
fgdµ,

which holds for any ball B.
In particular, if a is a (ϕ, q) atom supported in B, we have

kLk ≥ |La| =
¯̄̄̄Z
B
gadµ

¯̄̄̄
=

¯̄̄̄Z
B
(g − gB)adµ

¯̄̄̄
,(7.2)

if f is supported in B and kfkLq = 1, then

a =
[µ(B)]1/q

2
w−1

µ
1

µ(B)

¶
(f − fB)

is a (ϕ, q) atom, since

µ
1

µ(B)

Z
B
|a(x)|qdµ

¶ 1
q

=
[µ(B)]1/q

2[µ(B)]1/q
w−1

µ
1

µ(B)

¶µZ
B
|f − fB|qdµ

¶ 1
q

≤
w−1

³
1

µ(B)

´
2

2

µZ
B
|f |qdµ

¶ 1
q

≤ w−1
µ

1

µ(B)

¶
.
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Now, using this atom in (7.2) above, and using the fact that g− gB has
mean zero on B, we obtain¯̄̄̄

¯
Z
B
(g − gB)

[µ(B)]1/q

2
w−1

µ
1

µ(B)

¶
(f − fB)dµ

¯̄̄̄
¯ ≤ kLk,

which implies that¯̄̄̄
¯
Z
B
(g − gB)

[µ(B)]1/q

2
w−1

µ
1

µ(B)

¶
fdµ

¯̄̄̄
¯ ≤ kLk,

which in turn implies that¯̄̄̄Z
B
(g − gB)fdµ

¯̄̄̄
≤ 2kLk
[µ(B)]1/qw−1

³
1

µ(B)

´ .
If we now take the supremum of all f supported in B such that kfkLq =

1, we obtain

kg − gBkLp ≤ 2kLk
[µ(B)]1/qw−1

³
1

µ(B)

´
=

2kLk
[µ(B)]1/q

µ(B)ϕ(µ(B))

= 2kLk[µ(B)]1/qϕ(µ(B)).

Rewriting this inequality, we obtainµ
1

µ(B)[ϕ(µ(B))]p

Z
B
|g − gB|pdµ

¶ 1
p

≤ 2kLk,

so g ∈ BMO
(p)
ϕ . By Hölder’s inequality, we also have

1

ϕ(µ(B))µ(B)

Z
B
|g(x)− gB|dµ(x) ≤

[µ(B)]1/q

µ(B)ϕ(µ(B))

µZ
B
|g − gB|pdµ

¶ 1
p

≤
µ

1

µ(B)[ϕ(µ(B))]p

Z
B
|g − gB|pdµ

¶ 1
p

.

So g ∈ BMOϕ, also.
We have now shown that

(Hϕ,q)∗ ⊂ BMO(p)ϕ ⊂ BMOϕ.
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Now, suppose that g ∈ BMO
(p)
ϕ .We will show that g defines a bounded

linear functional on Hϕ,q. Let a be a (ϕ, q) atom. Then¯̄̄̄Z
B
gadµ

¯̄̄̄
=

¯̄̄̄Z
B
(g − gB)a(u)dµ

¯̄̄̄
≤
Z
|g − gB|a(u)dµ

≤
µZ

B
|g − gB|pdµ

¶ 1
p
µZ

B
|a(u)|qdµ

¶ 1
q

≤
µZ

B
|g − gB|pdµ

¶ 1
p

[µ(B)]1/qw−1
µ

1

µ(B)

¶

≤ [µ(B)]1/q

µ(B)ϕ(µ(B))

µZ
B
|g − gB|pdµ

¶ 1
p

≤
µ

1

µ(B)[ϕ(µ(B))]p

Z
B
|g − gB|pdµ

¶ 1
p

≤ kgk
BMO

(p)
ϕ
.

Therefore, we have shown that¯̄̄̄Z
B
gadµ

¯̄̄̄
≤ kgk

BMO
(p)
ϕ
.(7.3)

Now, let h ∈ Hϕ,q and let h =
P∞

j=1 αjaj be decomposition of h into
(ϕ, q) atom such that

w−1
³X

w(|αj |)
´
≤ (1 + C4)khkHϕ,q ,

where C < 1 is the quasi-concavity constant for w. Since C < 1 thenX
|αj | ≤ w−1

µ
1

C

X
w

µ |αj |
C

¶¶
≤ w−1

µ
1

C

X
w

µ
C|αj |
C2

¶¶
.

Now, let t1 = |αj |, and let t2 =
|αj |
C2

. Since C < 1, we have t1 < t2 and

by Lemma 6.2 implies that

C
w(Ct2)

t2
≤ w(t1)

t1
.

Therefore, we have

w(Ct2) ≤
t2
t1

w(t1)

C
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which implies that

w

µ
C
|αj |
C2

¶
≤ |αj |

C2|αj |
w(|αj |)

C
=

w(|αj |)
C3

.

ThusX
|αj | ≤ w−1

µ
1

C

X w(|αj |)
C3

¶
= w−1

µ
1

C4

X
w(|αj |)

¶
≤ w−1

µ
1

C4
(1 + C4)khkHϕ,q

¶
≤ w−1

µ
2

C4
khkHϕ,q

¶
.

Now, if g ∈ BMO
(p)
ϕ , since C < 1, we have

¯̄̄̄Z
ghdµ

¯̄̄̄
≤

X
|αj |

¯̄̄̄Z
gajdµ

¯̄̄̄

≤ kgk
BMO

(p)
ϕ
w−1

³
2
C4
khkHϕ,q

´
.

Therefore, g defines a bounded linear functional L on Hϕ,q given by

Lg(h) =

Z
ghdµ,

which satisfies

kLgk = sup
khkHϕ,q=1

|Lg(h)| ≤ w−1
µ
2

C4

¶
kgk

BMO
(p)
ϕ
.

Thus,
BMO(p)ϕ ⊂ (Hϕ,q)∗

and the Theorem is proved.
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