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Abstract

Let G = (V, E) be a graph of order n = |V| and chromatic num-
ber (G). A dominating set D of G is called a dominating chromatic
partition-cover or dcc-set, if it intersects every color class of every
X-coloring of G. The minimum cardinality of a dcc-set is called
the dominating chromatic partition-covering number, denoted dec(G).
The dcc-saturation number equals the minimum integer k such that
every vertex v € V is contained in a dcc-set of cardinality k. This
number is denoted by dees(G). In this paper we study a few properties
of these two invariants dec(G) and dees(G).
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1. Introduction, terminology and definitions

By a graph G = (V, E) we mean a finite, undirected graph without loops
or multiple edges, of order n = |V| and size m = |E|. For graph theoretic
terminology not given here, the reader is referred to Harary [5].

One of the fastest growing areas within graph theory is the study of
domination and related subset problems, such as independence, covering
and matching. A comprehensive treatment of the fundamentals of domina-
tion is given in the book by Haynes et al. [8]. Surveys of several advanced
topics in domination can be seen in the book edited by the same authors
[7]. Perhaps the most studied area of graph theory is the study of graph
colorings, or partitions of either V' or E according to certain rules. Topics
lying in the intersection of these two areas are starting to appear in the
literature, such as partitions of V' into dominating sets and the correspond-
ing invariant called the domatic number (cf. Chapter 13 by Zelinka in [7].
This paper is a contribution to this intersection.

We will need several definitions. A set S C V is called a dominating
set if every vertex in V — S is adjacent to a vertex in S. The minimum
cardinality of a dominating set in G is called the domination number and is
denoted by v(G); also a dominating set of minimum cardinality is called a
~v-set. A set S C V is called independent if no two vertices in S are adjacent.
A k-coloring of G is a partition 7 = {V1,Va,..., Vi } of V into k indepen-
dent sets, called color classes. The chromatic number of G, denoted (G),
equals the minimum integer k such that G has a k-coloring. A chromatic
partition is a partition 7 = {V1, Va, ..., Vi} of V into (G) independent sets,
or equivalently, a chromatic partition is a X'-coloring.

We say that a set S C V covers a partition 7 if S NV; # 0 for every i,
1 <i < k. A chromatic partition coveris a set S that covers every chromatic
partition of G. If S is also a dominating set, then S is called a dominating
chromatic partition-cover of G, or a dcc-set. The minimum cardinality of
a dcc-set is called the dominating chromatic partition-covering number,
denoted dee(G). The concept of a dominating chromatic-partition cover
was first introduced and studied by the present authors in [3], who called
dee(G) the chromatic transversal domination number. But since this is not
truly a domination number, we have changed the terminology and notation
to better reflect the fact these sets are covers (or transversals), but restricted
to dominating sets, of the chromatic partitions of a graph. This paper is a
continuation of that study.

A vertex v € V is called X-critical if (G—C) < (G). We call this vertex
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a X-critical vertex. If every vertex v € V is X-critical, then G is called a
X-critical graph. It is easy to see, for example, that every complete graph
K, and every cycle Cy,+1 of odd length is a X'-critical graph.

Example 1:

For the above graph G, S = {c,d, e} is a dcc-set, since S covers every
X-partition of G and so dcc(G) = 3.

Example 2: Consider any cycle C, of odd length n. As every vertex v
of C), is a X-critical vertex, it follows that {v} is a colour class of some
X-partition of C),. Therefore dec(Cy,) = n.

A dcc-set S is called minimal if no proper subset of S is also a dcc-set.
The property of being a dcc-set is super-hereditary since any superset of a
dcc-set is also a dec-set. Thus, a set S is a minimal dcc-set if and only if
for every v € S, S — {v} is not a dcc-set.

In [1], Acharya introduced the concept of the domsaturation number
ds(G), that equals the minimum integer k such that every vertex v € V
is contained in a dominating set of cardinality k. Notice that for any
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graph G, either every vertex v € V is contained in a y-set, in which case
ds(G) = v(@G), or can be added to a ~-set, in which case ds(G) = v(G) + 1.
Thus, v(G) < ds(G) <v(G) + 1.

A dominating set S of a graph G is called a global dominating set if
S is also a dominating set of the complement G of G. The minimum
cardinality of a global dominating set, v4(G), is called the global domination
number of G. The global domsaturation number dsg(G) equals the minimum
integer k such that every vertex v is contained in a global dominating set
of cardinalilty k [7].

Finally, The open neighborhood N (v) of a vertex v € V equals the set
of vertices adjacent to v in G, that is, N(v) = {u|uv € E}. The closed
neighborhood N[v] of a vertex v € V is the set N(v) U {v}. Let S C V be
a set of vertices and let u € S. We define pnfu, S| = N[u] — N[S — u] and
pn(u,S) = N(u) — N(S — u).

The set of private neighbors of a vertex in u € S is denoted by pn[u, S].
Notice that if a vertex u € S is not adjacent to any vertex in .S, then
u € pnlu, S], in which case we say that u is its own private neighbor, while
every other private neighbor of u is a vertex in V — S.

The following are the important results proved in [3] by the authors.

Theorem 1.1. ([3,9]) A dcc-set S is minimal if and only if for every vertex
u € S, at least one of the following holds. (i) pn[u,S] # 0. (ii) There exists
a chromatic partition m = {V1, Va, ..., Vi } such that SNV; = {u} for some
1.

Theorem 1.2. ([3]) For a connected graph G, dcc(G) = n if and only if
G is X-critical.

Theorem 1.3. ([3]) Let G be a connected bipartite graph of order n > 3
and vertex bipartition (X,Y) with |X| < |Y]|. Then dcc(G) = v(G) + 1 if
and only if every vertex in X has at least two leaves as its neighbors in Y .
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Th((ao;'em 1.4. ([3]) For any graph G, (i) 7(G) < 74(G) < dee(G). (i) (G) <
dee(G).

Result 1.5 ([3]).
(i) dec(Pa) = ¥(Pa) = [2],n > 4.

(ii) Every X- critical vertex is in every dcc-set.

Theorem 1.6 ([8]). If G is a graph without isolated vertices, then v(G) <
2.

Theorem 1.7(]2]) For a connected bipartite graph G of order n > 3,
dsg(G) = ds(G).

Result 1.8 ([3]).
(i) dec(Ky) = dee(Ky) =n and dee(Kp,) = 2.

(ii) Let G be a connected bipartite graph with vertex bipartition (X,Y).

If there exists a y-set S of G such that SNX # (0, then dee(G) = v(G),
otherwise dec(G) = v(G) + 1. In particular dec(Cy) = [§], if n is
even.

(iii) If every vertex v of a graph G forms a color class of some chromatic
partition of G, then dec(G) = n. In particular dec(Cy) = n, if n is
odd and

n, if n is even;
dec (W) = , where W), is a whell with
3, if n is odd

(iv) dec(P) =5, where P is the Petersen graph.

Theorem 1.9 ([3]). Let G be a connected graph with bipartition (X,Y")
where | X| < |Y| and n > 3. Then dce(G) = v(G) + 1 if and only if every
vertex in X has at least two neighbours which are leaves.
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2. Main Results

Analogous to ds(G) and dsg(G) in [2] we define a number dces(G) using
which we can characterize graphs for which dec(G) =n — 1.

Definition 2.1. Let G be a graph. The dcc-saturation number of a vertex v,
denoted by dccs(v), equals the minimum integer k such that the vertex v is
contained in a dcc-set of cardinality k and dccs(G) = max{dccs(v) : v € V'}.

Remark 2.2. (i) If S is a dcc-set, then for any u € V — S, SU{u} is a
dec-set and hence dec(G) < dees(G) < dee(G) + 1.

(ii) For every v € V, dcc(G) < dees(v) < dees(G).
(iii) ds(G) < dsg(G) < dces(G).

Definition 2.3. A graph G is said to be in class I or class II according as
dees(G) = dee(Q) or dees(G) = dee(G) + 1.
It can be verified that the following graphs belong to class I:-
(i) All X-critical graphs, in particular K, for every n and the wheel W,
n even.

(ii) The cycle Cy, for every n.

(iii) The Petersen graph in view of a theorem given in [3].

Proposition 2.4. For n > 4, P, is a class I graph if and only if n = 1
(mod 3).

Proof. Clearly Pj is a class I graph. Let n > 5. If n # 1(mod 3),
then by a Theorem in [2], the domsaturation number ds(P,) = y(P,) + 1
and consequently dccs(Py,) > ds(P,,) = dec(Py,) + 1. Hence P, is a class 11
graph.

Conversely, suppose n =1 (mod 3). Let n = 3k + 1;k > 2. Let the
vertices of P, be {1,2,...,3k + 1}. Then D; = {1,3,6,..,3(k — 1),3k},
Dy ={2,5,...,3k — 1,3k} and D3 = {1,4,7,...,3k — 2,3k + 2} are dcc-sets
and so dces(Py,) = dee(G). O

Proposition 2.5. Let H be a connected graph with n > 3. Then the corona
H o K1, is a class I graph if and only if H has no critical vertex.
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Proof. To prove this result, we prove that G is a Class II graph if and
only if H has a critical vertex.

Let dees(G) = dee(G) + 1. Then dees(v) = dee(G) = |V(H)| for every
v € V(H). As dces(H o K1) = dec(H o K1) + 1, there exists a leaf vy for
which dees(vg) = dec(H o K1) + 1. Let ug be the support of vg. Then
up is a critical vertex; otherwise (V(H) — {uop}) U {vo} becomes a dcc-set
containing vg of cardinality dec(G).

Conversely, if ug is a critical vertex of H, then wug is also a critical vertex
of G and so decs(vg) = dee(G)+1 where vy is a leaf having ug as its support.
So G is a class II graph. O

Lemma 2.6. For a connected graph G, dces(G) = n if and only if G has
at most one vertex that is not X-critical.

Proof. If deecs(G) = n, then dec(G) = n or n — 1. If dec(G) = n, then
by Theorem 1.2, G becomes a X-critical graph with n vertices.

Let dec(G) = n — 1. Let S be a dec-set of G. Then, S =V — {u} for
some u € V. Clearly u is not a critical vertex. As dccs(G) = n, we have
dees(u) = m. Suppose w # w is not critical, then V — {w} is a dcc-set
containing u, contradicting the fact dees(u) = n.

Conversely, if all the vertices of G are critical vertices, then by Theorem
1.3, dee(G) = n = dces(G). If there exists a unique vertex u that is not
critical, then V' — {u} is the only dec-set in G and so dees(G) =n. O

Lemma 2.7. For a connected graph G, dec(G) = dees(G) =n — 1 if and
only if G has exactly two vertices u and v that are not critical and they
satisfy at least one of the following conditions:

(a) one is a support and the other is its only adjacent leaf.

(b) x (G ={u,v}) <(9).
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Proof. Let G be a connected graph of order n > 2 with dee(G) =
dees(G) = n — 1. Obviously (G) > €. As dee(G) = n — 1, by Theorem
1.2, G is not a X-critical graph. Let H be a X-critical subgraph of G
of maximum size. Let |[V(H)| = k. As (H) = (G), V(H) is a chromatic
partition cover of G. Son —1 = dcc(G) < k+n—k2 < ”TJ“’“ This implies
that n < k + 2. Now n # k, for otherwise G becomes a X-critical graph.
Son=k+2or k+1.

Case 1: Let n = k+ 2. Let V(G) — V(H) = {u,v}. Suppose u and v are
non-adjacent or both are not leaves, then V(H) becomes a dcc-set of G, a
contradiction to dec(G) = n — 1. Therefore u and v are adjacent and one
of them, say v, is a leaf. Every vertex w distinct from u and v are critical
vertex of G, for otherwise dec(G) = p — 2. So (a) is true in this case.

Case 2: Let n = k+ 1. When (G) = €, we have G ~ Pj satisfying (b).
Assume that (G) > 3.

Then k > 3. Let V(G)—V(H) = {v}. By definition of H, H = G—{v}.
As dees(G) = n — 1, there exists a vertex u in H such that V(G) — {u} is a
dcc-set of G containing v. Obviously u and v are not critical vertices of G.

Claim:

item[(i)] No vertex in G is a leaf. item|[(ii)] G —u is a X-critical subgraph of
G. item|(iii)] v and v are not adjacent in G. item[(iv)] N(u)UN (v) = V(G).
item[(v)] v and v are the only vertices in G that are not critical.

v cannot be a leaf, for otherwise decs(v) = n. Since H is a X-critical
subgraph, no vertex of H is a leaf in G. Hence (i) is true. Suppose (ii) is
not true. Then there exists a vertex w in G — {u} such that (G —{M,3}) =
(G —1) = (G). Hence V — {u,w} becomes a dcc-set in view of (i), a
contradiction.

Suppose u and v are adjacent. Then as u and v are not critical vertices,
the set V' — {u,v} is a dec-set by (i), a contradiction and so (iii) is true.
Next we prove that N(u)UN(v) = V(G). Suppose w ¢ N(u) U N(v), then
(G—{C,3}) =(G) — o0 as G — v is a X-critical subgraph of G. Similarly
X (G —{u,w}) = (G) — co. This implies that u, v, w belong to every dec-set
of G, a contradiction to the fact that V' — {u} is a decc-set containing v.
This proves (iv).
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Suppose w # w,v, such that w is not a critical vertex of G. By (iv)
w is adjacent to either u or v, say u. As u,v,w are not critical vertices,
none of the sets {u}, {v}, {w} will form a color class for any chromatic
partition of GG. Since u and w are adjacent, they belong to different color
classes of every chromatic partition of G. This implies that V' — {u,v} is
a dcc set of G by (i), a contradiction. If {u,v} is not a color class of any
chromatic partition of G, then V(G) — {u,v} is a dcc-set, a contradiction.
So x (G — {u,v}) < (G) satistying (b).

The converse is easily proved. O

Theorem 2.8. For a connected graph G, dcc(G) =n — 1 if and only if G
has exactly one vertex that is not critical or two vertices u and v, both are
not critical vertices satisfying any one of the following properties:

(i) One is a support and the other is its adjacent leaf.

(il) x (G = {u,v}) < (9).

Proof. If dec(G) = n — 1, then dces(G) = n — 1 or n. So by Lemmas
2.6 and 2.7, we get the required result. O

Corollary 2.9. If G is a connected bipartite graph, then dec(G) =n — 1 if
and only if G ~ Ps.

Proof. Let dee(G) =n— 1. Obviously n > 3. When n > 4 by Theorem
2.8, GG will have at least two critical vertices which is impossible. So G ~ Ps.
The converse in obvious. O

Theorem 2.10. For a connected bipartite graph G(# K3), ds(G) = dccs(Q).
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Proof. If G = K1, then ds(G) = 2 = dcc(G). Therefore assume that
G # Kiyn—1. Then every dominating set has vertices from each partition
set. That means, every dominating set is also a chromatic partition cover
and hence dcc(G) < v(G). Since v(G) < dee(G) is evident, we have that
dee(G) = v(G). Hence v(G) < ds(G) < dee(G) +1 = v(G) + 1. Therefore,
if ds(G) # dces(G), then ds(G) = (@) and dees(G) = v(G) + 1. From
the first equality follows that every vertex lies on a minimum dominating
set. From the second that there is a vertex that does not lie on a minimum
dec-set or rather (since dec(G) = v(G)) on a minimum dominating set.
Hence, a contradiction and dc(G) = dces(G) follows. O

The classification theorem for dsg(G) = ds(G) given in [2] follows as a
corollary of Theorem 2.10.

Corollary 2.11. For a connected bipartite graph G(# K3), dsg(G) = ds(G) =
dees(Q).

Proof. Since ds(G) < dsg(G) < dees(G), the result follows from Theo-
rem 2.10. O
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