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Abstract

Let G = (V,E) be a graph of order n = |V | and chromatic num-
ber (G). A dominating set D of G is called a dominating chromatic
partition-cover or dcc-set, if it intersects every color class of every
X -coloring of G. The minimum cardinality of a dcc-set is called
the dominating chromatic partition-covering number, denoted dcc(G).
The dcc-saturation number equals the minimum integer k such that
every vertex v ∈ V is contained in a dcc-set of cardinality k. This
number is denoted by dccs(G). In this paper we study a few properties
of these two invariants dcc(G) and dccs(G).
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1. Introduction, terminology and definitions

By a graph G = (V,E) we mean a finite, undirected graph without loops
or multiple edges, of order n = |V | and size m = |E|. For graph theoretic
terminology not given here, the reader is referred to Harary [5].

One of the fastest growing areas within graph theory is the study of
domination and related subset problems, such as independence, covering
and matching. A comprehensive treatment of the fundamentals of domina-
tion is given in the book by Haynes et al. [8]. Surveys of several advanced
topics in domination can be seen in the book edited by the same authors
[7]. Perhaps the most studied area of graph theory is the study of graph
colorings, or partitions of either V or E according to certain rules. Topics
lying in the intersection of these two areas are starting to appear in the
literature, such as partitions of V into dominating sets and the correspond-
ing invariant called the domatic number (cf. Chapter 13 by Zelinka in [7].
This paper is a contribution to this intersection.

We will need several definitions. A set S ⊆ V is called a dominating
set if every vertex in V − S is adjacent to a vertex in S. The minimum
cardinality of a dominating set in G is called the domination number and is
denoted by γ(G); also a dominating set of minimum cardinality is called a
γ-set. A set S ⊂ V is called independent if no two vertices in S are adjacent.
A k-coloring of G is a partition π = {V1, V2, . . . , Vk} of V into k indepen-
dent sets, called color classes. The chromatic number of G, denoted (G),
equals the minimum integer k such that G has a k-coloring. A chromatic
partition is a partition π = {V1, V2, . . . , Vk} of V into (G) independent sets,
or equivalently, a chromatic partition is a X -coloring.

We say that a set S ⊂ V covers a partition π if S ∩ Vi 6= ∅ for every i,
1 ≤ i ≤ k. A chromatic partition cover is a set S that covers every chromatic
partition of G. If S is also a dominating set, then S is called a dominating
chromatic partition-cover of G, or a dcc-set. The minimum cardinality of
a dcc-set is called the dominating chromatic partition-covering number,
denoted dcc(G). The concept of a dominating chromatic-partition cover
was first introduced and studied by the present authors in [3], who called
dcc(G) the chromatic transversal domination number. But since this is not
truly a domination number, we have changed the terminology and notation
to better reflect the fact these sets are covers (or transversals), but restricted
to dominating sets, of the chromatic partitions of a graph. This paper is a
continuation of that study.

A vertex v ∈ V is called X -critical if (G−v) < (G). We call this vertex
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a X -critical vertex. If every vertex v ∈ V is X -critical, then G is called a
X -critical graph. It is easy to see, for example, that every complete graph
Kn and every cycle C2n+1 of odd length is a X -critical graph.

Example 1:

For the above graph G, S = {c, d, e} is a dcc-set, since S covers every
X -partition of G and so dcc(G) = 3.

Example 2: Consider any cycle Cn of odd length n. As every vertex v
of Cn is a X -critical vertex, it follows that {v} is a colour class of some
X -partition of Cn. Therefore dcc(Cn) = n.

A dcc-set S is called minimal if no proper subset of S is also a dcc-set.
The property of being a dcc-set is super-hereditary since any superset of a
dcc-set is also a dcc-set. Thus, a set S is a minimal dcc-set if and only if
for every v ∈ S, S − {v} is not a dcc-set.

In [1], Acharya introduced the concept of the domsaturation number
ds(G), that equals the minimum integer k such that every vertex v ∈ V
is contained in a dominating set of cardinality k. Notice that for any
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graph G, either every vertex v ∈ V is contained in a γ-set, in which case
ds(G) = γ(G), or can be added to a γ-set, in which case ds(G) = γ(G)+1.
Thus, γ(G) ≤ ds(G) ≤ γ(G) + 1.

A dominating set S of a graph G is called a global dominating set if
S is also a dominating set of the complement G of G. The minimum
cardinality of a global dominating set, γg(G), is called the global domination
number ofG. The global domsaturation number dsg(G) equals the minimum
integer k such that every vertex v is contained in a global dominating set
of cardinalilty k [7].

Finally, The open neighborhood N(v) of a vertex v ∈ V equals the set
of vertices adjacent to v in G, that is, N(v) = {u|uv ∈ E}. The closed
neighborhood N [v] of a vertex v ∈ V is the set N(v) ∪ {v}. Let S ⊆ V be
a set of vertices and let u ∈ S. We define pn[u, S] = N [u]−N [S − u] and
pn(u, S) = N(u)−N(S − u).

The set of private neighbors of a vertex in u ∈ S is denoted by pn[u, S].
Notice that if a vertex u ∈ S is not adjacent to any vertex in S, then
u ∈ pn[u, S], in which case we say that u is its own private neighbor, while
every other private neighbor of u is a vertex in V − S.

The following are the important results proved in [3] by the authors.

Theorem 1.1. ([3,9]) A dcc-set S is minimal if and only if for every vertex
u ∈ S, at least one of the following holds. (i) pn[u, S] 6= ∅. (ii) There exists
a chromatic partition π = {V1, V2, . . . , Vk} such that S ∩ Vi = {u} for some
i.

Theorem 1.2. ([3]) For a connected graph G, dcc(G) = n if and only if
G is X -critical.

Theorem 1.3. ([3]) Let G be a connected bipartite graph of order n ≥ 3
and vertex bipartition (X,Y ) with |X| ≤ |Y |. Then dcc(G) = γ(G) + 1 if
and only if every vertex in X has at least two leaves as its neighbors in Y .



Some characterization theorems on dominating chromatic ... 17

Theorem 1.4. ([3]) For any graphG, (i) γ(G) ≤ γg(G) ≤ dcc(G). (ii) (G) ≤
dcc(G).

Result 1.5 ([3]).

(i) dcc(Pn) = γ(Pn) =
§
n
3

¨
, n ≥ 4.

(ii) Every X - critical vertex is in every dcc-set.

Theorem 1.6 ([8]). If G is a graph without isolated vertices, then γ(G) ≤
2.

Theorem 1.7([2]) For a connected bipartite graph G of order n ≥ 3,
dsg(G) = ds(G).

Result 1.8 ([3]).

(i) dcc(Kn) = dcc(Kn) = n and dcc(Km,n) = 2.

(ii) Let G be a connected bipartite graph with vertex bipartition (X,Y ).

If there exists a γ-set S ofG such that S∩X 6= ∅, then dcc(G) = γ(G),
otherwise dcc(G) = γ(G) + 1. In particular dcc(Cn) =

§n
3

¨
, if n is

even.

(iii) If every vertex v of a graph G forms a color class of some chromatic
partition of G, then dcc(G) = n. In particular dcc(Cn) = n, if n is
odd and

dcc (Wn) =

⎧⎪⎨⎪⎩
n, if n is even;

, where Wn is a whell with
3, if n is odd

(iv) dcc(P ) = 5, where P is the Petersen graph.

Theorem 1.9 ([3]). Let G be a connected graph with bipartition (X,Y )
where |X| ≤ |Y | and n ≥ 3. Then dcc(G) = γ(G) + 1 if and only if every
vertex in X has at least two neighbours which are leaves.
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2. Main Results

Analogous to ds(G) and dsg(G) in [2] we define a number dccs(G) using
which we can characterize graphs for which dcc(G) = n− 1.
Definition 2.1. Let G be a graph. The dcc-saturation number of a vertex v,
denoted by dccs(v), equals the minimum integer k such that the vertex v is
contained in a dcc-set of cardinality k and dccs(G) = max{dccs(v) : v ∈ V }.
Remark 2.2. (i) If S is a dcc-set, then for any u ∈ V − S, S ∪ {u} is a

dcc-set and hence dcc(G) ≤ dccs(G) ≤ dcc(G) + 1.

(ii) For every v ∈ V , dcc(G) ≤ dccs(v) ≤ dccs(G).

(iii) ds(G) ≤ dsg(G) ≤ dccs(G).

Definition 2.3. A graph G is said to be in class I or class II according as
dccs(G) = dcc(G) or dccs(G) = dcc(G) + 1.

It can be verified that the following graphs belong to class I:-

(i) All X -critical graphs, in particular Kn, for every n and the wheelWn,
n even.

(ii) The cycle Cn, for every n.

(iii) The Petersen graph in view of a theorem given in [3].

Proposition 2.4. For n ≥ 4, Pn is a class I graph if and only if n ≡ 1
(mod 3).

Proof. Clearly P4 is a class I graph. Let n ≥ 5. If n 6≡ 1(mod 3),
then by a Theorem in [2], the domsaturation number ds(Pn) = γ(Pn) + 1
and consequently dccs(Pn) ≥ ds(Pn) = dcc(Pn) + 1. Hence Pn is a class II
graph.

Conversely, suppose n ≡ 1 (mod 3). Let n = 3k + 1; k ≥ 2. Let the
vertices of Pn be {1, 2, ..., 3k + 1}. Then D1 = {1, 3, 6, .., 3(k − 1), 3k},
D2 = {2, 5, ..., 3k − 1, 3k} and D3 = {1, 4, 7, ..., 3k − 2, 3k + 2} are dcc-sets
and so dccs(Pn) = dcc(G). 2

Proposition 2.5. Let H be a connected graph with n ≥ 3. Then the corona
H ◦K1, is a class I graph if and only if H has no critical vertex.
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Proof. To prove this result, we prove that G is a Class II graph if and
only if H has a critical vertex.

Let dccs(G) = dcc(G) + 1. Then dccs(v) = dcc(G) = |V (H)| for every
v ∈ V (H). As dccs(H ◦K1) = dcc(H ◦K1) + 1, there exists a leaf v0 for
which dccs(v0) = dcc(H ◦ K1) + 1. Let u0 be the support of v0. Then
u0 is a critical vertex; otherwise (V (H) − {u0}) ∪ {v0} becomes a dcc-set
containing v0 of cardinality dcc(G).

Conversely, if u0 is a critical vertex of H, then u0 is also a critical vertex
of G and so dccs(v0) = dcc(G)+1 where v0 is a leaf having u0 as its support.
So G is a class II graph. 2

Lemma 2.6. For a connected graph G, dccs(G) = n if and only if G has
at most one vertex that is not X -critical.

Proof. If dccs(G) = n, then dcc(G) = n or n− 1. If dcc(G) = n, then
by Theorem 1.2, G becomes a X -critical graph with n vertices.

Let dcc(G) = n − 1. Let S be a dcc-set of G. Then, S = V − {u} for
some u ∈ V . Clearly u is not a critical vertex. As dccs(G) = n, we have
dccs(u) = n. Suppose w 6= u is not critical, then V − {w} is a dcc-set
containing u, contradicting the fact dccs(u) = n.

Conversely, if all the vertices of G are critical vertices, then by Theorem
1.3, dcc(G) = n = dccs(G). If there exists a unique vertex u that is not
critical, then V − {u} is the only dcc-set in G and so dccs(G) = n. 2

Lemma 2.7. For a connected graph G, dcc(G) = dccs(G) = n− 1 if and
only if G has exactly two vertices u and v that are not critical and they
satisfy at least one of the following conditions:

(a) one is a support and the other is its only adjacent leaf.

(b) χ (G− {u, v}) < (G).
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Proof. Let G be a connected graph of order n ≥ 2 with dcc(G) =
dccs(G) = n − 1. Obviously (G) ≥ ∈. As dcc(G) = n − 1, by Theorem
1.2, G is not a X -critical graph. Let H be a X -critical subgraph of G
of maximum size. Let |V (H)| = k. As (H) = (G), V (H) is a chromatic
partition cover of G. So n− 1 = dcc(G) ≤ k + n− k2 ≤ n+k

2 . This implies
that n ≤ k + 2. Now n 6= k, for otherwise G becomes a X -critical graph.
So n = k + 2 or k + 1.

Case 1: Let n = k + 2. Let V (G)− V (H) = {u, v}. Suppose u and v are
non-adjacent or both are not leaves, then V (H) becomes a dcc-set of G, a
contradiction to dcc(G) = n − 1. Therefore u and v are adjacent and one
of them, say v, is a leaf. Every vertex w distinct from u and v are critical
vertex of G, for otherwise dcc(G) = p− 2. So (a) is true in this case.

Case 2: Let n = k + 1. When (G) = ∈, we have G ' P3 satisfying (b).
Assume that (G) ≥ 3.

Then k ≥ 3. Let V (G)−V (H) = {v}. By definition of H, H = G−{v}.
As dccs(G) = n− 1, there exists a vertex u in H such that V (G)− {u} is a
dcc-set of G containing v. Obviously u and v are not critical vertices of G.

Claim:

item[(i)] No vertex in G is a leaf. item[(ii)] G−u is a X -critical subgraph of
G. item[(iii)] u and v are not adjacent inG. item[(iv)]N(u)∪N(v) = V (G).
item[(v)] u and v are the only vertices in G that are not critical.

v cannot be a leaf, for otherwise dccs(v) = n. Since H is a X -critical
subgraph, no vertex of H is a leaf in G. Hence (i) is true. Suppose (ii) is
not true. Then there exists a vertex w in G−{u} such that (G−{u,w}) =
(G − u) = (G). Hence V − {u,w} becomes a dcc-set in view of (i), a
contradiction.

Suppose u and v are adjacent. Then as u and v are not critical vertices,
the set V − {u, v} is a dcc-set by (i), a contradiction and so (iii) is true.
Next we prove that N(u)∪N(v) = V (G). Suppose w /∈ N(u)∪N(v), then
(G − {v,w}) = (G)−∞ as G− v is a X -critical subgraph of G. Similarly
χ (G− {u,w}) = (G)−∞. This implies that u, v, w belong to every dcc-set
of G, a contradiction to the fact that V − {u} is a dcc-set containing v.
This proves (iv).
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Suppose w 6= u, v, such that w is not a critical vertex of G. By (iv)
w is adjacent to either u or v, say u. As u, v, w are not critical vertices,
none of the sets {u}, {v}, {w} will form a color class for any chromatic
partition of G. Since u and w are adjacent, they belong to different color
classes of every chromatic partition of G. This implies that V − {u, v} is
a dcc set of G by (i), a contradiction. If {u, v} is not a color class of any
chromatic partition of G, then V (G)− {u, v} is a dcc-set, a contradiction.
So χ (G− {u, v}) < (G) satisfying (b).

The converse is easily proved. 2

Theorem 2.8. For a connected graph G, dcc(G) = n− 1 if and only if G
has exactly one vertex that is not critical or two vertices u and v, both are
not critical vertices satisfying any one of the following properties:

(i) One is a support and the other is its adjacent leaf.

(ii) χ (G− {u, v}) < (G).

Proof. If dcc(G) = n − 1, then dccs(G) = n − 1 or n. So by Lemmas
2.6 and 2.7, we get the required result. 2

Corollary 2.9. If G is a connected bipartite graph, then dcc(G) = n − 1 if
and only if G ' P3.

Proof. Let dcc(G) = n− 1. Obviously n ≥ 3. When n > 4 by Theorem
2.8, G will have at least two critical vertices which is impossible. SoG ' P3.
The converse in obvious. 2

Theorem 2.10. For a connected bipartite graphG(6= K2), ds(G) = dccs(G).
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Proof. If G = K1,n−1, then ds(G) = 2 = dcc(G). Therefore assume that
G 6= K1,n−1. Then every dominating set has vertices from each partition
set. That means, every dominating set is also a chromatic partition cover
and hence dcc(G) ≤ γ(G). Since γ(G) ≤ dcc(G) is evident, we have that
dcc(G) = γ(G). Hence γ(G) ≤ ds(G) ≤ dcc(G) + 1 = γ(G) + 1. Therefore,
if ds(G) 6= dccs(G), then ds(G) = γ(G) and dccs(G) = γ(G) + 1. From
the first equality follows that every vertex lies on a minimum dominating
set. From the second that there is a vertex that does not lie on a minimum
dcc-set or rather (since dcc(G) = γ(G)) on a minimum dominating set.
Hence, a contradiction and dc(G) = dccs(G) follows. 2

The classification theorem for dsg(G) = ds(G) given in [2] follows as a
corollary of Theorem 2.10.

Corollary 2.11. For a connected bipartite graphG(6= K2), dsg(G) = ds(G) =
dccs(G).

Proof. Since ds(G) ≤ dsg(G) ≤ dccs(G), the result follows from Theo-
rem 2.10. 2
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