Proyecciones Journal of Mathematics Vol. 33, N^o 1, pp. 13-23, March 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000100002

Some characterization theorems on dominating chromatic partition-covering number of graphs

L. Benedict Michael Raj St. Joseph's College, India and S. K. Ayyaswamy Sastra University, India Received : July 2011. Accepted : January 2013

Abstract

Let G = (V, E) be a graph of order n = |V| and chromatic number (\mathcal{G}). A dominating set D of G is called a dominating chromatic partition-cover or dcc-set, if it intersects every color class of every \mathcal{X} -coloring of G. The minimum cardinality of a dcc-set is called the dominating chromatic partition-covering number, denoted dcc(G). The dcc-saturation number equals the minimum integer k such that every vertex $v \in V$ is contained in a dcc-set of cardinality k. This number is denoted by dccs(G). In this paper we study a few properties of these two invariants dcc(G) and dccs(G).

Keywords : Dominating set, chromatic partition, dominating chromatic partition-covering number.

Sbject classification : 05C69.

1. Introduction, terminology and definitions

By a graph G = (V, E) we mean a finite, undirected graph without loops or multiple edges, of order n = |V| and size m = |E|. For graph theoretic terminology not given here, the reader is referred to Harary [5].

One of the fastest growing areas within graph theory is the study of domination and related subset problems, such as independence, covering and matching. A comprehensive treatment of the fundamentals of domination is given in the book by Haynes et al. [8]. Surveys of several advanced topics in domination can be seen in the book edited by the same authors [7]. Perhaps the most studied area of graph theory is the study of graph colorings, or partitions of either V or E according to certain rules. Topics lying in the intersection of these two areas are starting to appear in the literature, such as partitions of V into dominating sets and the corresponding invariant called the domatic number (cf. Chapter 13 by Zelinka in [7]. This paper is a contribution to this intersection.

We will need several definitions. A set $S \subseteq V$ is called a *dominating* set if every vertex in V - S is adjacent to a vertex in S. The minimum cardinality of a dominating set in G is called the *domination number* and is denoted by $\gamma(G)$; also a dominating set of minimum cardinality is called a γ -set. A set $S \subset V$ is called *independent* if no two vertices in S are adjacent. A k-coloring of G is a partition $\pi = \{V_1, V_2, \ldots, V_k\}$ of V into k independent sets, called *color classes*. The *chromatic number* of G, denoted (\mathcal{G}) , equals the minimum integer k such that G has a k-coloring. A *chromatic partition* is a partition $\pi = \{V_1, V_2, \ldots, V_k\}$ of V into (\mathcal{G}) independent sets, or equivalently, a chromatic partition is a \mathcal{X} -coloring.

We say that a set $S \subset V$ covers a partition π if $S \cap V_i \neq \emptyset$ for every i, $1 \leq i \leq k$. A chromatic partition cover is a set S that covers every chromatic partition of G. If S is also a dominating set, then S is called a *dominating* chromatic partition-cover of G, or a *dcc*-set. The minimum cardinality of a *dcc*-set is called the dominating chromatic partition-covering number, denoted *dcc*(G). The concept of a dominating chromatic-partition cover was first introduced and studied by the present authors in [3], who called *dcc*(G) the chromatic transversal domination number. But since this is not truly a domination number, we have changed the terminology and notation to better reflect the fact these sets are covers (or transversals), but restricted to dominating sets, of the chromatic partitions of a graph. This paper is a continuation of that study.

A vertex $v \in V$ is called \mathcal{X} -critical if $(\mathcal{G} - \sqsubseteq) < (\mathcal{G})$. We call this vertex

a \mathcal{X} -critical vertex. If every vertex $v \in V$ is \mathcal{X} -critical, then G is called a \mathcal{X} -critical graph. It is easy to see, for example, that every complete graph K_n and every cycle C_{2n+1} of odd length is a \mathcal{X} -critical graph.

Example 1:

For the above graph G, $S = \{c, d, e\}$ is a *dcc*-set, since S covers every \mathcal{X} -partition of G and so dcc(G) = 3.

Example 2: Consider any cycle C_n of odd length n. As every vertex v of C_n is a \mathcal{X} -critical vertex, it follows that $\{v\}$ is a colour class of some \mathcal{X} -partition of C_n . Therefore $dcc(C_n) = n$.

A dcc-set S is called minimal if no proper subset of S is also a dcc-set. The property of being a dcc-set is super-hereditary since any superset of a dcc-set is also a dcc-set. Thus, a set S is a minimal dcc-set if and only if for every $v \in S$, $S - \{v\}$ is not a dcc-set.

In [1], Acharya introduced the concept of the domsaturation number ds(G), that equals the minimum integer k such that every vertex $v \in V$ is contained in a dominating set of cardinality k. Notice that for any

graph G, either every vertex $v \in V$ is contained in a γ -set, in which case $ds(G) = \gamma(G)$, or can be added to a γ -set, in which case $ds(G) = \gamma(G) + 1$. Thus, $\gamma(G) \leq ds(G) \leq \gamma(G) + 1$.

A dominating set S of a graph G is called a global dominating set if S is also a dominating set of the complement \overline{G} of G. The minimum cardinality of a global dominating set, $\gamma_g(G)$, is called the global domination number of G. The global domsaturation number dsg(G) equals the minimum integer k such that every vertex v is contained in a global dominating set of cardinality k [7].

Finally, The open neighborhood N(v) of a vertex $v \in V$ equals the set of vertices adjacent to v in G, that is, $N(v) = \{u | uv \in E\}$. The closed neighborhood N[v] of a vertex $v \in V$ is the set $N(v) \cup \{v\}$. Let $S \subseteq V$ be a set of vertices and let $u \in S$. We define pn[u, S] = N[u] - N[S - u] and pn(u, S) = N(u) - N(S - u).

The set of private neighbors of a vertex in $u \in S$ is denoted by pn[u, S]. Notice that if a vertex $u \in S$ is not adjacent to any vertex in S, then $u \in pn[u, S]$, in which case we say that u is its *own* private neighbor, while every other private neighbor of u is a vertex in V - S.

The following are the important results proved in [3] by the authors.

Theorem 1.1. ([3,9]) A dcc-set S is minimal if and only if for every vertex $u \in S$, at least one of the following holds. (i) $pn[u, S] \neq \emptyset$. (ii) There exists a chromatic partition $\pi = \{V_1, V_2, \ldots, V_k\}$ such that $S \cap V_i = \{u\}$ for some *i*.

Theorem 1.2. ([3]) For a connected graph G, dcc(G) = n if and only if G is \mathcal{X} -critical.

Theorem 1.3. ([3]) Let G be a connected bipartite graph of order $n \ge 3$ and vertex bipartition (X, Y) with $|X| \le |Y|$. Then $dcc(G) = \gamma(G) + 1$ if and only if every vertex in X has at least two leaves as its neighbors in Y. **Theorem 1.4.** ([3]) For any graph G, (i) $\gamma(G) \leq \gamma_g(G) \leq dcc(G)$. (ii) $(\mathcal{G}) \leq dcc(\mathcal{G})$.

Result 1.5 ([3]).

- (i) $dcc(P_n) = \gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil, n \ge 4.$
- (ii) Every \mathcal{X} critical vertex is in every *dcc*-set.

Theorem 1.6 ([8]). If G is a graph without isolated vertices, then $\gamma(G) \leq 2$.

Theorem 1.7([2]) For a connected bipartite graph G of order $n \geq 3$, dsg(G) = ds(G).

Result 1.8 ([3]).

- (i) $dcc(K_n) = dcc(\overline{K_n}) = n$ and $dcc(K_{m,n}) = 2$.
- (ii) Let G be a connected bipartite graph with vertex bipartition (X, Y). If there exists a γ -set S of G such that $S \cap X \neq \emptyset$, then $dcc(G) = \gamma(G)$, otherwise $dcc(G) = \gamma(G) + 1$. In particular $dcc(C_n) = \lfloor \frac{n}{3} \rfloor$, if n is even.
- (iii) If every vertex v of a graph G forms a color class of some chromatic partition of G, then dcc(G) = n. In particular $dcc(C_n) = n$, if n is odd and

 $dcc(W_n) = \begin{cases} n, \text{ if } n \text{ is even;} \\ & \\ 3, \text{ if } n \text{ is odd} \end{cases}, \text{ where } W_n \text{ is a whell with}$

(iv) dcc(P) = 5, where P is the Petersen graph.

Theorem 1.9 ([3]). Let G be a connected graph with bipartition (X, Y) where $|X| \leq |Y|$ and $n \geq 3$. Then $dcc(G) = \gamma(G) + 1$ if and only if every vertex in X has at least two neighbours which are leaves.

2. Main Results

18

Analogous to ds(G) and dsg(G) in [2] we define a number dccs(G) using which we can characterize graphs for which dcc(G) = n - 1.

Definition 2.1. Let G be a graph. The dcc-saturation number of a vertex v, denoted by dccs(v), equals the minimum integer k such that the vertex v is contained in a dcc-set of cardinality k and $dccs(G) = \max\{dccs(v) : v \in V\}$.

Remark 2.2. (i) If S is a dcc-set, then for any $u \in V - S$, $S \cup \{u\}$ is a dcc-set and hence $dcc(G) \leq dccs(G) \leq dcc(G) + 1$.

- (ii) For every $v \in V$, $dcc(G) \leq dccs(v) \leq dccs(G)$.
- (iii) $ds(G) \le dsg(G) \le dccs(G)$.

Definition 2.3. A graph G is said to be in class I or class II according as dccs(G) = dcc(G) or dccs(G) = dcc(G) + 1.

It can be verified that the following graphs belong to class I:-

- (i) All \mathcal{X} -critical graphs, in particular K_n , for every n and the wheel W_n , n even.
- (ii) The cycle C_n , for every n.
- (iii) The Petersen graph in view of a theorem given in [3].

Proposition 2.4. For $n \ge 4$, P_n is a class I graph if and only if $n \equiv 1 \pmod{3}$.

Proof. Clearly P_4 is a class I graph. Let $n \ge 5$. If $n \not\equiv 1 \pmod{3}$, then by a Theorem in [2], the domsaturation number $d_s(P_n) = \gamma(P_n) + 1$ and consequently $dccs(P_n) \ge d_s(P_n) = dcc(P_n) + 1$. Hence P_n is a class II graph.

Conversely, suppose $n \equiv 1 \pmod{3}$. Let $n = 3k + 1; k \geq 2$. Let the vertices of P_n be $\{1, 2, ..., 3k + 1\}$. Then $D_1 = \{1, 3, 6, ..., 3(k - 1), 3k\}$, $D_2 = \{2, 5, ..., 3k - 1, 3k\}$ and $D_3 = \{1, 4, 7, ..., 3k - 2, 3k + 2\}$ are dcc-sets and so $dccs(P_n) = dcc(G)$. \Box

Proposition 2.5. Let H be a connected graph with $n \ge 3$. Then the corona $H \circ K_1$, is a class I graph if and only if H has no critical vertex.

Proof. To prove this result, we prove that G is a Class II graph if and only if H has a critical vertex.

Let dccs(G) = dcc(G) + 1. Then dccs(v) = dcc(G) = |V(H)| for every $v \in V(H)$. As $dccs(H \circ K_1) = dcc(H \circ K_1) + 1$, there exists a leaf v_0 for which $dccs(v_0) = dcc(H \circ K_1) + 1$. Let u_0 be the support of v_0 . Then u_0 is a critical vertex; otherwise $(V(H) - \{u_0\}) \cup \{v_0\}$ becomes a dcc-set containing v_0 of cardinality dcc(G).

Conversely, if u_0 is a critical vertex of H, then u_0 is also a critical vertex of G and so $dccs(v_0) = dcc(G) + 1$ where v_0 is a leaf having u_0 as its support. So G is a class II graph. \Box

Lemma 2.6. For a connected graph G, dccs(G) = n if and only if G has at most one vertex that is not \mathcal{X} -critical.

Proof. If dccs(G) = n, then dcc(G) = n or n - 1. If dcc(G) = n, then by Theorem 1.2, G becomes a \mathcal{X} -critical graph with n vertices.

Let dcc(G) = n - 1. Let S be a dcc-set of G. Then, $S = V - \{u\}$ for some $u \in V$. Clearly u is not a critical vertex. As dccs(G) = n, we have dccs(u) = n. Suppose $w \neq u$ is not critical, then $V - \{w\}$ is a dcc-set containing u, contradicting the fact dccs(u) = n.

Conversely, if all the vertices of G are critical vertices, then by Theorem 1.3, dcc(G) = n = dccs(G). If there exists a unique vertex u that is not critical, then $V - \{u\}$ is the only dcc-set in G and so dccs(G) = n. \Box

Lemma 2.7. For a connected graph G, dcc(G) = dccs(G) = n - 1 if and only if G has exactly two vertices u and v that are not critical and they satisfy at least one of the following conditions:

(a) one is a support and the other is its only adjacent leaf.

(b) $\chi(G - \{u, v\}) < (\mathcal{G}).$

Proof. Let G be a connected graph of order $n \ge 2$ with dcc(G) = dccs(G) = n - 1. Obviously $(\mathcal{G}) \ge \in$. As dcc(G) = n - 1, by Theorem 1.2, G is not a \mathcal{X} -critical graph. Let H be a \mathcal{X} -critical subgraph of G of maximum size. Let |V(H)| = k. As $(\mathcal{H}) = (\mathcal{G}), V(H)$ is a chromatic partition cover of G. So $n - 1 = dcc(G) \le k + n - k2 \le \frac{n+k}{2}$. This implies that $n \le k + 2$. Now $n \ne k$, for otherwise G becomes a \mathcal{X} -critical graph. So n = k + 2 or k + 1.

Case 1: Let n = k + 2. Let $V(G) - V(H) = \{u, v\}$. Suppose u and v are non-adjacent or both are not leaves, then V(H) becomes a *dcc*-set of G, a contradiction to dcc(G) = n - 1. Therefore u and v are adjacent and one of them, say v, is a leaf. Every vertex w distinct from u and v are critical vertex of G, for otherwise dcc(G) = p - 2. So (a) is true in this case.

Case 2: Let n = k + 1. When $(\mathcal{G}) = \in$, we have $G \simeq P_3$ satisfying (b). Assume that $(\mathcal{G}) \ge \ni$.

Then $k \ge 3$. Let $V(G) - V(H) = \{v\}$. By definition of H, $H = G - \{v\}$. As dccs(G) = n - 1, there exists a vertex u in H such that $V(G) - \{u\}$ is a dcc-set of G containing v. Obviously u and v are not critical vertices of G.

Claim:

item[(i)] No vertex in G is a leaf. item[(ii)] G-u is a \mathcal{X} -critical subgraph of G. item[(iii)] u and v are not adjacent in G. item[(iv)] $N(u) \cup N(v) = V(G)$. item[(v)] u and v are the only vertices in G that are not critical.

v cannot be a leaf, for otherwise dccs(v) = n. Since H is a \mathcal{X} -critical subgraph, no vertex of H is a leaf in G. Hence (i) is true. Suppose (ii) is not true. Then there exists a vertex w in $G - \{u\}$ such that $(\mathcal{G} - \{\Box, \supseteq\}) = (\mathcal{G} - \Box) = (\mathcal{G})$. Hence $V - \{u, w\}$ becomes a dcc-set in view of (i), a contradiction.

Suppose u and v are adjacent. Then as u and v are not critical vertices, the set $V - \{u, v\}$ is a *dcc*-set by (i), a contradiction and so (iii) is true. Next we prove that $N(u) \cup N(v) = V(G)$. Suppose $w \notin N(u) \cup N(v)$, then $(\mathcal{G} - \{\sqsubseteq, \sqsupseteq\}) = (\mathcal{G}) - \infty$ as G - v is a \mathcal{X} -critical subgraph of G. Similarly $\chi (G - \{u, w\}) = (\mathcal{G}) - \infty$. This implies that u, v, w belong to every *dcc*-set of G, a contradiction to the fact that $V - \{u\}$ is a *dcc*-set containing v. This proves (iv). Suppose $w \neq u, v$, such that w is not a critical vertex of G. By (iv) w is adjacent to either u or v, say u. As u, v, w are not critical vertices, none of the sets $\{u\}, \{v\}, \{w\}$ will form a color class for any chromatic partition of G. Since u and w are adjacent, they belong to different color classes of every chromatic partition of G. This implies that $V - \{u, v\}$ is a *dcc* set of G by (i), a contradiction. If $\{u, v\}$ is not a color class of any chromatic partition of G, then $V(G) - \{u, v\}$ is a *dcc*-set, a contradiction. So $\chi (G - \{u, v\}) < (\mathcal{G})$ satisfying (b).

The converse is easily proved. \Box

Theorem 2.8. For a connected graph G, dcc(G) = n - 1 if and only if G has exactly one vertex that is not critical or two vertices u and v, both are not critical vertices satisfying any one of the following properties:

- (i) One is a support and the other is its adjacent leaf.
- (ii) $\chi(G \{u, v\}) < (\mathcal{G}).$

Proof. If dcc(G) = n - 1, then dccs(G) = n - 1 or n. So by Lemmas 2.6 and 2.7, we get the required result. \Box

Corollary 2.9. If G is a connected bipartite graph, then dcc(G) = n - 1 if and only if $G \simeq P_3$.

Proof. Let dcc(G) = n - 1. Obviously $n \ge 3$. When n > 4 by Theorem 2.8, G will have at least two critical vertices which is impossible. So $G \simeq P_3$. The converse in obvious. \Box

Theorem 2.10. For a connected bipartite graph $G(\neq K_2)$, ds(G) = dccs(G).

Proof. If $G = K_{1,n-1}$, then ds(G) = 2 = dcc(G). Therefore assume that $G \neq K_{1,n-1}$. Then every dominating set has vertices from each partition set. That means, every dominating set is also a chromatic partition cover and hence $dcc(G) \leq \gamma(G)$. Since $\gamma(G) \leq dcc(G)$ is evident, we have that $dcc(G) = \gamma(G)$. Hence $\gamma(G) \leq ds(G) \leq dcc(G) + 1 = \gamma(G) + 1$. Therefore, if $ds(G) \neq dccs(G)$, then $ds(G) = \gamma(G)$ and $dccs(G) = \gamma(G) + 1$. From the first equality follows that every vertex lies on a minimum dominating set. From the second that there is a vertex that does not lie on a minimum dcc-set or rather (since $dcc(G) = \gamma(G)$) on a minimum dominating set. Hence, a contradiction and dc(G) = dccs(G) follows. \Box

The classification theorem for dsg(G) = ds(G) given in [2] follows as a corollary of Theorem 2.10.

Corollary 2.11. For a connected bipartite graph $G(\neq K_2)$, dsg(G) = ds(G) = dccs(G).

Proof. Since $ds(G) \leq dsg(G) \leq dccs(G)$, the result follows from Theorem 2.10. \Box

References

- B. D. Acharya, The Strong Domination Number of a Graph and Related Concepts, Jour. Math. Phy. Sci. 14, no. 5, pp. 471–475, (1980).
- [2] S. Arumugam and R. Kala, Domsaturation Number of a Graph, Indian J. Pure. Appl. Math. 33, no. 11, pp. 1671–1676, (2002).
- [3] L. Benedict Michael Raj, S. K. Ayyaswamy, and S. Arumugam, *Chro-matic Transversal Domination in Graphs*, J. Comb. Math. Comb. Computing, Vol. 75, pp. 33-40, (2010).
- [4] G. Chartrand and P. Zang, *Chromatic Graph Theory*, CRC Press, Boca Raton, FL, (2009).
- [5] F. Harary, *Graph Theory*, Addison-Wesley, Reading, Mass, (1969).

- [6] F. Harary, S. Hedetneimi and R. Robinson, Uniquely Colorable Graphs, J. Combin. Theory 6, pp. 264-270, (1969).
- [7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc., (1998).
- [8], Fundamentals of Domination in Graphs, Marcel Dekker Inc., (1998).
- [9] O. Ore, *Theory of Graphs*, Amer. Math. Soc. Colloq. Publ. 38, (Amer. Math Soc., Providence, RI), (1962).

L. Benedict Michael Raj

Department of Mathematics, St. Joseph's College, Trichy–620002, India e-mail: benedict.mraj@gmail.com

and

S. K. Ayyaswamy

School of Humanities and Sciences, SASTRA University, Thanjavur-613401, India e-mail: sjcayya@yahoo.co.in