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Abstract

In this paper, an algorithm is presented to check if a submodule of
the free module R [X]s is prime, using Gröbner Basis.
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1. Introduction

Gianni, Trager and Zacharias [3] present an algorithm to check whether
an ideal of the polynomial ring R [X] is prime, where R is a commutative
Noetherian ring with unit and X is the set of indeterminates x1, . . . xn. In
this article, the Preliminary Results section presents some conclusions from
that paper. The Primality Test section includes some important definitions
and basic affirmations to enunciate and prove lemmas and theorems in sup-
port of the new algorithm for prime submodules. Finally, in the Examples
section this algorithm is illustrated.

2. Preliminary results

Let R be a commutative Noetherian ring with identity. R [X]s is a free
module where X is the set of indeterminates x1, . . . xn.

Definition 2.1. [4] A submodule N of a module M over a ring R is said
to be a prime submodule if N 6=M , and r ∈ R and m ∈M satisfy rm ∈ N ,
so that r ∈ (N :M) or m ∈ N .

Lemma 2.2. [5] A submodule N of an R-moduleM is prime if and only if
P = (N :M) is a prime ideal of R and the RP -moduleMN is torsion-free.

Example 2.3. If N is a submodule of an R-module M such that (N :M)
is a maximal ideal of R, then N is a prime submodule. Also, if N is a
maximal submodule of an R-module M , then N is a prime submodule.
Moreover, let R be an integral domain and let N be a submodule of an R-
module M such that (N :M) = 0. In this case, N is a prime submodule.

The primality test of Gianni, Trager and Zacharias for ideals of a poly-
nomial ring is directly quoted below from [3].

Algorithm 2.4. ALGORITHM PT (R;x; I) Primality test for ideals.
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INPUT: Ring R; variables x = x1, . . . xn; ideal I ⊂ R [X].

OUTPUT: TRUE if I is prime, otherwise FALSE.

Step 1: If n = 0 then I ⊂ R is prime the return TRUE otherwise return FALSE.

Step 2: Compute J = I ∩R [x2, . . . xn].
Step 3: If PT (R;x2, . . . xn;J) = FALSE then return to FALSE.

Step 4: Let R0 = R [x2, . . . xn]J ; I
0 = IR0 [x1], K 0 = the quotient field of R0.

Step 5: Compute I 0K 0 [x1] = hfi.
Step 6: If f is not irreducible over K 0 then return FALSE.

Step 7: Compute Iec = I 0K 0 [x1] ∩R0 [x1].
Step 8: If Iec ⊂ I 0 then return TRUE, otherwise return FALSE.

Definition 2.5. Lt (G) = hlt (g) : g ∈ Gi, the submodule generated by the
leading terms of G.

The proofs of the statements below, for Lemma 2.6, Corollary 2.7 and
Proposition 2.8 can be found in [6].

Lemma 2.6. Let V ⊂ S be multiplicatively closed subsets of R, and N ⊂
R [X]s be a submodule. If

S−1Lt (N) ∩R [X]s = V −1Lt (N) ∩R [X]s

then
S−1N ∩R [X]s = V −1N ∩R [X] .

Corollary 2.7. Let S ⊂ R be a multiplicatively closed set and N ⊂ R [X]s

be a submodule. If a ∈ S exists such that

S−1Lt (N) ∩R [X]s = (Ra [X]Lt (N)) ∩R [X]s

then
S−1N ∩R [X]s = Ra [X]N ∩R [X]s .

Proposition 2.8. Let R be an integral domain, hpi ⊂ R be a principal
prime ideal, and N be a submodule of R [X]s. Then, it is possible to find
a, a ∈ R− hpi such that

Rhpi [X]N ∩R [X]s = Ra [X]N ∩R [X]s .
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3. Primality test

In this section, lemmas and theorems that justify the new algorithm for
prime submodules are stated, as well as some explanations. At the end of
this section, the algorithm is presented.

Corollary 3.1. Let R be an integral domain and K be the quotient field
of R. Then for a submodule N of R [X]s, K [X]N ∩R [X]s can be found.

The proofs for the following results correspond to the ones used for
ideals.

Lemma 3.2. Let f : M −→ N be an R-homomorphism of mod-

ules. If f is an epimorphism and B is a proper submodule of N , then

B is a prime submodule ⇒ f−1 (B) is a prime submodule.

Lemma 3.3. Let f : M −→ N be an R-homomorphism of mod-

ules. If f is an epimorphism, B is a proper submodule of N and U is a
proper submodule of M such that ker (f) ⊆ U , then

U is a prime submodule ⇒ f−1 (U) is a prime submodule.

Lemma 3.4. Let N be a submodule of R [X]s. Then N is a prime sub-
module if and only if the image of N in ((R (N : R [X]s) ∩R) [X])s is a
prime submodule. Moreover, (N : R [X]s) ∩R is a prime ideal.

Proof. Let R0 = R ((N : R [X]s) ∩R). Now, five homomorphisms are
defined

j: R −→ R0

r 7→ j (r) = r

t : R [X] −→ R0 [X]
f =

Pl
i=1 aiXi 7→ t (f) = f =

Pl
i=1 aiXi

T: R[X]s −→ R0 [X]s

(f1, . . . , fs) 7→ T ((f1, . . . , fs)) = (t (f1) , . . . , t (fs))

φ : R0 [X] −→ R [X] (N : R [X]s)
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f =
Pl

i=1 aiXi 7→ φ
³
f
´
=

dPl
i=1 aiXi

Φ : R0 [X]s −→ (R [X] (N : R [X]s))s³
f1, . . . , fs

´
7→ Φ

³³
f1, . . . , fs

´´
=
³
φ
³
f1
´
, . . . , φ

³
fs
´´

.

It is straightforward to prove that φ and Φ are well-defined, so their
proofs are not presented here.

Given ker (Φ) = T ((N : R [X]s)s), and using Lemmas 3.2 and 3.3, N is
a prime submodule if and only if T (N) is also prime.

Finally, if N is a prime submodule, then (N : R [X]s) is a prime ideal
of R [X] and the homomorphism

i : R −→ R [X]

r 7→ i (r) = r

i−1 ((N : R [X]s)) = (N : R [X]s) ∩R turns out to be prime. 2
Lemma 3.5 is provided by [6]. Nevertheless, due to its importance, its

proof is analyzed here.

Lemma 3.5. Let R be an integral domain, N be a submodule of R [X]s,
and hpi ⊂ R be a principal prime ideal. Thus it is possible to find g ∈ R−hpi
such that

N = (N + gR [X]s) ∩
³
Rhpi [X]N ∩R [X]s

´
.

Proof. Recall from Proposition 2.8 that it is possible to find a ∈ R−hpi,
and therefore

Rhpi [X]N ∩R [X]s = Ra [X]N ∩R [X]s.

Since R [X]s is Noetherian, m ≥ 0 exists so that

am
³
Rhpi [X]N ∩R [X]s

´
⊆ N .

Letting g = am, it is observed that

N ⊆ (N + gR [X]s) ∩
³
Rhpi [X]N ∩R [X]s

´
.

Let F ∈ (N + gR [X]s)∩
³
Rhpi [X]N ∩R [X]s

´
. Then F = w+gv, w ∈

N and v ∈ R [X]s. Now, gF ∈ N so that g2v ∈ N . As a result, v ∈
Ra [X]N ∩R [X]s and gv ∈ N , thus F ∈ N . 2
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Corollary 3.6. Let R be an integral domain with quotient field K and N
be an R [X]s-submodule. Therefore, it is possible to find g ∈ R− {0} such
that

N = (N + gR [X]s) ∩ (K [X]N ∩R [X]s) .

Proof. This is merely a direct application of Lemma 3.5 with p = 0. 2

Lemma 3.7. Let R be an integral domain with quotient field K and N ⊆
R [X]s be a submodule. If N is prime in R [X]s within the R [X]-module,
then K [X]N is prime in K [X]s as a K [X]-module.

Proof. If r ∈ K [X] and m ∈ K [X]s with rm ∈K [X]N , then r ∈
(K [X]N : K [X]s) or m ∈ K [X]N . Supposing that

r /∈ (K [X]N : K [X]s),

since rm ∈K [X]N , then r = r0

d0 where r
0 ∈ R [X] and d0 ∈ R− {0}; in

this way, rm = r0

d0m =u
d , u ∈N and d ∈ R− {0}, so dr0m =d0u ∈ N. When

N is prime, it is possible to affirm that dr0 ∈ (N : R [X]s) or m ∈N .
If dr0 ∈ (N : R [X]s) then dr0 = a ∈ (N : R [X]s); thus r0 = a

d . Let
q ∈ K [X]s, where q = w

t , w ∈ R [X]s, and t ∈ R − {0}. In this case,
rq = r0

d0
w
t =

aw
d0dt with aw ∈ N and d0dt ∈ R − {0}. This means that

rq ∈ K [X]N for all q ∈ K [X]s, which is a contradiction. Thus, m ∈ N
which makes m ∈ K [X]N . 2

Lemma 3.8. Let R be an integral domain with quotient field K, and N ⊆
R [X]s be a submodule such that N ∩RS = {0}. If N is prime as an R [X]s

within the R [X]-module then N = K [X]N ∩R [X]s.

Proof. Applying Corollary 3.6,N = (N + gR [X]s)∩(K [X]N ∩R [X]s).
With the hypotheses of Lemma 3.8, K [X]N ∩R [X]s ⊂ N + gR [X]s must
be proven so that

N = K [X]N ∩R [X]s .

By Corollary 2.7 K [X]N ∩ R [X]s = Ra [X]N ∩ R [X]s for some a ∈
R − {0}. Furthermore, in proof of Lemma 3.5, R [X]s is Noetherian and
m ≥ 0 exists, such that
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am (Ra [X]N ∩R [X]s) ⊆ N .

Corollary 3.6 defines g = am, so that

Ra [X]N ∩R [X]s ⊆ N + amR [X]s (3.1)

where a ∈ R− {0}. Therefore, (3.1) is proven below.
If am (Ra [X]N ∩R [X]s) ⊆ N then am ∈ (N : Ra [X]N ∩R [X]s). This

indicates that for all u ∈ Ra [X]N ∩R [X]s, amu ∈ N .

For h ∈ Ra [X]N ∩ R [X]s, amh ∈ N . Now, since N is prime, am ∈
(N : R [X]s) or h ∈ N .

If am ∈ (N : R [X]s), then amR [X]s ⊆ N . Thus am (1, 1, . . . , 1) ∈ N
implies that

(am, am, . . . , am) ∈ N ∩RS

due to a ∈ R− {0}, however N ∩RS = {0}. As a result, am = 0, so a = 0,
which is a contradiction, thus h ∈ N ⊆ N + amR [X]. 2

Lemma 3.9. Let R be an integral domain with quotient field K, and N ⊆
R [X]s be a submodule. If K [X]s is considered to be a K [X]-module and
N = K [X]N ∩R [X]s, then N is prime in R [X]s as an R [X]-module.

Proof. Let r ∈ R [X] and m ∈ R [X]s such that rm ∈ N ; hence
r ∈ (N : R [X]s) or m ∈ N should be proven. It is assumed that r /∈
(N : R [X]s); as a consequence, m0 ∈ R [X]s exists such that rm0 /∈ N .
Because rm ∈ N , rm ∈ K [X]N , implying that r ∈ (K [X]N : K [X]s) or
m ∈ K [X]N .

If r ∈ (K [X]N : K [X]s), since m0 ∈ R [X]s ⊆ K [X]s, then rm0 ∈
K [X]N ∩R [X]s = N , but this is a contradiction.

Therefore, m ∈ K ∈ [X]N and since m ∈ R [X]s, then m ∈ K [X]N ∩
R [X]s = N . 2

Theorem 3.10. Let R be an integral domain with quotient field K, and
N ⊆ R [X]s be a submodule such that N ∩Rs = {0}. Thus, N is prime in
R [X]s as an R [X]-module if and only if K [X]N is prime in K [X]s within
the K [X]-module and N = K [X]N ∩R [X]s.
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Proof. This follows immediately from Lemmas 3.7, 3.8 and 3.9. 2

Corollary 3.11. Let N be a submodule of R [x]s. Thus N is a prime
submodule if and only if

(i) (N : R [x]s) ∩R is a prime ideal of R.

(ii) Letting R0 = R ((N : R [x]s) ∩R), K 0 be the quotient field of R0

and N 0 be the image of N in R0 [x]s, then K 0 [x]N 0 is prime in K 0 [x]s as a
K 0 [x]-module and N 0 = K 0 [x]N 0 ∩R0 [x]s.

Proof. (⇐ Using Lemma 3.9 with those hypotheses, it is clear that N 0

is a prime submodule of R0 [x]s within the R0 [x]-module, and with Lemma
3.4, it is possible to see that N is prime.

⇒) Applying Lemma 3.4, it is possible to prove that (N : R [x]s)∩R is
a prime ideal of R.

N 0 ∩R0s =
©
0
ª
is proven, using Lemma 3.8.

Letting
³
f1, . . . , fs

´
∈ N 0 ∩ R0s = T (N) ∩ R0s with T defined as in

Lemma 3.4, then

³
f1, . . . , fs

´
∈ T (N) and

³
f1, . . . , fs

´
∈ R0s.

In this way (n1, . . . , ns) ∈ N exists, such that

T ((n1, . . . , ns)) =
³
f1, . . . , fs

´
where fi is constant in R0s; thus fi ∈ R0,

and T ((n1, . . . , ns)) = (t (n1) , . . . , t (ns)) =
³
f1, . . . , fs

´
with t defined as

in Lemma 3.4, which implies that t (ni) = fi = 0. Therefore,
T ((n1, . . . , ns)) =

¡
0, . . . , 0

¢
. 2

Algorithm 3.12. ALGORITHM PTM (R;X;N ; s) Primality Test for Sub-
modules.
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4. Examples

Two examples are presented below to illustrate how the algorithm works.
Firstly, the algorithm is used to show a submodule that is not prime, and
secondly, it is used to identify a prime submodule.

Example 4.1. Let N = hf1, f2, f3, f4i ⊆ (Q [x, y])3, where

f1 = (xy, y, x), f2 =
¡
x2 + x, y + x2,y

¢
,

f3 = (−y, x, y), f4 =
¡
x2, x, y

¢
.

Using TOP ordering on (Q [x, y])3 with e1 > e2 > e3 and considering
the order lex on Q [x, y], x > y, with the algorithm PTM it is concluded
that N is not a prime submodule of (Q [x, y])3.
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Example 4.2. Consider the following vectors

f1 =
¡
0, x3

¢
, f2 =

¡
y − x2, 0

¢
, f3 =

¡
x3 + 1, x

¢
,

f4 =
¡
0, y − x2

¢
, f5 =

¡
x2 − x+ 1, 0

¢
, f6 =

¡
0, x2 − x+ 1

¢
All of them belong to ((Q [x]) [y])2. Using POT ordering on ((Q [x]) [y])2

with e1 > e2, considering the order lex on (Q [x]) [y] with y > x, and letting
N = {f1, f2, f3, f4, f5, f6}, the algorithm PTM is implemented to determine
whether N is a prime submodule of ((Q [x]) [y])2.
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PTM (Q [x] , y,N, 2)
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