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Abstract

Let Λ = {λ1, . . . , λnk} be a multiset of elements of an integral
domain R. Let P be a partially prescribed n × n block matrix such
that each prescribed entry is a k−block (a k× k matrix over R). If P
has at most 2n− 3 prescribed entries then the unprescribed entries of
P can be filled with k−blocks to obtain a matrix over R with spectrum
Λ (some natural conditions on the prescribed entries are required).
We describe an algorithm to construct such completion.
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1. Introduction

Inverse eigenvalue problems are problems of constructing a matrix with
prescribed structural and spectral constraints. There are several questions
that one can ask about any inverse eigenvalue problem: does there exist
a solution matrix with the given constraints, is the solution unique, can
one find an effective construction of a solution matrix when the problem
is solvable. Inverse eigenvalue problems are classified into different types
according to the specific constraints. For interested readers, we refer to the
book by Chu and Golub [5] where an account of inverse eigenvalue problems
with applications and exhaustive bibliography can be found.

A particular class of inverse eigenvalue problems are completion prob-
lems: given a matrix P with some of its entries specified, we would like
to decide if and how we can choose unspecified entries of P in such a way
that the completed matrix satisfies certain spectral properties. A survey on
these type of problems is given by Ikramov and Chugunov in [8], where they
are specially interested in the development of finite rational algorithms to
construct a solution matrix completion. A different approach to the prob-
lem is given by Chu, Diele and Sgura in [4], where they consider gradient
flow methods. An extensive list of results in completion problems is given
in [1].

When presented with a partially prescribed matrix P of order n there
are some situations in which we can immediately see that the completion
to a matrix with a given spectrum Λ = {λ1, . . . , λn} is not possible. For
example, let P have a line (row or column) with all its elements prescribed,
with all the off-diagonal entries in that line equal to 0 and the diagonal entry
not in Λ. If such a line in a matrix P does not exist we will say that the
lines of P are consistent with Λ. Another example, where the construction
of a solution matrix completion is clearly impossible, is when we have all
the diagonal elements of P prescribed and the sum of the diagonal elements
is different to the sum of the elements in Λ. If this is not the case, we will
say that the diagonal of P is consistent with Λ.

Our work was motivated by an interesting result of Hershkowitz [7].
He considered the case of a matrix of order n with prescribed spectrum,
with at most 2n− 3 prescribed entries in arbitrary positions, and with the
prescribed entries of the matrix and the prescribed eigenvalues lying in the
same field. He showed that the two situations mentioned above are the
only ones that we need to exclude if we want to find a completion with
prescribed spectrum Λ.
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Theorem 1.1. ([7]) (Herskowitz) For n ≥ 2 let Λ = {λ1, . . . , λn} be a
given multiset of elements in a field F. Let P be a matrix of order n with
at most 2n− 3 prescribed entries that belong to F, and such that the lines
and the diagonal of P are consistent with Λ. Then P can be completed
with elements of F to obtain a matrix with spectrum Λ.

Cravo and Silva in [6] extended Hershkowitz result to the case of n× n
block matrices with 2n− 3 prescribed blocks. While this is not emphasised
in the paper, the proofs in [6] are constructive and can be extended to
integral domains. While matrix completion problems over fields have been
extensively studied, little is known about completion problems over integral
domains which include the important case of integers. In [3] we extended
(whenever no line is fully prescribed) Theorem 1.1 to integral domains
and we provided an algorithmic procedure to construct a solution matrix
completion. The aim of this work is to extend our construction in [3] to
block matrices, and so giving a different proof of Cravo and Silva result for
integral domains whenever no line of blocks is fully prescribed.

In Section 2 we collect the notation that we use to work with for partially
prescribed block matrices. In Section 3 we define the reduction of a partially
prescribed block matrix of order n to a partially prescribed block matrix of
order n− 1, which will permit us to make an induction step. In Section 4
we provide an algorithmic procedure to construct a solution block matrix
completion. In Section 5 we discuss possible extensions of our method
to cover the case of 2n − 3 prescribed blocks with n of them forming a
fully prescribed line. As a consequence we give an alternative proof of
Theorem 1.1 without excluding the case of a fully prescribed line.

2. Comprehensive notation

Let R be an arbitrary integral domain. We will use the following notation
throughout:

• Mm×n is the set of m× n matrices over R.

• Mm×n is the set of m× n matrices over R ∪ {2} (2 corresponds to
unprescribed entries).

• Mk
m×n is the set of m×n block matrices overMk×k (each entry is a

matrix inMk×k).

• Mk
m×n is the set of m× n block matrices overMk×k ∪ {2} (2 cor-

responds to unprescribed blocks).
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• Useful abbreviations: Mn = Mn×n, Mn = Mn×n, Mk
n = Mk

n×n,

andMk
n =M

k
n×n.

• If P ∈Mk
m×n, then #P denotes the number of prescribed blocks in P ;

P(i) ∈M
k
1×n denotes the i−th row of blocks of P ; and P (j) ∈Mk

m×1
denotes the j−th column of blocks of P.

• We consider a special class of matrices within the setMk
ncMk

n = {P = (Pij)ni,j=1 ∈M
k
n : Pi1 = 2 or Pi2 = 2 for all i = 1, . . . , n}.

• Let Sn be the symmetric group on n elements. For τ ∈ Sn and
P = (Pij)

n
i,j=1 ∈M

k
n we define

τ(P ) =
³
Pτ(i) τ(j)

´n
i,j=1

.

• We can define an equivalence relation inMk
n as follows: P,Q ∈M

k
n

are related if and only if Q = τ(P ) or Q = τ(PT) for some τ ∈ Sn.
The equivalence class of P , denoted by E(P ), is given by

E(P ) = {τ(P ) : τ ∈ Sn} ∪ {τ(PT ) : τ ∈ Sn}.

Notice that if P ∈ Mk
n then all matrices in E(P ) have the same

spectrum.

3. Reductions and completions

Our method is based on the following lemma, which is a generalization for
block matrices of a result that was presented in [9].

Lemma 3.1. Let A,X,Z ∈Mk, B ∈Mk
1,n−2, Y ∈Mk

1,n−2, C ∈Mk
n−2,1

and D ∈Mk
n−2 and let

M =

Ã
A B
C D

!
∈Mk

n−1

and

L =

⎛⎜⎝ X + Z X Y
A−X − Z A−X B − Y

C C D

⎞⎟⎠ ∈Mk
n(3.1)

Then the spectrum of L is the spectrum of M together with the spectrum
of Z.
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Proof. We will show that the characteristic polynomial of L is equal to
the product of the characteristic polynomial of M and the characteristic
polynomial of Z:

det(λI − L) = det

⎛⎜⎝ λI −X − Z −X −Y
−A+X + Z λI −A+X −B + Y

−C −C λI −D

⎞⎟⎠−−−−−−−−−−→R1 +R2 → R1

= det

⎛⎜⎝ λI −A λI −A −B
−A+X + Z λI −A+X −B + Y

−C −C λI −D

⎞⎟⎠−−−−−−−−−−→C2 −C1 → C2

= det

⎛⎜⎝ λI −A 0 −B
−A+X + Z λI − Z −B + Y

−C 0 λI −D

⎞⎟⎠
= det(λI − Z) det

Ã
λI −A −B
−C λI −D

!
= det(λI − Z) det(λI −M).

The result stated in the lemma follows.

Notice that the construction of the matrix L starting from the matrix
M as given in (3.1) does not involve the inversion or the multiplication of
matrices and it does not involve division. That is why it can be applied to
the general setting of integral domains. We will use it to prove results in
this paper by induction on the size of the partially prescribed matrix. In
order to do that we need to reduce a completion problem for a matrix in cMk

n

to a completion problem for a matrix in Mk
n−1. Next we give definitions

that are needed to make this reduction.

Definition 3.1. We introduce the following two operations between ele-
ments inMk:

1. Given R1, R2 ∈Mk we define

R1 ⊕R2 =

(
R1 +R2 if R1, R2 ∈Mk

2 if Ri = 2 for some i

2. Given S1, S2 ∈Mk with at least one of the elements equal to 2, we
define

S1 ¯ S2 =

(
2 if S1 = S2 = 2
Si if Si ∈Mk for some i

(Operation ¯ is not defined if both S1 and S2 belong toMk.)
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Definition 3.2. Given a matrix

Q =

Ã
Q11 Q12
Q21 Q22

!
∈ cMk

2

and given Z ∈Mk, we define the Z−reduction of Q in the following way:

ΓZ(Q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q11 +Q21 if Q11, Q21 ∈Mk

Q12 +Q22 if Q12, Q22 ∈Mk

Q11 +Q22 − Z if Q11, Q22 ∈Mk

Q12 +Q21 + Z if Q12, Q21 ∈Mk

2 otherwise

Definition 3.3. For n ≥ 3, given a matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
Q11 Q12 Q13 . . . Q1n
Q21 Q22 Q23 . . . Q2n
Q31 Q32 Q33 . . . Q3n
...

...
...

. . .
...

Qn1 Qn2 Qn3 . . . Qnn

⎞⎟⎟⎟⎟⎟⎟⎠ ∈
cMk

n(3.2)

and given Z ∈Mk, we define the Z−reduction of Q as the matrix

ΓZ(Q) =

⎛⎜⎜⎜⎜⎜⎜⎝
ΓZ

Ã
Q11 Q12
Q21 Q22

!
Q13 ⊕Q23 . . . Q1n ⊕Q2n

Q31 ¯Q32 Q33 . . . Q3n
...

...
. . .

...
Qn1 ¯Qn2 Qn3 . . . Qnn

⎞⎟⎟⎟⎟⎟⎟⎠ ∈M
k
n−1.

(3.3)

For Q ∈ cMk
n and Z ∈ Mk, ΓZ(Q) is well defined. Moreover the fol-

lowing Lemma justifies the definitions above and will enable us to make an
induction step in our proof.

Lemma 3.2. Let Q ∈ cMk
n and Z ∈Mk. Then for every completion M of

ΓZ(Q) one can construct a completion L of Q with the spectrum equal to
the spectrum of M together with the spectrum of Z.

Proof. Let

M =

Ã
A B
C D

!
∈Mk

n−1(3.4)
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be a completion of ΓZ(Q), where A ∈Mk, B ∈Mk
1,n−2, C ∈Mk

n−2,1 and

D ∈Mk
n−2.

We argue that one can choose X ∈Mk and Y ∈Mk
1,n−2 so that

L =

⎛⎜⎝ X + Z X Y
A−X − Z A−X B − Y

C C D

⎞⎟⎠(3.5)

is a completion of Q. The result then follows from Lemma 3.1.
Let us first consider the choice of X. From (3.5) we see that the entries

in
³

L11 L12
L21 L22

´
∈Mk

2 depend on
³

Q11 Q12
Q21 Q22

´
∈ cMk

2, Z and A as follows:

³
Q11 Q12
Q21 Q22

´
ΓZ(

³
Q11 Q12
Q21 Q22

´
) X

³
L11 L12
L21 L22

´
³
2 2

2 2

´
2 X

³
X + Z X

A−X − Z A−X

´
³

R 2

2 2

´
2 R− Z

³
R R− Z

A−R A−R+ Z

´
³
2 R
2 2

´
2 R

³
R+ Z R

A−R− Z A−R

´
³
2 2

R 2

´
2 A− Z −R

³
A−R A−R− Z
R R+ Z

´
³
2 2

2 R

´
2 A−R

³
A−R+ Z A−R
R− Z R

´
³

R 2

S 2

´
R+ S R− Z

³
R R− Z
S S + Z

´
³
2 R
2 S

´
R+ S R

³
R+ Z R
S − Z S

´
³

R 2

2 S

´
R+ S − Z R− Z

³
R R− Z

S − Z S

´
³
2 R
S 2

´
R+ S + Z R

³
R+ Z R
S S + Z

´

.

In the table above R,S,X ∈Mk, and in the first case X can be chosen
to be arbitrary. In the cases where

ΓZ

ÃÃ
Q11 Q12
Q21 Q22

!!
= 2,

A denotes its completion. Note that Q ∈ cMk
n implies #(Qi1 Qi2) ≤ 1 for

i = 1, 2 which explains why the first column in the previous table considers
all possibilities.

Now let us consider the choice of Y . Appropriate choice of Y can
fix for j ∈ {3, . . . , n} the values in either L1j ∈ Mk or in L2j ∈ Mk.
If for all j ∈ {3, . . . , n} L1j or L2j is unprescribed, then the completion
is possible. If for some j ∈ {3, . . . , n} both L1j and L2j are prescribed,
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then M1,j−1 = L1j + L2j , and the choice Y1,j−2 = L1j gives the desired
completion.

From the definition of ¯ and ΓZ(Q) we can now conclude that, for the
choices of X and Y above, L in (3.5) is a completion of Q.

4. No full line of blocks is prescribed

In order to be able to find a solution, using our method, to the completion
problem when 2n− 3 blocks are prescribed over integral domains we need
to assume that no full line of blocks is prescribed. We deal with the case
when a full line of blocks is prescribed in Section 5.

Let us assume that P = (Pij)
n
i,j=1 ∈M

k
n satisfies #P ≤ 2n−3 and that

each line of blocks of P has at least one unprescribed block. These types
of matrices P may be divided further in two complementary sets: the ones
with at least one unprescribed block on the diagonal, and the ones with
all the blocks on the diagonal prescribed. Those cases are explicit in the
theorems below and the rest of this section is dedicated to their proofs.

Theorem 4.1. For n ≥ 2 let Λ = {λ1, . . . , λnk} be a multiset of elements
in an integral domain R. Let P ∈ Mk

n with at most 2n − 3 prescribed
blocks, and such that the block diagonal and each line of blocks of P has at
least one unprescribed block. Then P can be completed to obtain a matrix
with spectrum Λ.

Theorem 4.2. For n ≥ 3 let Λ = {λ1, . . . , λnk} be a multiset of elements
in an integral domain R. Let P ∈ Mk

n with at most 2n − 3 prescribed
blocks, and such that all blocks on the diagonal are prescribed. Then P
can be completed to obtain a matrix with spectrum Λ if and only if the
diagonal of P is consistent with Λ.

For each of the theorems above we state and prove a lemma that will
enable us to make an induction step. First lemma will be used in the proof
of Theorem 4.1.

Lemma 4.1. For n ≥ 3 let P ∈Mk
n with #P ≤ 2n− 3, and such that the

diagonal and each line of blocks of P has at least one unprescribed block.
Then there exists a matrix Q ∈ cMk

n in the equivalence class E(P ) such that,
for any matrix Z ∈Mk, ΓZ(Q) ∈M

k
n−1 satisfies#ΓZ(Q) ≤ 2(n−1)−3 and

the diagonal and each line of blocks of ΓZ(Q) has at least one unprescribed
block.
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Proof. The proof of this lemma can be reconstructed from the proof
of Lemma 3.3 of [3]. The only difference is that the role of entries in that
proof is played here by blocks.

Now we consider the case in which all the blocks on the diagonal are
prescribed. Note that the condition that all blocks on the diagonal are
prescribed implies that no line may have all its blocks prescribed.

Lemma 4.2. For n ≥ 4 let P ∈Mk
n with #P ≤ 2n− 3 and such that all

the diagonal blocks are prescribed. Then there exists a matrix Q ∈ cMk
n in

the equivalence class E(P ) such that, for every Z ∈Mk, we have ΓZ(Q) ∈
Mk

n−1 with #ΓZ(Q) ≤ 2(n−1)−3 and all blocks in the diagonal of ΓZ(Q)
are prescribed.

Proof. Since there are n prescribed blocks on the diagonal, then there
are at most n − 3 prescribed blocks out of the diagonal. Therefore there
are at least 3 columns for which the only prescribed block is the one on the
diagonal. So there exists Q ∈ E(P ) of the following form:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q11 2
R

2 Q22
2 2
...

... S
2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈
cMk

n,

where R ∈Mk
2,n−2 and S ∈Mk

n−2. We have two possibilities:

1. If #R ≥ 1 then #ΓZ(Q) ≤ #Q − 2 ≤ 2(n − 1) − 3, and clearly all
diagonal blocks of ΓZ(Q) will be prescribed.

2. Now we deal with the case #R = 0. If all the rows in Q have the
only prescribed block on the diagonal then, #Q = n and #ΓZ(Q) =
n− 1 ≤ 2(n− 1)− 3 for n ≥ 4. Otherwise there exists an index i ≥ 3
such that the i-th row has at least 2 prescribed blocks. Consider the
matrix τ(Q) where τ ∈ S\ is the transposition of 1 and i:

τ(Q) =

⎛⎜⎜⎜⎜⎜⎜⎝
Qii 2 ? . . . ?
2 Q22 2 . . . 2

? 2 ? . . . ?
...

...
...
. . .

...
? 2 ? . . . ?

⎞⎟⎟⎟⎟⎟⎟⎠ ∈
cMk

n.
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It is clear that all the blocks on the diagonal of ΓZ(τ(Q)) are pre-
scribed and we have #ΓZ(τ(Q)) ≤ #τ(Q) − 2 ≤ 2(n − 1) − 3, com-
pleting the proof.

In the next two lemma’s we prove the first step for the induction argu-
ment to prove Theorems 4.1 and 4.2.

Lemma 4.3. Theorem 4.1 holds for n = 2.

Proof. Assume P ∈ Mk
2 is a matrix that satisfies the conditions of

Theorem 4.1, i.e. P has at most one fully prescribed block. If the prescribed
block is off the diagonal, then we can choose the unprescribed off-diagonal
block to be equal to zero and we are free to choose the diagonal blocks to
be any matrices with the desired spectrum. If the prescribed block is on
the diagonal we can, without loss of generality, assume that it is the first
diagonal block and P is of the form:

P =

Ã
R 2

2 2

!
.

From Lemma 3.2 it follows thatÃ
R R− L2

L1 −R L1 + L2 −R

!

is a completion of P with spectrum σ(L1) ∪ σ(L2). We finish the proof if
we choose L1 to be the diagonal matrix with entries λ1, . . . , λk, and L2 to
be the diagonal matrix with entries λk+1, . . . , λ2k.

Lemma 4.4. Let

P =

⎛⎜⎝ P11 2 2

2 P22 2

2 2 P33

⎞⎟⎠ ∈ cMk
3

and let λ1, . . . , λ3k ∈ R. Then P can be completed to a matrix ofMk
3 with

spectrum {λ1, . . . , λ3k} if and only if the trace condition is satisfied.
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Proof. This result is a special case of Theorem 5.1 in [2].

Now we can prove Theorems 4.1 and 4.2 at the same time.

Proof. (of Theorems 4.1 and 4.2) Let P ∈ Mk
n satisfy conditions of

Theorem 4.1 or the conditions of Theorem 4.2, and let {λ1, . . . , λnk} be
a multiset of elements that belong to R. Let Li be the diagonal matrix
with entries λk(i−1)+1, . . . , λki for i = 1, . . . , n. In Lemmas 4.2 and 4.1 we

showed how to find in the equivalence class E(P ) a matrix Q ∈ cMk
n such

that ΓLn(Q) ∈ M
k
n−1 is a matrix that again satisfies conditions of Theo-

rem 4.1 or Theorem 4.2, depending on our starting matrix. By induction
hypothesis, ΓLn(Q) can be completed to a matrix M ∈Mk

n−1 with spec-
trum {λ1, . . . , λk(n−1)}. In Section 3 we showed how to construct a matrix
L ∈Mk

n with spectrum equal to the spectrum of M with the spectrum of
Ln adjoined (i.e., {λk(n−1)+1, . . . , λkn}), and such that L is a completion of
Q.

Any matrix in the equivalence class E(L) has spectrum {λ1, . . . , λkn}.
Since Q ∈ E(P ) then there exists some permutation τ of {1, . . . , n} such
that Q = τ(P ) or Q = τ(PT ), therefore we conclude that τ−1(L) or
τ−1(LT ) is a desired completion of matrix P .

5. Extension to a full prescribed line

Let P ∈Mk
n with n ≥ 3, with #P ≤ 2n−3 and with a full prescribed line.

Let Λ = {λ1, . . . , λnk} be a multiset of elements in an integral domain R.
We consider the problem of the completion of P (replacing the unprescribed
entries of P by k−blocks) so that we obtain a matrix of order nk whose
spectrum is Λ. The aim in this section will be to reduce this problem to
the problem of the completion of a 2× 2 block matrix with two prescribed
blocks allocated in its last column and whose spectrum is a subset of Λ
with 2k elements. We will show that this reduction can always be done,
however on one side the reduction is not unique, and on the other side a
completion of the resulting 2× 2 matrix with the desired spectrum may be
possible only in some cases. An example of an irresolvable completion is
when the full line of P has the off-diagonal k−blocks equal to zero and the
spectrum of the diagonal block is not contained in Λ. Moreover, the case
n = 2 and k = 1 already shows us that the completion may not be possible
over integral domains even if this case is excluded.
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Example 5.1. Over the integers, the completion with spectrum Λ = {λ1, λ2}
of the matrix

P =

Ã
2 p12
2 p22

!

exists if either: (i) p12 = 0 and p22 ∈ Λ; or (ii) p12 6= 0 and (λ1−p22)(p22−λ2)
p12

is an integer. In the last case, the completion is unique and it is equal toÃ
λ1 + λ2 − p22 p12
(λ1−p22)(p22−λ2)

p12
p22

!
.

Lemma 5.1. Let P ∈Mk
n with n ≥ 3, with #P ≤ 2n− 3 and with a full

prescribed line. Then there exists in E(P ) (the equivalence class of P ) some
Q ∈ cMk

n such that for all Z ∈Mk the matrix ΓZ(Q) has a full prescribed
line and #ΓZ(Q) ≤ max{n− 1, 2(n− 1)− 3}.

Proof. We divide the proof in two cases:

1. If #P = n then there existsQ ∈ E(P ) with #Q(n) = n. So #ΓZ(Q)
(n−1) =

n− 1 and #ΓZ(Q) = n− 1.

2. If n < #P ≤ 2n − 3 then there exists Q ∈ E(P ) with #Q(1) = 0,
#Q(n) = n, and #Q(2) ≥ · · · ≥ #Q(n−1). Two possibilities appear:

(i) if #Q(1) +#Q(2) ≥ 3 then #ΓZ(Q) ≤ 2(n− 1)− 3 and the last
column of ΓZ(Q) is fully prescribed;

(ii) if #Q(1) + #Q(2) = 2 consider τ ∈ Sn to be the transposition
of 2 and n, then #ΓZ(τ(Q)) = n − 1 and the first column of
ΓZ(τ(Q)) is fully prescribed.

We observe that if we start from any P ∈Mk
n with n ≥ 3, with #P ≤

2n − 3 and with a full line of n prescribed k-blocks, then we will arrive,
after a repeated application of the procedure of the proof of Lemma 5.1,
at a 2× 2 block matrix with two prescribed k−blocks allocated in its last
column. Now we ask about how are these two prescribed k−blocks related
to the original prescribed blocks. Clearly each one of them will be equal to
the sum of several of the k−block of the full prescribed line of P . Indeed,
about the components of these sums, all we can say at present is that the
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k−block of the full prescribed line which is on the diagonal of P will finish
in the prescribed diagonal block of the 2× 2 block matrix.

In what follows we will assume, without loss of generality, that the full
prescribed line of P is its last column.

Corollary 5.1. Let P ∈ Mk
n with n ≥ 3, with #P ≤ 2n − 3 and with

P1n, . . . , Pnn prescribed. Assume that a series of successive application of
Lemma 5.1 reduces P to

M =

Ã
2

P
i∈S1 Pin

2
P

i∈S2 Pin

!
,(5.1)

where {S1, S2} is a partition of {1, . . . , n}. Then the following are satisfied:

(i) n ∈ S2.

(ii) If there exists a σ1 ⊂ σ with 2k elements so that there exists a com-
pletion of M with spectrum σ1, then there exists a completion of P
with spectrum σ.

Proof. (i) Let Q = (Qij)
n
i,j=1 ∈ cMk

n be a partially prescribed matrix
with a full prescribed column Q1j , . . . ,Qnj of k−blocks. Note that ΓZ(Q)
will again have a full prescribed columnQ1j+Q2j , Q3j , . . . , Qnj of k−blocks.
In particular, if j ∈ {1, 2} then #ΓZ(Q)(1) = n− 1 and if j ∈ {3, 4, . . . , n}
then #ΓZ(Q)

(j−1) = n− 1. This implies that the k−block on the diagonal
of the fully prescribed column of ΓZ(Q) is either the sum of Qjj and some
other prescribed block in the jth column of Q or it is equal to Qjj .

(ii) We start with a completion ofM with spectrum σ1. Then we repeat-
edly apply Lemma 3.2. In each step we incorporate k different elements of
σ till we arrive at a completion of P with spectrum σ.

Corollary 5.1 tells us that the exact values of prescribed blocks outside
fully prescribed column do not play a role when attacking the problem
with our method, only their position is important. The partition {S1, S2}
of {1, . . . , n} obtained in the reduced matrix (5.1) of Corollary5.1 is not
unique, but not all partitions are allowed. If we start from a situation where
#P = n, then all possible partitions with n ∈ S2 can be obtained. In the
case when n < #P ≤ 2n − 3 then, according to the proof of Lemma 5.1,
we look for Q ∈ E(P ) so that #Q(1) = 0 and #Q(1) +#Q(2) ≥ 3. Neither
of these two assumptions is necessary. While #Q(1) = 0 is sufficient to
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guarantee Q ∈ cMk
n, it is not necessary. And assumption #Q(1)+#Q(2) ≥ 3

assures that we reduce the number of prescribed elements by 2, however,
we can have situations where we have reduction of only one in the number
of prescribed k−blocks at a certain step at the expense of a reduction of
more that 2 in the number of prescribed k−blocks at some other step. In
what follows we give a discussion of what partitions can occur. Next we
state an straightforward necessary condition on S1 and S2.

Proposition 5.1. Let P ∈Mk
n with n ≥ 3, with #P ≤ 2n − 3 and with

P1n, . . . , Pnn prescribed. And let Pi1j , . . . , Pitj be prescribed for some j 6= n.
If we can achieve a partition {S1, S2} of {1, . . . , n} as in Corollary 5.1, then
Si 6= {i1, . . . , it} for i = 1, 2.

Proof. Acoording to Definition 3.3, to completely remove the prescribed
blocks Pi1j , . . . , Pitj by successive reductions it is necessary that at least
once one of the first two rows must be a row that has an unprescribed
element in position j.

Proposition 5.1 suggests that it is not easy to describe all allowed par-
titions in Corollary 5.1 without additional assumptions on the pattern of
prescribed blocks. Even if P has its last column fully prescribed and some
of its off-diagonal k−blocks are nonzero, we can sometimes end up in a
2× 2 reduced matrix (5.1) with Pi∈S1 Pin = 0 and with

P
i∈S2 Pin having

an spectrum which is not a subset of Λ. We will show next that this can be
avoided by carefully choosing an adequate matrix in the equivalence class
at each step before applying ΓZ .

Lemma 5.2. Let P ∈ Mk
n with n ≥ 3, with #P ≤ 2n − 3 and with

P1n, . . . , Pnn prescribed. If at least one of the k−blocks P1n, . . . , Pn−1n
is nonzero, then we can achieve a partition {S1, S2} of {1, . . . , n} as in
Corollary 5.1 so that

P
i∈S1 Pin 6= 0.

Proof. It will be sufficient to show that for all Z ∈Mk the equivalence
class E(P ) contains some Q ∈ cMk

n such that ΓZ(Q) has a full prescribed
line with a nonzero off-diagonal k-block and

#ΓZ(Q) ≤ max{n− 1, 2(n− 1)− 3}.

We consider two cases:
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1. There exists j ∈ {1, . . . , n− 1} such that #P (j) = 0 and #P(j) ≥ 2.
Therefore n ≥ 4 and E(P ) contains a matrix

Q =

⎛⎜⎝
2 ? · · · ? Q1n
2 ? · · · ? Q2n
..
.

..

.
..
.

..

.
2 ? · · · ? Qnn

⎞⎟⎠ ∈ cMn

with #Q(1) ≥ 2; with Q2n = . . . = Qn−1,n = 0 if Qn−1,n = 0; and

with at least one nonzero off-diagonal k−block in Q(n).

Then ΓZ(Q)
(n−1) = n− 1 and

#ΓZ(Q) ≤ #Q−#Q(1) ≤ #Q− 2 ≤ 2(n− 1)− 3.

It remains to prove that ΓZ(Q)
(n−1) has a nonzero off-diagonal k-

block. Two possibilities appear:

1. Qn−1,n 6= 0. Then ΓZ(Q)n−2,n−1 = Qn−1,n 6= 0.
2. Qn−1,n = 0. Then Q2n = . . . = Qn−1,n = 0 and ΓZ(Q)1,n−1 =

Q1n 6= 0.

2. For all j ∈ {1, . . . , n− 1} such that #P (j) = 0 we have #P(j) = 1.
Since #P (1)+ · · ·+#P (n−1) ≤ n− 3 then P has two empty columns.
So E(P ) contains a matrix

Q =

⎛⎜⎜⎜⎜⎜⎝
2 2 · · · 2 2 Q1n
2 ? · · · ? 2 Q2n
...

...
...

...
...

2 ? · · · ? 2 Qn−2,n
2 2 · · · 2 2 Qn−1,n
2 ? · · · ? 2 Qnn

⎞⎟⎟⎟⎟⎟⎠ ∈ cMn

with #Q(1) = #Q(n−1) = 0; withQ1n = 0 ifQn−1,n = 0 (only possible
when n ≥ 4); with at least one nonzero off-diagonal k−block in Q(n);
and with #Q(2) ≥ . . . ≥ #Q(n−2) (only possible when n ≥ 4).
Two possibilities appear:

1. #Q(2) ≥ 2. Then #ΓZ(Q)(n−1) = n− 1 and

#ΓZ(Q) ≤ #Q− 2 ≤ 2(n− 1)− 3.

It remains to prove that ΓZ(Q)
(n−1) has a nonzero off-diagonal

k-block. Three possibilities appear:
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1. Qn−1,n 6= 0. Then ΓZ(Q)n−2,n−1 = Qn−1,n 6= 0.
2. Qn−1,n = 0 and Q2n 6= 0. Then ΓZ(Q)1,n−1 = Q1n +Q2n =

Q2n 6= 0.
3. Qn−1,n = 0 and Q2n = 0. Then Q1n = 0 and Qin 6= 0 for
some i ∈ {3, . . . , n− 2}. So ΓZ(Q)i−1,n−1 = Qin 6= 0.

2. #Q(2) = 1. In the equivalence class of Q we have the matrix

Q0 =

⎛⎜⎝
Qnn 2 ? · · · ? 2

Q1n 2 2 · · · 2 2

.

..
.
..

.

..
.
..

.

..
Qn−1,n 2 2 · · · 2 2

⎞⎟⎠
Then #ΓZ(Q

0)(1) = #ΓZ(Q0) = n− 1. It remains to prove that
ΓZ(Q

0)(1) has a nonzero off-diagonal k-block. Two possibilities
appear:

1. Qn−1,n 6= 0. Then ΓZ(Q0)n−1,1 = Qn−1,n 6= 0.
2. Qn−1,n = 0. Then Q1n = 0 and Qin 6= 0 for some i ∈
{2, . . . , n− 2}. So ΓZ(Q0)i1 = Qin 6= 0.

Now we have all the necessary tools to give an alternative proof of
Theorem 1.1 which besides provides an algorithmic procedure to construct
a solution matrix completion.

Proof. (of Theorem 1.1) The case where P has no full prescribed line was
proved in [3]. So, assume that P is a partially prescribe matrix over a field
F with at most 2n − 3 prescribed entries and with a full prescribed line.
Without loss of generality we assume that p1n, p2n, . . . , pnn are prescribed.
If p1n = p2n = · · · = pn−1,n = 0, then pnn has to be contained in Λ in order
for the line to be consistent with Λ. This case is then naturally reduced to
the case of partially prescribed matrices of order n− 1 with at most n− 3
prescribed elements (so, without full prescribed lines).

Now we assume that pin 6= 0 for some i ∈ {1, 2, . . . , n− 1}. By Lemma
5.2, we can choose S1 in Corollary 5.1 in such a way that

P
i∈S1 pin 6= 0.

This reduces our problem to the 2× 2 case of the form:Ã
2 s12
2 s22

!
,
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where s12 6= 0.
The completion to a matrix with spectrum {λ1, λ2} ⊂ Λ is unique and

it is equal to Ã
λ1 + λ2 − s22 s12
(λ1−s22)(s22−λ2)

s12
s22

!
.

Next we present some examples to illustrate scope and limitations of
our method in the case of a full prescribed line when considering completion
over integers.

Example 5.2. Consider the partially prescribed matrix

P =

⎛⎜⎜⎜⎝
2 2 a 3
2 2 2 22
2 2 2 5
2 2 2 1

⎞⎟⎟⎟⎠ ,

where a is an integer. From P we can obtain, using operation ΓZ and
choosing different matrices from the equivalence classes, the following 2×2
partially prescribed matrices:

P1 =

Ã
2 30
2 1

!
, P2 =

Ã
2 27
2 4

!
, P3 =

Ã
2 25
2 6

!
,

P4 =

Ã
2 22
2 9

!
, P5 =

Ã
2 8
2 23

!
, P6 =

Ã
2 5
2 26

!
.

Observe that Proposition 5.1 implies that it is not possible to obtainÃ
2 3
2 28

!
.

Since the sum of the off-diagonal elements in the full prescribed line is
not equal to zero, any of the matrices Pi, i = 1, 2, . . . , 6, can be completed
to have any real (complex) spectrum over the real (complex) numbers.
However the completion, using our method, will only be possible over the
integers if there exists two elements λ1, λ2 in the prescribed spectrum that
satisfy at least one of the following conditions:

1. (λ1 − 1)(1− λ2) is divisible by 30,

2. (λ1 − 4)(4− λ2) is divisible by 27,

3. (λ1 − 6)(6− λ2) is divisible by 25,
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4. (λ1 − 9)(9− λ2) is divisible by 22,

5. (λ1 − 23)(23− λ2) is divisible by 8,

6. (λ1 − 26)(26− λ2) is divisible by 5.

Example 5.3. Consider partially prescribed matrix

P =

⎛⎜⎜⎜⎝
2 2 a 3
2 2 2 −2
2 2 2 5
2 2 2 1

⎞⎟⎟⎟⎠ ,

where a is an integer. Since P can be reduced to

Ã
2 1
2 6

!
we can complete

P to have any integer spectrum.
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