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Abstract

The main aim of the present paper is to obtain a new class of
multivalent functions which is defined by making use of the general-
ized Ruscheweyh derivatives involving a general fractional derivative
operator. We study the region of starlikeness and convexity of the class
(e, B,7). Also we apply the Fractional calculus techniques to obtain
the applications of the class Qp(a, 8,7). Finally, the familiar concept
of d-neighborhoods of p-valent functions for above mentioned class are
employed.
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1. Introduction

Let A denote the class of functions that are analytic in the open unit disk
U={z€C:|z] <1} and let A, be the subclass of A consisting of the
functions f of the form

(1.1) f(z) =2 — Z axz®, (n € N)

where p is some positive integer and f is analytic and p-valent in U.
The generalized fractional derivative operator of order A, introduced by
Srivastava and Saxena [9], [10], is defined as

risy i {2 5 (2 - 0
(12)  Jfpz) =4 -2 (h=XA1-wm1=X1-%) F(Qdc},

0<A<1)

LJo M f(z), (n<A<n+1neN)

dz™

where f is an analytic function in a simply connected region of the z-
plane containing the origin, and the multiplicity of (z — )™ is removed by
requiring log(z — ¢) to be real when z — ¢ > 0, provided further that,

(1.3) f2)=0(z"), (2—0)

In terms of gamma function, we have

(oDl (p—ptv+2)  p—p
(1.4) JN P = Tt DL p—rvrD ~

0<A<1,p>max{0,p—v—1}—1)

It follows at once from the above definition that

(1.5) 1@37@)—Dyp0—5§45@{%%7ﬁ,(ogA<1y
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where D2 f(z) is the fractional derivative operator of order A. Furthermore,
in terms of gamma function, we have

_ T+l -
(1.6) D)zP = mzﬂ A (0<)N)

Similary, the fractional integral opearator of order A is

] L d W
(17) DI = s as b oo

where f is an analytic function in a simply connected region of the z-
plane containing the origin, and the multiplicity of (z — )™ is removed by
requiring log(z —t) to be real when z —t > 0. In terms of gamma function,

_ L'(p+1)
1. DA = —C ") A
(18) : S T Tpto+1)

The generalized Ruscheweyh derivatives JI);“ fimw>—-1of feA,is
defined by Goyal and Goyal [2] as follows:

1 (=) = ritaiany  Jod (47 £ (2)

- I(v+2)I'(p+1) z
(1.9)
= 2P — ZZO:ner akB]iHM(k)Zk

where

B (k) — Fk—p+1+pwlv+2+p—-NI'k+v—p+2)

P F'k—p+1I'k+v—p+2+pu—ANL(v+2)I(1+ p)

(1.10)

For A = p, this generalized Ruscheweyh derivatives get reduced to

Ruscheweyh derivatives of f(z) of order A (see, e.g. [12]):
D f(2) = iy a (P £(2))

=P+ Zzoznﬂ, apBr(\) 2"
(1.11)
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where

(1.12) Bu()) = — LA+E)

FA+pI'(k—p+1)
For p=1, (1.11) reduces to ordinary Ruscheweyh derivatives for univa-

lent functions [§].
The operation

*is the convolution (Hadamard product) of two power

series
flz) = Z arz" and g(z Z byz"
k=n+p k=n+p
defined as -
(1.13) (f*xg)(z) =2 — Z arbyp 2"
k=n+p
A function f € ), is said to be in the class Q,(«, 3, A) if and only if

2(Iprf(2) }
1.14 R L >
. ) { (L= a)(Jp"f(2)) + az2(Ip" £(2))"
forzeUand 0<a<1,0<8<pand A > —1.

The class Q,(c, B, A) contains many well-known classes of analytic func-
tions such as:

o For a = X =0, Q,(a, 5, \) reduces to the class S*(f3) of starlike func-
tions of order f.

o For a = XA = —1, Q,(a, 5, ) reduces to the class K(3) of convex
functions of order .

2. Main Results

The coefficient bounds for the functions f € Qp(«, 3, ) are found in the
following theorem:

Theorem 2.1. Let f € A,, z € U be of the form (1.1). Then f €
Qp(a, B, A) iff

[ele) a _ 2 _
1) $ Bl+k—k2)+k—p

BM(K)ay, < 1
p—B+af(l+p—p*) 7P (k)a

k=n+p

where 0 < a<1,0< B <pand XA > —1.
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Proof. Since f € Qp(a, 8, \)

(I }
2.2 Re
22 {(1—a)(J?’”f(z))+az2<J?’“f(z))” =0

Making use of equation (1.9) in the above inequality, we obtain

pzP~1 — D hentp k‘akB;"“(k)zk_l

Re{ b } > B
ol (7 PP = D)7~ (1) ol 1)Jax By " (k)
2.3

Therefore, we obtain

i af(l+k—k)+k—p
poriy P =B+ af(l+p—p?)

(2.4) Byt (k)ay, < 1.

In this theorem, we will show that this class is closed under linear
combination.

Theorem 2.2. Let for j € {1,2,3,....m}

) =2F — Z aka € Qp(a, B, N)

k=n-+p
Then for 0 < P; <1, 377", P; = 1, the function F(z) defined by
(2.5) F(z) =) Pif;(2)
j=1

is also in Qp(a, B, N).

Proof. For every j € {1,2,3,...,m}, we obtain

i af(l+k—k2) +k—p

(26) 2 p—BraBltp—p)

Byt (k)ak,; < 1.

(2.1 F(z) = iP] (zp — i akyjzk) =2P - Z (ZP a;w)
.

k=n+p
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Therefore,

X af(l+k—Kk)+k— ﬁ B
B8 2 o raBp— ) (Zpakj)<zp_1

k=n-+p

which proves the Theorem.

Theorem 2.3. Let
and

belong to Q,(c, 5, ). Then the function

oo

G(z) =2 — Z (a2 4 b2)2"

k=n+p

is in € Qp(e, B, A1), where

(k=p)ef(+k—k) +k—f
2[p— B+ ap(l+p— p?)]

(29) N <inf

(B (k))* — 1] -

Proof.
Since f, g € Qp(e, B, V),

= |afl+k—k)+k-p A, ’ 2
2 lp—5+a5(1+p—p2)3p#(k)1 o

k=n-+p

0o aB(1+k—k2)+k—8 A, 2
= [Zk:n—f—p p—B+apf(1+p—p? )B M(k)ak} <1
(2.10)

Similarly,

i |f)éﬁ(1 + k— k’2) + k — BB’\’“(k)rbi

— _ 2
pmip [P = B+ aB(l+p—p?)
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0o aB(1+k—k2)+k—8 A, 2
= [Zk:n—f—p p—B+apf(1+p—p? )B M(k)bk] <l
(2.11)

Therefore

— 1 af(l+k—kE)+k—8 ’ 2 2
(2.12) k_zn;p lp—ﬁ#—aﬁ(l—i—p—pz)BpM(k)] (aj +b7) <1

Now, we must show that

2 af(l+k—k)+k—p B () (a2 412
(2.13) kzn;pp B tp 1) (k)(ag +b5) <1

This inequality holds if
aB(l+k—k*) +k— B phw
p—B+af(l+p—p*) "

(2.14)

(k) <

Bl +k—k)+k—B ., ]
p—B+aB(l +p—p2)B” #(k)]

1
2

which is equivalent to
laﬁ(1+kz—k2)+k—ﬁ{ W
2p=B+ap(l+p—p*) L7

Since %_Jr—pl < Bpv#(k), we obtain

(2.15) Byt (k) =

M+1 _1ap(l+k—k)+k—B71 2
F—p ~2p—BtaBl+p—p) 5]

and this gives the required result.

(2.16)

A modified Komatu operator K : A — A is defined for v > 0 and
¢ > —p as
(c+p)? /1 14
2.17 K = t°(log=)" tz)dt
(217) () = St [ ettog ) e
It can be easily verified that for f € A,

< [(c+p\?
(2.18) Kl f(z)=2"— > ( > ap2”
k=p+1

c+k



196 Hari Singh Parihar and Ritu Agarwal

Theorem 2.4. If f € Q,(a, B, )), then K7, f € Qy(a, B, ).

Proof. Since f € Q,(c, 8, ) and {C+—p}7 < 1, we have

o af(l+k—k)+k—=8 (c+p\? .\
(2.19) k_znﬂ)p—ﬁ+aﬁ(1+p—p2) <C+k> Byt (k)ay, < 1

This completes the proof.

3. Radius of starlikeness and convexity

Now we obtain the radii of starlikeness and convexity for the functions
K) f.
D

Theorem 3.1. The function K[, [ is starlike of order n in

|Z’ < 7‘1(0(,5,)\, 67’7777); where

71 (CK, /37 )\7 ¢, 7, 77)

1

. 1— aB(1+k—k?)+k—B (ct+p\7 pA, =

=inf, {k—n—z+1p—6+a6(l+p—p2) (C+_£> By M(k)ak] ’
(3.1)

Proof. We must show that

2K, f(2))

<1l-—m.
K1,f(2) 7

(3.2) y

i.e.

Cinip(ER) (k — p)axl2l*7
T 1= (ER)akla

2(K2,f(2) = pK2,f(2)
Kdpf(z)

I—n

(3.3)

or to show that
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(3.4)

Now, in view of (2.1), the theorem holds if

1—n a6(1+k—k2)+k—6(c+p)'y

3.5) |z|FP <
(3.5)[z| k—p+1—-np—pF+aB(l+p—p?) \c+k

A7
By (k)

This proves the result.

Theorem 3.2. The function K7, f is convex of order 7 in

|Z| < TQ(aa 67 )‘a 657777)7 where

1“2(0[, 67 )‘a S 77)

1
=i —n) aB(l+k—k®)+k—B (c+p\” =
=infy {]’EEZ*Z% p_/(g‘f'()éﬁ(l—zp—pZ) (;—ﬁ) B?’“(k)ak} P

(3.6)

Proof. Noting the fact that K7, f is convex iff 2(K7,,f)" is starlike. There-
fore, we must show that,

(K”,p (2))" B
plp— 1) =5 (CR) (R —plarlz
(3.8) pepl — n+p( )VQkIZ’k 1 <1l-—n
or to show that
(39) S (P — m)lagl<* < oo — )

Pl c+k

Now, by (2.1), the last inequality holds if

plp—n) af(l+k—k*)+k-p (chp)7
k(k—n)p—B+aB(l+p—p?) \c+k

This complete the proof.

(3.10) |zFP < B (k)

p
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Theorem 3.3. If f € Qy(a, 3, A), then the function F}(z), z € U defined
by

(3.11) Fi(z) = (1 — p)2? +p,u/0z @dt, 0< < %

is in Q,(a, 5, A).
Proof. We have
z = [? >~ pp
Fl(z) = (1—p)zP+pp / Pt — Z / apt"ldt| = 2P Z ap—2"
P 0 o 0 < k
=n+p k=n+p

(3.12)
Now, by (2.1), we obtain

X af(l+k—Kk)+k-p DI o,
2 p—B+aB(l+p—p?) (k)B”M(k)ak

k=n+p

o0 aB(l+k—k?)+k—8 (2 A,
S Xk=ntp p—fraf(itr—) (E> By*tkjar <1
(3.13)

and this proves the theorem.
Remark 3.4. F}(z) is starlike of order 7 in |z| < r{ (e, 8, A, n, p), where
70]13<a7 /87 )‘7 m, ,U,)
1

. k(1-m) af(1+k—k?)+k—B pA, k—
=infj {pu(p—kJrl—n) p—praB(lip—p?) D “(k)ak} i
(3.14)

Also, F}!(z) is convex of order n in |z| < 7{(«, 8, \,n, p), where

(p—n) af(l+k—k)+k—3_, T
BM(k ‘
puk—n)p—B+aB(l+p—p?) ? (k)ag

(e, B, A\, n, 1) = igfl

(3.15)

The proof of the above remark is made by similar arguments of the
Theorems 3.1 and 3.2.
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4. Fractional Calculus on Q,(a, 5, \)

In this section, we apply the fractional calulus techniques and discuss the
properties of the family Q,(c, 5, A) (see [10]). In this theorem, we find the
distortion bounds for f(z).

Theorem 4.1. Let f € Q,(a, 3,X), A > 0. Then

s_Tlp+1) n < | p=? s_Lp+1) n
|27+ W[l—MM | <IDZ°f(2)] < |2PF WUJFMM ]
(4.1)
where

_ (p+Dalp—B+af(l+p—p*)J(v+p—A+2)nl(n+1)
p+d+1up+n+p{al+p+n—(p+n)?) — 1w+ v+ 2),

and f(z) is analytic function

Proof.
By equation (1.8), we have
Pé+p+1) 5.5 - k
(4.2) ———————2 D f(z) = ¥ — Z arHy(k,0)z
F(p—i— 1) k=n+p
where (6 +p+ D0(k + 1
(43) Hy (1, ) = S0t DU+ 1

T(k+to+1)(p+1)

But Hp(k,0) is a decreasing function for £ > n + p and also B;"“(k) is
increasing function of &, thus, we have
FO+p+1I'(n+p+1) (p+ 1),

(4.4) Hy(k,0) < IF'(n+p+d+1DT(p+1) - (+p+1),

and
N (L4 Dn(v+2),
(4.5) By ) 2 S + 2 1)

So, we conclude that

'6+p+1)

-
fooy 7 D)

+1)n
< [alP + Gy [P SRy
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< |alP gy (1 + Mle]™*7)
(4.6)

where M is defined in the theorem statement. Thus, we get

_ I(p+1)
. 4 < p+5 n
(4.7) D] < B G M
Also, we have
ro+p+1) 5 _
’ﬁz "D f(2)
> |2 — G 2 SR
> |2fP gy (1 — Ml2["]
(4.8)
Then I 0
) —0 > p+o p+ _ n
(4.9) D H G| 2 B~ MU

This completes the proof of the theorem.

Theorem 4.2. Let f € Q,(a, 3,\), A > 0. Then

-5 F(p—i—l) n 5 -4 F(p-i—l) n
B TCETESY) [1 = Nz["] < [D2f(2)] < |2 Tp—o+1) [L+ N|z"]
(4.10)
where

_ P+ Dalp—B+ap(l+p—p*)(v +p—A+2)pL(n+1)
(p_5+ 1)n[p+n+ﬁ{a(1 +p+n-— (p+n)2) - 1}](/1’"’_ 1)n(V+2)n

and f(z) is analytic function
Proof. By equation (1.6), we have

Tp—=04+1) 5600 _ -
WZ’ Dl f(z) = 2P — Z apRy(k,8)2"

k=n-+p

(4.11)
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where

(4.12) Ry(k,0)— =0+ DTk + 1)

I'k—0+1)I(p+1)
But R,(k,0) is a decfreasing function for k& > n + p and also Bg‘”‘(k) is
increasing function of &, thus, we have

Tp—6+D)I'(n+p+1)  (p+1),
(4.13) 1%@J)Srm+p—5+UF@+U__@—5+Dn

and
\ (n+1Dp(v+2),
(4.14) By*(k) = (t—A+v+2),T(n+1)

So, we conclude that

Fp—56+1) 5.5
F(p + 1) z sz(z)
S (p(fjsi)ﬁn 2" 2R O

< |ofP e (1 + N 2| +7]
(4.15)

where N is defined in the theorem statement. Then, we get

s Tlp+1)
) 4 < p—0 n
(4.16) D) < P G e A 1+ N
Also, we have
Fp=350+1) 5.5
‘ T(p+1) #D21(2)
> [ofp — B 2P R L
> |ofP sy (1 — N2
(4.17)
Then I D
] § > |»|P—0 P+ - n
(4.18) D) 2 P e A = NP

This completes the proof.
Letting 6 = 1 in Theorem 4.1, we obtain
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Corollary 4.3. Let f € Q,(a, 3,X), A > 0. Then

| |P+1
(p+1)

’Z|P+1

+1)

(4.19)

-z <| [ s ﬁ\ 1+ M]2["]

where

(p+Dalp—B+aBl+p—p)]v+p—A+2),I'(n+1)

~ et Dulp ot Bla(ltp 0=+ n)?) ~ B+ Dalv + 2
and f(z) is analytic function
Letting = 0 in Theorem 4.2, we obtain
Corollary 4.4. Let f € Q,(a, 5,\), A > 0. Then
(4.20) 2P [L = N12["] < |f(2)] < |2[P[1 4 Nz|"]
where

__ p=B+aBl+p-—p)iv+p—A+2),I(n+1)
[p+n+p{a(l+p+n—(p+n)?) -1} +Dn(v+2),

and f(z) is analytic function
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