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Abstract

For a connected graph G of order at least two, a path P is called a
monophonic path if it is a chordless path. A longest x —y monophonic
path is called an x — y detour monophonic path. A set S of vertices
of G is an edge detour monophonic set of G if every edge of G lies
on a detour monophonic path joining some pair of vertices in S. The
edge detour monophonic number of G is the minimum cardinality of
its edge detour monophonic sets and is denoted by edm(G). An edge
detour monophonic set S of G is called a minimal edge detour mono-
phonic set if no proper subset of S is an edge detour monophonic set
of G. The upper edge detour monophonic number of G, denoted by
edm™(Q), is defined as the mazimum cardinality of a minimal edge
detour monophonic set of G. We determine bounds for it and charac-
terize graphs which realize these bounds. For any three positive inte-
gers byc and n with 2 < b <n < ¢, there is a connected graph G with
edm(G) = b, edm™ (G) = ¢ and a minimal edge detour monophonic
set of cardinality n.
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number, minimal edge detour monophonic set, upper edge detour mono-
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1. Introduction

By a graph G = (V, E') we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of GG are denoted by p and
q, respectively. For basic graph theoretic terminology we refer to Harary
[1]. For vertices x and y in a connected graph G, the distance d(z,y) is the
length of a shortest z —y path in G. An z—y path of length d(z,y) is called
an x —y geodesic. The neighborhood of a vertex v is the set N(v) consist-
ing of all vertices u which are adjacent with v. A vertex v is an extreme
vertez if the subgraph induced by its neighbors is complete. A vertex v is a
semi-extreme vertex of G if the subgraph G[S] induced by its neighborhood
S has a vertex with degree equal to |S| — 1. In particular, every extreme
vertex is a semi-extreme vertex and a semi-extreme vertex need not be an
extreme vertex.

A chord of a path P is an edge joining two non-adjacent vertices of
P. A path P is called monophonic if it is a chordless path. A longest
x — y monophonic path is called an x — y detour monophonic path. A
set S of vertices of a graph G is a detour monophonic set if each vertex
v of G lies on an x — y detour monophonic path for some x,y € S. The
cardinality of a detour monophonic set of G with minimum cardinality is
the detour monophonic number of G and is denoted by dm(G). The detour
monophonic number of a graph was introduced in [4] and further studied
in [5].

An edge monophonic set of G is a set S of vertices such that every
edge of G lies on a monophonic path joining some pair of vertices in S.
The edge monophonic number of G is the minimum cardinality of its edge
monophonic sets and is denoted by m;j(G). An edge monophonic set of
cardinality m1(G) is an mi-set of G. An edge detour monophonic set of G
is a set S of vertices such that every edge of G lies on a detour monophonic
path joining some pair of vertices in S. The edge detour monophonic num-
ber of G is the minimum cardinality of its edge detour monophonic sets
and is denoted by edm(G). An edge detour monophonic set of cardinality
edm(G) is an edm-set of G. The edge detour monophonic number of a
graph was introduced and studied in [3].

The following theorems will be used in the sequel.

Theorem 1.1. [2] Each semi-extreme vertex of a graph G belongs to every
edge monophonic set of G.

Theorem 1.2. [3] Each semi-extreme vertex of a graph G belongs to every
edge detour monophonic set of G.
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Theorem 1.3. [3] Let G be a connected graph with cut-vertices and S an
edge detour monophonic set of G. If v is a cut-vertex of GG, then every
component of G — v contains an element of S.

Theorem 1.4. [3] For any connected graph G, no cut-vertex of G belongs
to any minimum edge detour monophonic set of G.

Theorem 1.5. [3] If T'is a tree with k end-vertices, then m;(T) = edm(T") =
k.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Upper edge detour monophonic number

Definition 2.1. Let G be a connected graph with at least two vertices.
An edge detour monophonic set S of G is called a minimal edge detour
monophonic set if no proper subset of S is an edge detour monophonic
set of G. The upper edge detour monophonic number of G, denoted by
edm™ (@), is defined as the maximum cardinality of a minimal edge detour
monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal edge
detour monophonic sets are S; = {x,z} and Sy = {y,u,v}. Hence the
upper edge detour monophonic number of G is 3.
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Note 2.3 Every minimum edge detour monophonic set is a minimal edge
detour monophonic set, but the converse is not true. For the graph G given
in Figure 2.1, Sy is a minimal edge detour monophonic set but it is not a
minimum edge detour monophonic set of G.

Since every minimal edge detour monophonic set of G is an edge detour
monophonic set of G, we have the following theorems.

Theorem 2.3. Each semi-extreme vertex of a connected graph G belongs
to every minimal edge detour monophonic set of G.

Proof. This follows from Theorem 1.2. O

Corollary 2.4. For the complete graph K, edm™(K),) = p.

Proof. Since every vertex of K, is a semi-extreme vertex, the result
follows from Theorem 2.3. O

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be
a minimal edge detour monophonic set of G. If v is a cut-vertex of GG, then
every component of G — v contains an element of S.

Proof. This follows from Theorem 1.3. O

Corollary 2.6. Let G be a connected graph with cut-vertices and let S
be a minimal edge detour monophonic set of G. Then every branch of G
contains an element of S.

Proof. This follows from Theorem 2.5. O

Theorem 2.7. No cut-vertex of a connected graph G belongs to any min-
imal edge detour monophonic set of G.

Proof. This follows from Theorem 1.4. O

Corollary 2.8. For any tree T with k end-vertices, edm(T) = edm™(T) =
k.
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Proof. Since every vertex of T is either a semi-extreme vertex or a
cut-vertex, the result follows from Theorems 2.3 and 2.7. O

We denote the vertex connectivity of a connected graph G by x(G) or
K.

Theorem 2.9. If G is a non-complete connected graph such that it has a
minimum cut set consisting of x vertices, then edm™(G) < p — k.

Proof. Since G is a non-complete connected graph, it is clear that
1<k <p—2. Let U ={uy, ug, us, ...,us} be a minimum cut set of G. Let
G1, Ga, ..., Gy(r > 2) be the components of G — U and let S =V (G) —U.
Then every vertex u;(1 <1 < k) is adjacent to at least one vertex of G; for
each j (1 < j <r). It is clear that S is an edge detour monophonic set of
G and so edm™(G) < |S|=p—+k. O

Remark 2.10. The bound in Theorem 2.9 is sharp for the graph G given
in Figure 2.1.

Theorem 2.11. For any connected graph G, 2 < edm(G) < edm™(G) <
p.

Proof. It is clear from the definition of minimum edge detour mono-
phonic set that edm(G) > 2. Since every minimal edge detour monophonic
set is an edge detour monophonic set of G, edm(G) < edm™(G). Also,
since V(G) induces an edge detour monophonic set of G, it is clear that
edm™*(G) < p. Thus 2 < edm(G) < edm™(G) <p. O

Remark 2.12. The bounds in Theorem 2.11 are all sharp for Ks. Further-
more, for any tree T' with k end-vertices edm(T) = edm™(T) = k (notice

that a non-trivial path is a tree with two end-vertices) and for the complete
graph K, edm™(K,) = p.

Theorem 2.13. For a connected graph G, edm(G) = p if and only if
edm™(G) = p.

Proof. Let edm™(G) = p. Then S = V(G) is the unique minimal
edge detour monophonic set of G. Since no proper subset of S is an edge
detour monophonic set, it is clear that S is the unique minimum edge
detour monophonic set of G and so edm(G) = p. The converse follows
from Theorem 2.11. O

Theorem 2.14. If G is a connected graph with edm(G) = p — 1, then
edm™(G) =p—1.
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Proof. Since edm(G) = p — 1, it follows from Theorem 2.11 that
edm™(G) = por p—1. If edm™(G) = p, then by Theorem 2.13, edm(G) = p,
which is a contradiction. Hence edm™(G) =p—1. O

Theorem 2.15. For the complete bipartite graph G = K,y 5,
(i) edm™(G)=2ifm=n=1.
(ii) edm™(G) =nif m=1,n > 2.
(iii) edm™(G) = max{m,n} if m,n > 2.

Proof. (i) and (ii) follows from Corollary 2.8.

(iii) Let m,n > 2. Assume without loss of generality that m < n. Let
X ={z1,2z2,...,2m} and Y = {y1,y2,...,yn} be the bipartition of G. Let
S =Y. We prove that S is a minimal edge detour monophonic set of G.
Any edge z;y;(1 <i <m,1 < j < n) lies on the detour monophonic path
Yj, Ti, Y, for any k # j so that S is an edge detour monophonic set of G.
Let §" C S. Then there exists a vertex y; € S such that y; ¢ S’. Clearly,
the edge z;y; for every i, does not lie on any detour monophonic path
joining a pair of vertices in S’. Thus S’ is not an edge detour monophonic
set of G. Hence S is a minimal edge detour monophonic set of G and so
edm™*(G) > n.

Let S1 be any minimal edge detour monophonic set of G with |S1| > n.
Since any edge x;y;(1 < i < n) for every j, lies on the detour monophonic
path x;,y;, xy for j # k, it follows that X is an edge detour monophonic
set of G. Hence S7 cannot contain X. Similarly, since Y is a minimal edge
detour monophonic set of G, S7 cannot contain Y. Hence S; C X' UY’,
where X’ C X and Y/ C Y. Hence there exists a vertex z; € X(1 <1i < m)
and a vertex y; € Y(1 < j < n) such that x;,y; ¢ S1. It is easily seen that,
the edge z;y; does not lie on any  — y detour monophonic path, for any
z,y € S1. Thus S is not an edge detour monophonic set of G, which is
a contradiction. Therefore, any minimal edge detour monophonic set of G
contains at most n elements so that edm™(G) < n. Hence edm™(G) = n.

O

Theorem 2.16. For any three positive integers a, b, c with 2 < a < b <,
there is a connected graph G with m1(G) = a, edm(G) = b and edm™* (G) =
c.

Proof. Case 1. 2 < a =0b=c. Let G be any tree with a end-vertices.
Then by Theorem 1.5 and Corollary 2.8, G has the desired properties.
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Case 2. 2<a=0b<c. Let P3:x,y,z be the path of order 3. Let G be the
graph obtained by adding c—1 new vertices v1, v, ..., Uq—1, W1, W2, . .. , We—q
to P3 and joining each w;(1 < i < ¢ — a) to both z,z; and also joining
each v;(1 < i < a—1) to z. The graph G is shown in Figure 2.2. Let
S = {v1,v2,...,v4—1} be the set of all end-vertices of G.

\ /
WV

w,

Figure 2.2: G

Then by Theorems 1.1, 1.2 and 2.3, S is contained in every edge mono-
phonic set, every edge detour monophonic set and every minimal edge de-
tour monophonic set of G. It is clear that S is not an edge monophonic
set of G. It is easily verified that S’ = S U {z} is a minimum edge mono-
phonic set of G and also a minimum edge detour monophonic set of G.
Thus m1(G) = edm(G) = a.

Next we show that edm™(G) = b. Clearly T = SU{y, w1, wa, ..., We—q}
is an edge detour monophonic set of G. We claim that 7" is a minimal edge
detour monophonic set of G. Let W be any proper subset of T. Then
there exists a vertex, say v, such that v € T' and v ¢ W. By Theorem 2.3,
v € {y,w1,wa,...,Weq}. It is easily verified that the edge vz is not an
internal edge of any x — y detour monophonic path for some x,y € W, it
follows that W is not an edge detour monophonic set of G. Hence T is a
minimal edge detour monophonic set of G and so edm™(G) > c.

Now, we prove that edm™(G) = c¢. Suppose that edm™*(G) > c. Let
N be a minimal edge detour monophonic set of G with |[N| > ¢. Then
there exists at least one vertex, say u € N such that v ¢ T. Then by
Theorem 2.7, u # = and so u = z. Clearly S U {z} is an edge detour
monophonic set of G and it is a proper subset of N, which is a contradic-
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tion to N a minimal edge detour monophonic set of G. Hence edm™ (G) = c.

Case 3. 2<a<b=c. Let C;: uj,v;,w;,x;,yi,u; (1 <i<b—a)beb—a
copies of a cycle of order 5. Let H be the graph obtained from C;(1 < i <
b— a) by joining the vertices w;_1 of Cj_1 and u; of C;(2 <i < b—a). Let
G be the graph obtained from H by adding a new vertices z, 21, 22, . . . , Z4—1
and (i) joining z to wq, (ii) joining each z;j(1 < j < a —1) to wp_q. The
graph G is shown in Figure 2.3. Let S = {z, 21, 22,...,24—1} be the set of
all extreme vertices of G. Then by Theorem 1.1, every edge monophonic
set of G contains S. Clearly, S is an edge monophonic set of G and so
m1(G) = a.

L1 Uz Ub—a 1
z u wy u Wy Up_ “2
“g—1
u I y Tz  Ye—a Thoa

Figure 2.3: &

By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set
and every minimal edge detour monophonic set of G contains S. Clearly,
S is not a minimal and minimum edge detour monophonic set of G. We
observe that every minimal and minimum edge detour monophonic set of
G contains exactly one vertex from each set {v;,x;,y;} for every i(1 <
i < b—a). Thus edm(G) > b and edm*(G) > b. On the other hand,
S" = SU{vi,ve, - -vp_q} is a minimum edge detour monophonic set of
G, it follows that edm(G) < b. Thus edm(G) = b. By Theorem 2.7, no
cut-vertex of G belongs to any minimal edge detour monophonic set of G.
It follows that there does not exist a minimal edge detour monophonic set
N of G with |[N| > b. Hence edm™(G) = b.

Case 4. 2 <a<b<ec Let V(Ks) = {x,y} and V(K._pt1) = {l1,12,...
le—p1}. Let H =K. pi1+ Ko. Let C; : u,vi, w;, 4, yi,u;(1 < i < b—a)
be b — a copies of a cycle of order 5. Let H' be the graph obtained from
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C;(1 <i <b—a) by joining the vertices w;—1 of C;_1 and u; of C;(2 < i <
b —a). Let G be the graph obtained by joining the vertices w;_, from H’

and z from H, and then adding a — 1 new vertices z, 21, 22, . . ., 24—2; and (i)
joining z to w1, (ii) joining z;(1 < j < a —2) to x. The graph G is shown
in Figure 2.4. Let S = {z,21,22,...,24—2} be the set of all end-vertices

of G. Then by Theorem 1.1, every edge monophonic set of G contains S.
Clearly, S is not an edge monophonic set of G. Let S" = SU {y}. It is
easily verified that S’ is an edge monophonic set of G and so m1(G) = a.

By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set of
G and every minimal edge detour monophonic set of G contains S. Clearly,
S is not an edge detour monophonic set of G. We observe that every
minimum edge detour monophonic set of G contains y and exactly one
vertex from {v;,z;,y;} for every i(1 < i < b—a). Thus edm(G) > b. On
the other hand, S = S U {v1,v2," - Up_q,y} is a minimum edge detour
monophonic set of G and so edm(G) = b.

™ (4]
; u wp U Wz  Up_
e 4 S
D1 @ Zao
U1 r Yz T2 Yb—a Th_a
Figure 2.4: &
Now, T'= SU{v1,v2, ..., Vp—q,l1,l2, ..., lc—p+1} is an edge detour mono-

phonic set of G. We show that 7' is a minimal edge detour monophonic set
of G. Let W be any proper subset of T. Then there exists at least one
vertex, say v € T, such that v ¢ W. If v = v;(1 < i < b— a), the edge
vu; is not an internal edge of any  — y detour monophonic path for some
x,y € W, it follows that W is not an edge detour monophonic set of G.
Ifv=1041<i<c—b+1), the edge vy is not an internal edge of any
x — y detour monophonic path for some x,y € W, it follows that W is not
an edge detour monophonic set of G. Hence T is a minimal edge detour
monophonic set of G and so edm™(G) > c.
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Next we show that there is no minimal edge detour monophonic set X
of G with |X| > ¢+ 1. Suppose that there exists a minimal edge detour
monophonic set X of G such that |X| > ¢+ 1. Then there exists at least
one vertex, say, v € X such that v ¢ T. We observe that every minimal
edge detour monophonic set contains exactly one element from {v;, z;,y;}
for every i(1 < ¢ < b — a). Hence by Theorem 2.7, v = y. Clearly,
(X —{l1,l2,...,lc—pr1}) U{y} is a minimal edge detour monophonic set of
G, which is a contradiction. Therefore edm™(G) =c. O

Theorem 2.17. For any three positive integers b,c and n with 2 < b <
n < ¢, there is a connected graph G with edm(G) = b, edm™*(G) = c and a
minimal edge detour monophonic set of cardinality n.

Proof. We consider four cases.

Case 1. b =n = c. Let G be any tree with b end-vertices. Then by Corol-
lary 2.8, G has the desired properties.

Case 2. b =n < c. For the graph G given in Figure 2.2 of Theorem 2.16,
it is proved that edm(G) = b,edm™ (G) = c and S = {z,v1,v2,...,vp_1} I8
a minimal edge detour monophonic set of cardinality n.

Case 3. b < n = c. For the graph G given in Figure 2.2 of Theorem 2.16,
it is proved that edm(G) = b,edm™(G) = c and S = {v1,v2,...,0p_1,¥,
w1, Wa, ..., Wep} is a minimal edge detour monophonic set of cardinality 7.

Case4. b<n<c Letl=n—-b+landm=c—n+1.

Let [} = mKj + Kz, where Uy = V(K3) = {z,u1} and X = V(mK;) =
{x1,72,..., 2y }. Similarly, Iy = [K; + Ka, where Uy = V(K3) = {uz,y}
and Y = V(IK1) = {y1,v2,...,y}. Let Kq,_o be the star at the vertex u
and let S = {w1,ws, ..., wp—2} be the set of end-vertices of K1 9. Let G
be the graph obtained from K ,_9, F7 and F5 by identifying the vertices
from K p_o, u1 from Fy and ug from Fy. The graph G is shown in Figure
2.5. It follows from Theorem 2.3, every minimal edge detour monophonic
set contains S.
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Wy Wz Uh_2

Lim 0
Figure 2.5: &

First we show that edm(G) = b. It is clear that S is not an edge detour
monophonic set of G. Also, for any v € V(G) — S, S U {v} is not an edge
detour monophonic set of G. Let S = SU {x,y}. It is easily verified that
S’ is a minimum edge detour monophonic set of G and so edm(G) = b.

Next, we show that edm™(G) =c. Let T = SUX UY. It is clear that
T is an edge detour monophonic set of G. We claim that 7" is a minimal
edge detour monophonic set of G. Let W be any proper subset of T'. Then
there exists a vertex, say, v € T such that v ¢ W. Assume first that
v = z; for some i(1 < i < m) or v = y; for some j(1 < j <1). Then the
edge wv is not an internal edge of any detour monophonic path joining a
pair of vertices in W. If v = w; for some ¢(1 < ¢ < b — 2), then the edge
uw; is not an internal edge of any z — y detour monophonic path for some
x,y € W. Hence T is a minimal edge detour monophonic set of G and so
edm™(G)>|T|=b—-2+1+m=c.

Now, we prove that edm™(G) = c. Suppose that edm™(G) > c. Let T"
be a minimal edge detour monophonic set of G with |T”| > ¢. Then there
exists at least one vertex, say v € T" such that v ¢ T. Also, by Theorem
2.7, v € {z,y}. If v =z, then T" — X is an edge detour monophonic set of
G and it is a proper subset of T”, which is a contradiction to 7" a minimal
edge detour monophonic set of G. Similarly, if v = y, then 77 — Y is an
edge detour monophonic set of G and it is a proper subset 7", which is a
contradiction. Hence edm™(G) = c.

Next we show that there is a minimal edge detour monophonic set of
cardinality n. Let P = {wy,wa, ..., wp_2,%,y1,Y2, ...,y }- It is clear that
P is an edge detour monophonic set of G. We claim that P is a minimal
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edge detour monophonic set of G. Assume, to the contrary, that P is not a
minimal edge detour monophonic set of G. Then there is a proper subset
P’ of P such that P’ is an edge detour monophonic set of G. Let v € P and
v ¢ P'. By Theorem 1.2, clearly v = 2 or v = y; for some i = 1,2,...,1.
If v = z, then the edges vz; and zju(l < j < m) are not internal edges of
any s — t detour monophonic path for some s,t € P’. If v = y; for some
1 =1,2,...1, then the edge vu is not an internal edge of any s — ¢ detour
monophonic path for some s,t € P’. Hence P is a minimal edge detour
monophonic set of G with cardinality |P| =n. O
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