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Abstract
For a connected graph G of order at least two, a path P is called a

monophonic path if it is a chordless path. A longest x−y monophonic
path is called an x − y detour monophonic path. A set S of vertices
of G is an edge detour monophonic set of G if every edge of G lies
on a detour monophonic path joining some pair of vertices in S. The
edge detour monophonic number of G is the minimum cardinality of
its edge detour monophonic sets and is denoted by edm(G). An edge
detour monophonic set S of G is called a minimal edge detour mono-
phonic set if no proper subset of S is an edge detour monophonic set
of G. The upper edge detour monophonic number of G, denoted by
edm+(G), is defined as the maximum cardinality of a minimal edge
detour monophonic set of G. We determine bounds for it and charac-
terize graphs which realize these bounds. For any three positive inte-
gers b, c and n with 2 ≤ b ≤ n ≤ c, there is a connected graph G with
edm(G) = b, edm+(G) = c and a minimal edge detour monophonic
set of cardinality n.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by p and
q, respectively. For basic graph theoretic terminology we refer to Harary
[1]. For vertices x and y in a connected graph G, the distance d(x, y) is the
length of a shortest x−y path in G. An x−y path of length d(x, y) is called
an x− y geodesic. The neighborhood of a vertex v is the set N(v) consist-
ing of all vertices u which are adjacent with v. A vertex v is an extreme
vertex if the subgraph induced by its neighbors is complete. A vertex v is a
semi-extreme vertex of G if the subgraph G[S] induced by its neighborhood
S has a vertex with degree equal to |S| − 1. In particular, every extreme
vertex is a semi-extreme vertex and a semi-extreme vertex need not be an
extreme vertex.

A chord of a path P is an edge joining two non-adjacent vertices of
P. A path P is called monophonic if it is a chordless path. A longest
x − y monophonic path is called an x − y detour monophonic path. A
set S of vertices of a graph G is a detour monophonic set if each vertex
v of G lies on an x − y detour monophonic path for some x, y ∈ S. The
cardinality of a detour monophonic set of G with minimum cardinality is
the detour monophonic number of G and is denoted by dm(G). The detour
monophonic number of a graph was introduced in [4] and further studied
in [5].

An edge monophonic set of G is a set S of vertices such that every
edge of G lies on a monophonic path joining some pair of vertices in S.
The edge monophonic number of G is the minimum cardinality of its edge
monophonic sets and is denoted by m1(G). An edge monophonic set of
cardinality m1(G) is an m1-set of G. An edge detour monophonic set of G
is a set S of vertices such that every edge of G lies on a detour monophonic
path joining some pair of vertices in S. The edge detour monophonic num-
ber of G is the minimum cardinality of its edge detour monophonic sets
and is denoted by edm(G). An edge detour monophonic set of cardinality
edm(G) is an edm-set of G. The edge detour monophonic number of a
graph was introduced and studied in [3].

The following theorems will be used in the sequel.

Theorem 1.1. [2] Each semi-extreme vertex of a graph G belongs to every
edge monophonic set of G.

Theorem 1.2. [3] Each semi-extreme vertex of a graph G belongs to every
edge detour monophonic set of G.
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Theorem 1.3. [3] Let G be a connected graph with cut-vertices and S an
edge detour monophonic set of G. If v is a cut-vertex of G, then every
component of G− v contains an element of S.

Theorem 1.4. [3] For any connected graph G, no cut-vertex of G belongs
to any minimum edge detour monophonic set of G.

Theorem 1.5. [3] If T is a tree with k end-vertices, thenm1(T ) = edm(T ) =
k.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Upper edge detour monophonic number

Definition 2.1. Let G be a connected graph with at least two vertices.
An edge detour monophonic set S of G is called a minimal edge detour
monophonic set if no proper subset of S is an edge detour monophonic
set of G. The upper edge detour monophonic number of G, denoted by
edm+(G), is defined as the maximum cardinality of a minimal edge detour
monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal edge
detour monophonic sets are S1 = {x, z} and S2 = {y, u, v}. Hence the
upper edge detour monophonic number of G is 3.

Figure 2.1 : G
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Note 2.3 Every minimum edge detour monophonic set is a minimal edge
detour monophonic set, but the converse is not true. For the graph G given
in Figure 2.1, S2 is a minimal edge detour monophonic set but it is not a
minimum edge detour monophonic set of G.

Since every minimal edge detour monophonic set of G is an edge detour
monophonic set of G, we have the following theorems.

Theorem 2.3. Each semi-extreme vertex of a connected graph G belongs
to every minimal edge detour monophonic set of G.

Proof. This follows from Theorem 1.2. 2

Corollary 2.4. For the complete graph Kp, edm
+(Kp) = p.

Proof. Since every vertex of Kp is a semi-extreme vertex, the result
follows from Theorem 2.3. 2

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be
a minimal edge detour monophonic set of G. If v is a cut-vertex of G, then
every component of G− v contains an element of S.

Proof. This follows from Theorem 1.3. 2

Corollary 2.6. Let G be a connected graph with cut-vertices and let S
be a minimal edge detour monophonic set of G. Then every branch of G
contains an element of S.

Proof. This follows from Theorem 2.5. 2

Theorem 2.7. No cut-vertex of a connected graph G belongs to any min-
imal edge detour monophonic set of G.

Proof. This follows from Theorem 1.4. 2

Corollary 2.8. For any tree T with k end-vertices, edm(T ) = edm+(T ) =
k.
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Proof. Since every vertex of T is either a semi-extreme vertex or a
cut-vertex, the result follows from Theorems 2.3 and 2.7. 2

We denote the vertex connectivity of a connected graph G by κ(G) or
κ.

Theorem 2.9. If G is a non-complete connected graph such that it has a
minimum cut set consisting of κ vertices, then edm+(G) ≤ p− κ.

Proof. Since G is a non-complete connected graph, it is clear that
1 ≤ κ ≤ p− 2. Let U ={u1, u2, u3, ...,uκ} be a minimum cut set of G. Let
G1, G2, ..., Gr(r ≥ 2) be the components of G−U and let S = V (G)−U .
Then every vertex ui(1 ≤ i ≤ κ) is adjacent to at least one vertex of Gj for
each j (1 ≤ j ≤ r). It is clear that S is an edge detour monophonic set of
G and so edm+(G) ≤ |S| = p− κ. 2

Remark 2.10. The bound in Theorem 2.9 is sharp for the graph G given
in Figure 2.1.

Theorem 2.11. For any connected graph G, 2 ≤ edm(G) ≤ edm+(G) ≤
p.

Proof. It is clear from the definition of minimum edge detour mono-
phonic set that edm(G) ≥ 2. Since every minimal edge detour monophonic
set is an edge detour monophonic set of G, edm(G) ≤ edm+(G). Also,
since V (G) induces an edge detour monophonic set of G, it is clear that
edm+(G) ≤ p. Thus 2 ≤ edm(G) ≤ edm+(G) ≤ p. 2

Remark 2.12. The bounds in Theorem 2.11 are all sharp forK2. Further-
more, for any tree T with k end-vertices edm(T ) = edm+(T ) = k (notice
that a non-trivial path is a tree with two end-vertices) and for the complete
graph Kp, edm

+(Kp) = p.

Theorem 2.13. For a connected graph G, edm(G) = p if and only if
edm+(G) = p.

Proof. Let edm+(G) = p. Then S = V (G) is the unique minimal
edge detour monophonic set of G. Since no proper subset of S is an edge
detour monophonic set, it is clear that S is the unique minimum edge
detour monophonic set of G and so edm(G) = p. The converse follows
from Theorem 2.11. 2

Theorem 2.14. If G is a connected graph with edm(G) = p − 1, then
edm+(G) = p− 1.



180 P. Titus and K. Ganesamoorthy

Proof. Since edm(G) = p − 1, it follows from Theorem 2.11 that
edm+(G) = p or p−1. If edm+(G) = p, then by Theorem 2.13, edm(G) = p,
which is a contradiction. Hence edm+(G) = p− 1. 2

Theorem 2.15. For the complete bipartite graph G = Km,n,
(i) edm+(G) = 2 if m = n = 1.
(ii) edm+(G) = n if m = 1, n ≥ 2.
(iii) edm+(G) = max{m,n} if m,n ≥ 2.

Proof. (i) and (ii) follows from Corollary 2.8.
(iii) Let m,n ≥ 2. Assume without loss of generality that m ≤ n. Let
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the bipartition of G. Let
S = Y . We prove that S is a minimal edge detour monophonic set of G.
Any edge xiyj(1 ≤ i ≤ m, 1 ≤ j ≤ n) lies on the detour monophonic path
yj , xi, yk for any k 6= j so that S is an edge detour monophonic set of G.
Let S0 ⊂ S. Then there exists a vertex yj ∈ S such that yj /∈ S0. Clearly,
the edge xiyj for every i, does not lie on any detour monophonic path
joining a pair of vertices in S0. Thus S0 is not an edge detour monophonic
set of G. Hence S is a minimal edge detour monophonic set of G and so
edm+(G) ≥ n.

Let S1 be any minimal edge detour monophonic set of G with |S1| > n.
Since any edge xjyi(1 ≤ i ≤ n) for every j, lies on the detour monophonic
path xj , yi, xk for j 6= k, it follows that X is an edge detour monophonic
set of G. Hence S1 cannot contain X. Similarly, since Y is a minimal edge
detour monophonic set of G, S1 cannot contain Y . Hence S1 ⊆ X 0 ∪ Y 0,
where X 0 ⊂ X and Y 0 ⊂ Y . Hence there exists a vertex xi ∈ X(1 ≤ i ≤ m)
and a vertex yj ∈ Y (1 ≤ j ≤ n) such that xi, yj /∈ S1. It is easily seen that,
the edge xiyj does not lie on any x − y detour monophonic path, for any
x, y ∈ S1. Thus S1 is not an edge detour monophonic set of G, which is
a contradiction. Therefore, any minimal edge detour monophonic set of G
contains at most n elements so that edm+(G) ≤ n. Hence edm+(G) = n.
2

Theorem 2.16. For any three positive integers a, b, c with 2 ≤ a ≤ b ≤ c,
there is a connected graph G withm1(G) = a, edm(G) = b and edm+(G) =
c.

Proof. Case 1. 2 ≤ a = b = c. Let G be any tree with a end-vertices.
Then by Theorem 1.5 and Corollary 2.8, G has the desired properties.



Upper Edge Detour Monophonic Number of a Graph 181

Case 2. 2 ≤ a = b < c. Let P3 : x, y, z be the path of order 3. Let G be the
graph obtained by adding c−1 new vertices v1, v2, . . . , va−1, w1, w2, . . . , wc−a
to P3 and joining each wi(1 ≤ i ≤ c − a) to both x, z; and also joining
each vi(1 ≤ i ≤ a − 1) to x. The graph G is shown in Figure 2.2. Let
S = {v1, v2, . . . , va−1} be the set of all end-vertices of G.

Figure 2.2 : G

Then by Theorems 1.1, 1.2 and 2.3, S is contained in every edge mono-
phonic set, every edge detour monophonic set and every minimal edge de-
tour monophonic set of G. It is clear that S is not an edge monophonic
set of G. It is easily verified that S0 = S ∪ {z} is a minimum edge mono-
phonic set of G and also a minimum edge detour monophonic set of G.
Thus m1(G) = edm(G) = a.

Next we show that edm+(G) = b. Clearly T = S∪{y,w1, w2, . . . , wc−a}
is an edge detour monophonic set of G. We claim that T is a minimal edge
detour monophonic set of G. Let W be any proper subset of T . Then
there exists a vertex, say v, such that v ∈ T and v /∈W . By Theorem 2.3,
v ∈ {y, w1, w2, . . . , wc−a}. It is easily verified that the edge vz is not an
internal edge of any x − y detour monophonic path for some x, y ∈ W , it
follows that W is not an edge detour monophonic set of G. Hence T is a
minimal edge detour monophonic set of G and so edm+(G) ≥ c.

Now, we prove that edm+(G) = c. Suppose that edm+(G) > c. Let
N be a minimal edge detour monophonic set of G with |N | > c. Then
there exists at least one vertex, say u ∈ N such that u /∈ T . Then by
Theorem 2.7, u 6= x and so u = z. Clearly S ∪ {z} is an edge detour
monophonic set of G and it is a proper subset of N, which is a contradic-
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tion to N a minimal edge detour monophonic set of G. Hence edm+(G) = c.

Case 3. 2 ≤ a < b = c. Let Ci : ui, vi, wi, xi, yi, ui (1 ≤ i ≤ b− a) be b− a
copies of a cycle of order 5. Let H be the graph obtained from Ci(1 ≤ i ≤
b− a) by joining the vertices wi−1 of Ci−1 and ui of Ci(2 ≤ i ≤ b− a). Let
G be the graph obtained from H by adding a new vertices z, z1, z2, . . . , za−1
and (i) joining z to u1, (ii) joining each zj(1 ≤ j ≤ a − 1) to wb−a. The
graph G is shown in Figure 2.3. Let S = {z, z1, z2, . . . , za−1} be the set of
all extreme vertices of G. Then by Theorem 1.1, every edge monophonic
set of G contains S. Clearly, S is an edge monophonic set of G and so
m1(G) = a.

Figure 2.3 : G

By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set
and every minimal edge detour monophonic set of G contains S. Clearly,
S is not a minimal and minimum edge detour monophonic set of G. We
observe that every minimal and minimum edge detour monophonic set of
G contains exactly one vertex from each set {vi, xi, yi} for every i(1 ≤
i ≤ b − a). Thus edm(G) ≥ b and edm+(G) ≥ b. On the other hand,
S0 = S ∪ {v1, v2, · · · vb−a} is a minimum edge detour monophonic set of
G, it follows that edm(G) ≤ b. Thus edm(G) = b. By Theorem 2.7, no
cut-vertex of G belongs to any minimal edge detour monophonic set of G.
It follows that there does not exist a minimal edge detour monophonic set
N of G with |N | > b. Hence edm+(G) = b.

Case 4. 2 ≤ a < b < c. Let V (K2) = {x, y} and V (Kc−b+1) = {l1, l2, . . .
lc−b+1}. Let H = Kc−b+1 +K2. Let Ci : ui, vi, wi, xi, yi, ui(1 ≤ i ≤ b− a)
be b − a copies of a cycle of order 5. Let H 0 be the graph obtained from

Marisol
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Ci(1 ≤ i ≤ b− a) by joining the vertices wi−1 of Ci−1 and ui of Ci(2 ≤ i ≤
b− a). Let G be the graph obtained by joining the vertices wb−a from H 0

and x from H, and then adding a−1 new vertices z, z1, z2, . . . , za−2; and (i)
joining z to u1, (ii) joining zj(1 ≤ j ≤ a− 2) to x. The graph G is shown
in Figure 2.4. Let S = {z, z1, z2, . . . , za−2} be the set of all end-vertices
of G. Then by Theorem 1.1, every edge monophonic set of G contains S.
Clearly, S is not an edge monophonic set of G. Let S0 = S ∪ {y}. It is
easily verified that S0 is an edge monophonic set of G and so m1(G) = a.

By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set of
G and every minimal edge detour monophonic set of G contains S. Clearly,
S is not an edge detour monophonic set of G. We observe that every
minimum edge detour monophonic set of G contains y and exactly one
vertex from {vi, xi, yi} for every i(1 ≤ i ≤ b − a). Thus edm(G) ≥ b. On
the other hand, S0 = S ∪ {v1, v2, · · · vb−a, y} is a minimum edge detour
monophonic set of G and so edm(G) = b.

Figure 2.4 : G

Now, T = S∪{v1, v2, . . . , vb−a, l1, l2, . . . , lc−b+1} is an edge detour mono-
phonic set of G. We show that T is a minimal edge detour monophonic set
of G. Let W be any proper subset of T. Then there exists at least one
vertex, say v ∈ T , such that v /∈ W . If v = vi(1 ≤ i ≤ b − a), the edge
vui is not an internal edge of any x− y detour monophonic path for some
x, y ∈ W , it follows that W is not an edge detour monophonic set of G.
If v = li(1 ≤ i ≤ c − b + 1), the edge vy is not an internal edge of any
x− y detour monophonic path for some x, y ∈W , it follows that W is not
an edge detour monophonic set of G. Hence T is a minimal edge detour
monophonic set of G and so edm+(G) ≥ c.

Marisol
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Next we show that there is no minimal edge detour monophonic set X
of G with |X| ≥ c + 1. Suppose that there exists a minimal edge detour
monophonic set X of G such that |X| ≥ c + 1. Then there exists at least
one vertex, say, v ∈ X such that v /∈ T . We observe that every minimal
edge detour monophonic set contains exactly one element from {vi, xi, yi}
for every i(1 ≤ i ≤ b − a). Hence by Theorem 2.7, v = y. Clearly,
(X − {l1, l2, . . . , lc−b+1})∪ {y} is a minimal edge detour monophonic set of
G, which is a contradiction. Therefore edm+(G) = c. 2

Theorem 2.17. For any three positive integers b, c and n with 2 ≤ b ≤
n ≤ c, there is a connected graph G with edm(G) = b, edm+(G) = c and a
minimal edge detour monophonic set of cardinality n.

Proof. We consider four cases.

Case 1. b = n = c. Let G be any tree with b end-vertices. Then by Corol-
lary 2.8, G has the desired properties.

Case 2. b = n < c. For the graph G given in Figure 2.2 of Theorem 2.16,
it is proved that edm(G) = b, edm+(G) = c and S = {z, v1, v2, . . . , vb−1} is
a minimal edge detour monophonic set of cardinality n.

Case 3. b < n = c. For the graph G given in Figure 2.2 of Theorem 2.16,
it is proved that edm(G) = b, edm+(G) = c and S = {v1, v2, . . . , vb−1, y,
w1, w2, . . . , wc−b} is a minimal edge detour monophonic set of cardinality n.

Case 4. b < n < c. Let l = n− b+ 1 and m = c− n+ 1.
Let F1 = mK1+K2, where U1 = V (K2) = {x, u1} and X = V (mK1) =

{x1, x2, . . . , xm}. Similarly, F2 = lK1 +K2, where U2 = V (K2) = {u2, y}
and Y = V (lK1) = {y1, y2, . . . , yl}. Let K1,b−2 be the star at the vertex u
and let S = {w1, w2, . . . , wb−2} be the set of end-vertices of K1,b−2. Let G
be the graph obtained from K1,b−2, F1 and F2 by identifying the vertices u
from K1,b−2, u1 from F1 and u2 from F2. The graph G is shown in Figure
2.5. It follows from Theorem 2.3, every minimal edge detour monophonic
set contains S.
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Figure 2.5 : G

First we show that edm(G) = b. It is clear that S is not an edge detour
monophonic set of G. Also, for any v ∈ V (G) − S, S ∪ {v} is not an edge
detour monophonic set of G. Let S0 = S ∪ {x, y}. It is easily verified that
S0 is a minimum edge detour monophonic set of G and so edm(G) = b.

Next, we show that edm+(G) = c. Let T = S ∪X ∪ Y . It is clear that
T is an edge detour monophonic set of G. We claim that T is a minimal
edge detour monophonic set of G. Let W be any proper subset of T . Then
there exists a vertex, say, v ∈ T such that v /∈ W . Assume first that
v = xi for some i(1 ≤ i ≤ m) or v = yj for some j(1 ≤ j ≤ l). Then the
edge uv is not an internal edge of any detour monophonic path joining a
pair of vertices in W. If v = wi for some i(1 ≤ i ≤ b − 2), then the edge
uwi is not an internal edge of any x− y detour monophonic path for some
x, y ∈ W . Hence T is a minimal edge detour monophonic set of G and so
edm+(G) ≥ |T | = b− 2 + l +m = c.

Now, we prove that edm+(G) = c. Suppose that edm+(G) > c. Let T 0

be a minimal edge detour monophonic set of G with |T 0| > c. Then there
exists at least one vertex, say v ∈ T 0 such that v /∈ T . Also, by Theorem
2.7, v ∈ {x, y}. If v = x, then T 0 −X is an edge detour monophonic set of
G and it is a proper subset of T 0, which is a contradiction to T 0 a minimal
edge detour monophonic set of G. Similarly, if v = y, then T 0 − Y is an
edge detour monophonic set of G and it is a proper subset T 0, which is a
contradiction. Hence edm+(G) = c.

Next we show that there is a minimal edge detour monophonic set of
cardinality n. Let P = {w1, w2, ..., wb−2, x, y1, y2, ..., yl}. It is clear that
P is an edge detour monophonic set of G. We claim that P is a minimal
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edge detour monophonic set of G. Assume, to the contrary, that P is not a
minimal edge detour monophonic set of G. Then there is a proper subset
P 0 of P such that P 0 is an edge detour monophonic set of G. Let v ∈ P and
v /∈ P 0. By Theorem 1.2, clearly v = x or v = yi for some i = 1, 2, . . . , l.
If v = x, then the edges vxj and xju(1 ≤ j ≤ m) are not internal edges of
any s − t detour monophonic path for some s, t ∈ P 0. If v = yi for some
i = 1, 2, . . . l, then the edge vu is not an internal edge of any s − t detour
monophonic path for some s, t ∈ P 0. Hence P is a minimal edge detour
monophonic set of G with cardinality |P | = n. 2
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