Proyecciones Journal of Mathematics Vol. 33, N^o 2, pp. 175-187, June 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000200004

Upper Edge Detour Monophonic Number of a Graph

P. Titus University College of Engineering Nagercoil, India and K. Ganesamoorthy

University V. O. C. College of Engineering Tuticorin, India Received : November 2013. Accepted : March 2014

Abstract

For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G). An edge detour monophonic set S of G is called a minimal edge detour monophonic set if no proper subset of S is an edge detour monophonic set of G. The upper edge detour monophonic number of G, denoted by $edm^+(G)$, is defined as the maximum cardinality of a minimal edge detour monophonic set of G. We determine bounds for it and characterize graphs which realize these bounds. For any three positive integers b, c and n with $2 \leq b \leq n \leq c$, there is a connected graph G with edm(G) = b, $edm^+(G) = c$ and a minimal edge detour monophonic set of cardinality n.

Key Words: edge detour monophonic set, edge detour monophonic number, minimal edge detour monophonic set, upper edge detour monophonic set, upper edge detour monophonic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary [1]. For vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest x - y path in G. An x - y path of length d(x, y) is called an x - y geodesic. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete. A vertex v is a semi-extreme vertex of G if the subgraph G[S] induced by its neighborhood S has a vertex with degree equal to |S| - 1. In particular, every extreme vertex is a semi-extreme vertex and a semi-extreme vertex need not be an extreme vertex.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called *monophonic* if it is a chordless path. A longest x - y monophonic path is called an x - y detour monophonic path. A set S of vertices of a graph G is a detour monophonic set if each vertex v of G lies on an x - y detour monophonic path for some $x, y \in S$. The cardinality of a detour monophonic set of G with minimum cardinality is the detour monophonic number of G and is denoted by dm(G). The detour monophonic number of a graph was introduced in [4] and further studied in [5].

An edge monophonic set of G is a set S of vertices such that every edge of G lies on a monophonic path joining some pair of vertices in S. The edge monophonic number of G is the minimum cardinality of its edge monophonic sets and is denoted by $m_1(G)$. An edge monophonic set of cardinality $m_1(G)$ is an m_1 -set of G. An edge detour monophonic set of G is a set S of vertices such that every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinality of its edge detour monophonic sets and is denoted by edm(G). An edge detour monophonic set of cardinality edm(G) is an edm-set of G. The edge detour monophonic number of a graph was introduced and studied in [3].

The following theorems will be used in the sequel.

Theorem 1.1. [2] Each semi-extreme vertex of a graph G belongs to every edge monophonic set of G.

Theorem 1.2. [3] Each semi-extreme vertex of a graph G belongs to every edge detour monophonic set of G.

Theorem 1.3. [3] Let G be a connected graph with cut-vertices and S an edge detour monophonic set of G. If v is a cut-vertex of G, then every component of G - v contains an element of S.

Theorem 1.4. [3] For any connected graph G, no cut-vertex of G belongs to any minimum edge detour monophonic set of G.

Theorem 1.5. [3] If T is a tree with k end-vertices, then $m_1(T) = edm(T) = k$.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Upper edge detour monophonic number

Definition 2.1. Let G be a connected graph with at least two vertices. An edge detour monophonic set S of G is called a *minimal edge detour* monophonic set if no proper subset of S is an edge detour monophonic set of G. The upper edge detour monophonic number of G, denoted by $edm^+(G)$, is defined as the maximum cardinality of a minimal edge detour monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimal edge detour monophonic sets are $S_1 = \{x, z\}$ and $S_2 = \{y, u, v\}$. Hence the upper edge detour monophonic number of G is 3.

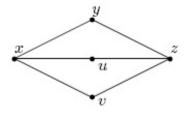


Figure 2.1: G

Note 2.3 Every minimum edge detour monophonic set is a minimal edge detour monophonic set, but the converse is not true. For the graph G given in Figure 2.1, S_2 is a minimal edge detour monophonic set but it is not a minimum edge detour monophonic set of G.

Since every minimal edge detour monophonic set of G is an edge detour monophonic set of G, we have the following theorems.

Theorem 2.3. Each semi-extreme vertex of a connected graph G belongs to every minimal edge detour monophonic set of G.

Proof. This follows from Theorem 1.2. \Box

Corollary 2.4. For the complete graph K_p , $edm^+(K_p) = p$.

Proof. Since every vertex of K_p is a semi-extreme vertex, the result follows from Theorem 2.3. \Box

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a minimal edge detour monophonic set of G. If v is a cut-vertex of G, then every component of G - v contains an element of S.

Proof. This follows from Theorem 1.3. \Box

Corollary 2.6. Let G be a connected graph with cut-vertices and let S be a minimal edge detour monophonic set of G. Then every branch of G contains an element of S.

Proof. This follows from Theorem 2.5. \Box

Theorem 2.7. No cut-vertex of a connected graph G belongs to any minimal edge detour monophonic set of G.

Proof. This follows from Theorem 1.4. \Box

Corollary 2.8. For any tree T with k end-vertices, $edm(T) = edm^+(T) = k$.

Proof. Since every vertex of T is either a semi-extreme vertex or a cut-vertex, the result follows from Theorems 2.3 and 2.7. \Box

We denote the vertex connectivity of a connected graph G by $\kappa(G)$ or κ .

Theorem 2.9. If G is a non-complete connected graph such that it has a minimum cut set consisting of κ vertices, then $edm^+(G) \leq p - \kappa$.

Proof. Since G is a non-complete connected graph, it is clear that $1 \leq \kappa \leq p-2$. Let $U = \{u_1, u_2, u_3, ..., u_\kappa\}$ be a minimum cut set of G. Let $G_1, G_2, ..., G_r (r \geq 2)$ be the components of G - U and let S = V(G) - U. Then every vertex $u_i (1 \leq i \leq \kappa)$ is adjacent to at least one vertex of G_j for each j $(1 \leq j \leq r)$. It is clear that S is an edge detour monophonic set of G and so $edm^+(G) \leq |S| = p - \kappa$. \Box

Remark 2.10. The bound in Theorem 2.9 is sharp for the graph G given in Figure 2.1.

Theorem 2.11. For any connected graph $G, 2 \le edm(G) \le edm^+(G) \le p$.

Proof. It is clear from the definition of minimum edge detour monophonic set that $edm(G) \geq 2$. Since every minimal edge detour monophonic set is an edge detour monophonic set of G, $edm(G) \leq edm^+(G)$. Also, since V(G) induces an edge detour monophonic set of G, it is clear that $edm^+(G) \leq p$. Thus $2 \leq edm(G) \leq edm^+(G) \leq p$. \Box

Remark 2.12. The bounds in Theorem 2.11 are all sharp for K_2 . Furthermore, for any tree T with k end-vertices $edm(T) = edm^+(T) = k$ (notice that a non-trivial path is a tree with two end-vertices) and for the complete graph K_p , $edm^+(K_p) = p$.

Theorem 2.13. For a connected graph G, edm(G) = p if and only if $edm^+(G) = p$.

Proof. Let $edm^+(G) = p$. Then S = V(G) is the unique minimal edge detour monophonic set of G. Since no proper subset of S is an edge detour monophonic set, it is clear that S is the unique minimum edge detour monophonic set of G and so edm(G) = p. The converse follows from Theorem 2.11. \Box

Theorem 2.14. If G is a connected graph with edm(G) = p - 1, then $edm^+(G) = p - 1$.

Proof. Since edm(G) = p - 1, it follows from Theorem 2.11 that $edm^+(G) = p$ or p-1. If $edm^+(G) = p$, then by Theorem 2.13, edm(G) = p, which is a contradiction. Hence $edm^+(G) = p - 1$. \Box

Theorem 2.15. For the complete bipartite graph $G = K_{m,n}$,

(i) $edm^+(G) = 2$ if m = n = 1. (ii) $edm^+(G) = n$ if $m = 1, n \ge 2$.

(iii) $edm^+(G) = max\{m, n\}$ if $m, n \ge 2$.

Proof. (i) and (ii) follows from Corollary 2.8.

(iii) Let $m, n \geq 2$. Assume without loss of generality that $m \leq n$. Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$ be the bipartition of G. Let S = Y. We prove that S is a minimal edge detour monophonic set of G. Any edge $x_i y_j (1 \leq i \leq m, 1 \leq j \leq n)$ lies on the detour monophonic path y_j, x_i, y_k for any $k \neq j$ so that S is an edge detour monophonic set of G. Let $S' \subset S$. Then there exists a vertex $y_j \in S$ such that $y_j \notin S'$. Clearly, the edge $x_i y_j$ for every i, does not lie on any detour monophonic path joining a pair of vertices in S'. Thus S' is not an edge detour monophonic set of G and so $edm^+(G) \geq n$.

Let S_1 be any minimal edge detour monophonic set of G with $|S_1| > n$. Since any edge $x_j y_i (1 \le i \le n)$ for every j, lies on the detour monophonic path x_j, y_i, x_k for $j \ne k$, it follows that X is an edge detour monophonic set of G. Hence S_1 cannot contain X. Similarly, since Y is a minimal edge detour monophonic set of G, S_1 cannot contain Y. Hence $S_1 \subseteq X' \cup Y'$, where $X' \subset X$ and $Y' \subset Y$. Hence there exists a vertex $x_i \in X(1 \le i \le m)$ and a vertex $y_j \in Y(1 \le j \le n)$ such that $x_i, y_j \notin S_1$. It is easily seen that, the edge $x_i y_j$ does not lie on any x - y detour monophonic path, for any $x, y \in S_1$. Thus S_1 is not an edge detour monophonic set of G, which is a contradiction. Therefore, any minimal edge detour monophonic set of Gcontains at most n elements so that $edm^+(G) \le n$. Hence $edm^+(G) = n$. \Box

Theorem 2.16. For any three positive integers a, b, c with $2 \le a \le b \le c$, there is a connected graph G with $m_1(G) = a$, edm(G) = b and $edm^+(G) = c$.

Proof. Case 1. $2 \le a = b = c$. Let G be any tree with a end-vertices. Then by Theorem 1.5 and Corollary 2.8, G has the desired properties. **Case 2.** $2 \le a = b < c$. Let $P_3 : x, y, z$ be the path of order 3. Let G be the graph obtained by adding c-1 new vertices $v_1, v_2, \ldots, v_{a-1}, w_1, w_2, \ldots, w_{c-a}$ to P_3 and joining each $w_i(1 \le i \le c-a)$ to both x, z; and also joining each $v_i(1 \le i \le a-1)$ to x. The graph G is shown in Figure 2.2. Let $S = \{v_1, v_2, \ldots, v_{a-1}\}$ be the set of all end-vertices of G.

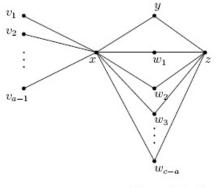


Figure 2.2: G

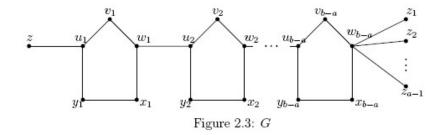
Then by Theorems 1.1, 1.2 and 2.3, S is contained in every edge monophonic set, every edge detour monophonic set and every minimal edge detour monophonic set of G. It is clear that S is not an edge monophonic set of G. It is easily verified that $S' = S \cup \{z\}$ is a minimum edge monophonic set of G and also a minimum edge detour monophonic set of G. Thus $m_1(G) = edm(G) = a$.

Next we show that $edm^+(G) = b$. Clearly $T = S \cup \{y, w_1, w_2, \ldots, w_{c-a}\}$ is an edge detour monophonic set of G. We claim that T is a minimal edge detour monophonic set of G. Let W be any proper subset of T. Then there exists a vertex, say v, such that $v \in T$ and $v \notin W$. By Theorem 2.3, $v \in \{y, w_1, w_2, \ldots, w_{c-a}\}$. It is easily verified that the edge vz is not an internal edge of any x - y detour monophonic path for some $x, y \in W$, it follows that W is not an edge detour monophonic set of G. Hence T is a minimal edge detour monophonic set of G and so $edm^+(G) \ge c$.

Now, we prove that $edm^+(G) = c$. Suppose that $edm^+(G) > c$. Let N be a minimal edge detour monophonic set of G with |N| > c. Then there exists at least one vertex, say $u \in N$ such that $u \notin T$. Then by Theorem 2.7, $u \neq x$ and so u = z. Clearly $S \cup \{z\}$ is an edge detour monophonic set of G and it is a proper subset of N, which is a contradic-

tion to N a minimal edge detour monophonic set of G. Hence $edm^+(G) = c$.

Case 3. $2 \le a < b = c$. Let $C_i : u_i, v_i, w_i, x_i, y_i, u_i (1 \le i \le b - a)$ be b - a copies of a cycle of order 5. Let H be the graph obtained from $C_i(1 \le i \le b - a)$ by joining the vertices w_{i-1} of C_{i-1} and u_i of $C_i(2 \le i \le b - a)$. Let G be the graph obtained from H by adding a new vertices $z, z_1, z_2, \ldots, z_{a-1}$ and (i) joining z to u_1 , (ii) joining each $z_j(1 \le j \le a - 1)$ to w_{b-a} . The graph G is shown in Figure 2.3. Let $S = \{z, z_1, z_2, \ldots, z_{a-1}\}$ be the set of all extreme vertices of G. Then by Theorem 1.1, every edge monophonic set of G and so $m_1(G) = a$.



By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set and every minimal edge detour monophonic set of G contains S. Clearly, S is not a minimal and minimum edge detour monophonic set of G. We observe that every minimal and minimum edge detour monophonic set of G contains exactly one vertex from each set $\{v_i, x_i, y_i\}$ for every $i(1 \le i \le b - a)$. Thus $edm(G) \ge b$ and $edm^+(G) \ge b$. On the other hand, $S' = S \cup \{v_1, v_2, \dots v_{b-a}\}$ is a minimum edge detour monophonic set of G, it follows that $edm(G) \le b$. Thus edm(G) = b. By Theorem 2.7, no cut-vertex of G belongs to any minimal edge detour monophonic set of G. It follows that there does not exist a minimal edge detour monophonic set N of G with |N| > b. Hence $edm^+(G) = b$.

Case 4. $2 \leq a < b < c$. Let $V(K_2) = \{x, y\}$ and $V(K_{c-b+1}) = \{l_1, l_2, \dots l_{c-b+1}\}$. Let $H = \overline{K}_{c-b+1} + \overline{K}_2$. Let $C_i : u_i, v_i, w_i, x_i, y_i, u_i (1 \leq i \leq b-a)$ be b - a copies of a cycle of order 5. Let H' be the graph obtained from

 $C_i(1 \leq i \leq b-a)$ by joining the vertices w_{i-1} of C_{i-1} and u_i of $C_i(2 \leq i \leq b-a)$. Let G be the graph obtained by joining the vertices w_{b-a} from H'and x from H, and then adding a-1 new vertices $z, z_1, z_2, \ldots, z_{a-2}$; and (i) joining z to u_1 , (ii) joining $z_j(1 \leq j \leq a-2)$ to x. The graph G is shown in Figure 2.4. Let $S = \{z, z_1, z_2, \ldots, z_{a-2}\}$ be the set of all end-vertices of G. Then by Theorem 1.1, every edge monophonic set of G contains S. Clearly, S is not an edge monophonic set of G. Let $S' = S \cup \{y\}$. It is easily verified that S' is an edge monophonic set of G and so $m_1(G) = a$.

By Theorem 1.2 and Theorem 2.3, every edge detour monophonic set of G and every minimal edge detour monophonic set of G contains S. Clearly, S is not an edge detour monophonic set of G. We observe that every minimum edge detour monophonic set of G contains y and exactly one vertex from $\{v_i, x_i, y_i\}$ for every $i(1 \le i \le b - a)$. Thus $edm(G) \ge b$. On the other hand, $S' = S \cup \{v_1, v_2, \dots v_{b-a}, y\}$ is a minimum edge detour monophonic set of G and so edm(G) = b.

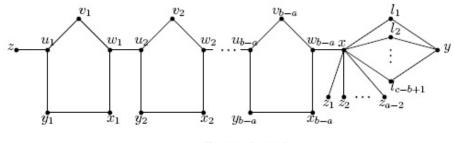


Figure 2.4: G

Now, $T = S \cup \{v_1, v_2, \ldots, v_{b-a}, l_1, l_2, \ldots, l_{c-b+1}\}$ is an edge detour monophonic set of G. We show that T is a minimal edge detour monophonic set of G. Let W be any proper subset of T. Then there exists at least one vertex, say $v \in T$, such that $v \notin W$. If $v = v_i(1 \le i \le b - a)$, the edge vu_i is not an internal edge of any x - y detour monophonic path for some $x, y \in W$, it follows that W is not an edge detour monophonic set of G. If $v = l_i(1 \le i \le c - b + 1)$, the edge vy is not an internal edge of any x - y detour monophonic set of any x - y detour monophonic set of G. If $v = l_i(1 \le i \le c - b + 1)$, the edge vy is not an internal edge of any x - y detour monophonic set of G. Hence T is a minimal edge detour monophonic set of G and so $edm^+(G) \ge c$.

Next we show that there is no minimal edge detour monophonic set X of G with $|X| \ge c + 1$. Suppose that there exists a minimal edge detour monophonic set X of G such that $|X| \ge c + 1$. Then there exists at least one vertex, say, $v \in X$ such that $v \notin T$. We observe that every minimal edge detour monophonic set contains exactly one element from $\{v_i, x_i, y_i\}$ for every $i(1 \le i \le b - a)$. Hence by Theorem 2.7, v = y. Clearly, $(X - \{l_1, l_2, \ldots, l_{c-b+1}\}) \cup \{y\}$ is a minimal edge detour monophonic set of G, which is a contradiction. Therefore $edm^+(G) = c$. \Box

Theorem 2.17. For any three positive integers b, c and n with $2 \le b \le n \le c$, there is a connected graph G with edm(G) = b, $edm^+(G) = c$ and a minimal edge detour monophonic set of cardinality n.

Proof. We consider four cases.

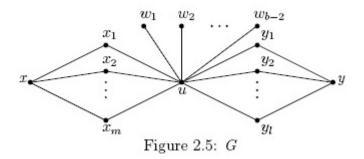
Case 1. b = n = c. Let G be any tree with b end-vertices. Then by Corollary 2.8, G has the desired properties.

Case 2. b = n < c. For the graph G given in Figure 2.2 of Theorem 2.16, it is proved that edm(G) = b, $edm^+(G) = c$ and $S = \{z, v_1, v_2, \ldots, v_{b-1}\}$ is a minimal edge detour monophonic set of cardinality n.

Case 3. b < n = c. For the graph G given in Figure 2.2 of Theorem 2.16, it is proved that edm(G) = b, $edm^+(G) = c$ and $S = \{v_1, v_2, \ldots, v_{b-1}, y, w_1, w_2, \ldots, w_{c-b}\}$ is a minimal edge detour monophonic set of cardinality n.

Case 4. b < n < c. Let l = n - b + 1 and m = c - n + 1.

Let $F_1 = mK_1 + \overline{K_2}$, where $U_1 = V(\overline{K_2}) = \{x, u_1\}$ and $X = V(mK_1) = \{x_1, x_2, \ldots, x_m\}$. Similarly, $F_2 = lK_1 + \overline{K_2}$, where $U_2 = V(\overline{K_2}) = \{u_2, y\}$ and $Y = V(lK_1) = \{y_1, y_2, \ldots, y_l\}$. Let $K_{1,b-2}$ be the star at the vertex uand let $S = \{w_1, w_2, \ldots, w_{b-2}\}$ be the set of end-vertices of $K_{1,b-2}$. Let Gbe the graph obtained from $K_{1,b-2}$, F_1 and F_2 by identifying the vertices ufrom $K_{1,b-2}$, u_1 from F_1 and u_2 from F_2 . The graph G is shown in Figure 2.5. It follows from Theorem 2.3, every minimal edge detour monophonic set contains S.



First we show that edm(G) = b. It is clear that S is not an edge detour monophonic set of G. Also, for any $v \in V(G) - S$, $S \cup \{v\}$ is not an edge detour monophonic set of G. Let $S' = S \cup \{x, y\}$. It is easily verified that S' is a minimum edge detour monophonic set of G and so edm(G) = b.

Next, we show that $edm^+(G) = c$. Let $T = S \cup X \cup Y$. It is clear that T is an edge detour monophonic set of G. We claim that T is a minimal edge detour monophonic set of G. Let W be any proper subset of T. Then there exists a vertex, say, $v \in T$ such that $v \notin W$. Assume first that $v = x_i$ for some $i(1 \le i \le m)$ or $v = y_j$ for some $j(1 \le j \le l)$. Then the edge uv is not an internal edge of any detour monophonic path joining a pair of vertices in W. If $v = w_i$ for some $i(1 \le i \le b - 2)$, then the edge uw_i is not an internal edge of any x - y detour monophonic path for some $x, y \in W$. Hence T is a minimal edge detour monophonic set of G and so $edm^+(G) \ge |T| = b - 2 + l + m = c$.

Now, we prove that $edm^+(G) = c$. Suppose that $edm^+(G) > c$. Let T' be a minimal edge detour monophonic set of G with |T'| > c. Then there exists at least one vertex, say $v \in T'$ such that $v \notin T$. Also, by Theorem 2.7, $v \in \{x, y\}$. If v = x, then T' - X is an edge detour monophonic set of G and it is a proper subset of T', which is a contradiction to T' a minimal edge detour monophonic set of G. Similarly, if v = y, then T' - Y is an edge detour monophonic set of G and it is a proper subset of T', which is a contradiction to T' a minimal edge detour monophonic set of G and it is a proper subset T', which is a contradiction. Hence $edm^+(G) = c$.

Next we show that there is a minimal edge detour monophonic set of cardinality *n*. Let $P = \{w_1, w_2, ..., w_{b-2}, x, y_1, y_2, ..., y_l\}$. It is clear that *P* is an edge detour monophonic set of *G*. We claim that *P* is a minimal

edge detour monophonic set of G. Assume, to the contrary, that P is not a minimal edge detour monophonic set of G. Then there is a proper subset P' of P such that P' is an edge detour monophonic set of G. Let $v \in P$ and $v \notin P'$. By Theorem 1.2, clearly v = x or $v = y_i$ for some $i = 1, 2, \ldots, l$. If v = x, then the edges vx_j and $x_ju(1 \leq j \leq m)$ are not internal edges of any s - t detour monophonic path for some $s, t \in P'$. If $v = y_i$ for some $i = 1, 2, \ldots, l$, then the edge vu is not an internal edge of any s - t detour monophonic path for some $s, t \in P'$. Hence P is a minimal edge detour monophonic set of G with cardinality |P| = n. \Box

References

- [1] F. Harary, Graph Theory, Addison-Wesley, (1969).
- [2] A. P. Santhakumaran, P. Titus and P. Balakrishnan, Some Realisation Results on Edge Monophonic Number of a Graph, communicated.
- [3] A. P. Santhakumaran, P. Titus, K. Ganesamoorthy and P. Balakrishnan, Edge Detour Monophonic Number of a Graph, Proyectiones Journal of Mathematics, Vol. 32, No. 2, pp. 183-198, (2013).
- [4] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput. 83, pp. 179-188, (2013).
- [5] P. Titus and K. Ganesamoorthy, On the Detour Monophonic Number of a Graph, Ars Combinatoria, to appear.

P. Titus

Department of Mathematics University College of Engineering Nagercoil Anna University, Tirunelveli Region Nagercoil - 629 004, India e-mail: titusvino@yahoo.com

and

K. Ganesamoorthy

Department of Mathematics University V.O.C. College of Engineering Anna University, Tirunelveli Region Tuticorin - 628 008, India e-mail : kvgm_2005@yahoo.co.in