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1. Introduction

The notion of probabilistic normed space (PN -space) is a generalization of
normed linear space. In an ordinary normed linear space norm of vectors
are represented by a positive number. But in a PN -space, the norm of
vectors are represented by probability distribution functions rather than a
positive number. The notion of PN -spaces was first introduced by Serstnev
[25] in 1963. For detailed history, development and applications in differ-
ent subjects of the notion of probabilistic normed spaces, one may refer to
Alotaibi [1], Alsina etal ([2], [3]), Constantin etal [5], Esi [6], Karakus [11],
Menger [18], Lafuerza etal ([14], [15]), Lafuerza etal [16], Schweizer and
Sklar ([23], [24]), Tripathy etal [34].

As a generalization of ordinary convergence for sequences of real num-
bers, the notion of statistical convergence was first introduced by Fast [9].
After then it was studied by many researchers like Connor [4], Fridy [10],
Karakus [11], Karakus and Demirci [12], Salat [20], Tripathy ([26], [27]),
Tripathy and Baruah [28], Tripathy etal [29], Tripathy and Dutta [32],
Tripathy and Sarma [33]. Statistical convergence has been studied in ab-
stract spaces such as the fuzzy number space by Esi ([6], [8]), Fast [9]),
locally convex spaces by Maddox [17]. Karakus [11] introduced the no-
tion of statistical convergence in PN -spaces and followed by Ideal conver-
gence by Tripathy etal [34], in normed linear spaces by Kolk [13]. Karakus
and Demirci [12], studied statistical convergence of double sequences in
PN-spaces. In recent times Esi and Özdemir [7] introduced generalized
∆m-statistical convergence in PN -spaces for single generalized difference
sequences. Also sequences of fuzzy numbers has been studied recently by
Tripathy and Borgohain [30] and Tripathy and Debnath [31].

The notion of double sequence was initiated by Priengsheim [19]. In this
paper we introduce the concept of statistical convergence of triple difference
sequence in probabilistic normed spaces and establish some basic properties
in PN -spaces.

2. Definitions and Preliminaries

Definition 2.1. A function f : R → R+0 is called a distribution func-
tion if it is non-decreasing and left continuous with inft∈R f(t) = 0 and
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supt∈R f(t) = 1.

Throughout D denotes the set of all distribution functions.

Definition 2.2. A triangular norm or t-norm is a binary operation on [0, 1]
which is continuous, commutative, associative, non-decreasing and has 1 as
neutral element, i.e., it is the continuous mapping ∗ : [0, 1]× [0, 1]→ [0, 1]
such that for all a, b, c ∈ [0, 1]
1) a ∗ 1 = a.
2) a ∗ b = b ∗ a.
3) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b.
4) (a ∗ b) ∗ c = a ∗ (b ∗ c).

Example 2.1. Consider the ∗ operation defined by a∗b = max{a+b−1, 0}.
Then ∗ is a t-norm. Similarly one may consider a∗b = ab, a∗b = min{a, b}
on [0,1] and verify that these are also t-norms.

Definition 2.3. A triplet (X,N, ∗) is called a probabilistic normed space
or a PN -space if X is a real vector space, N is a mapping from X into D
(for x ∈ X the distribution function N(x) is denoted by Nx and Nx(t) is
the value of Nx at t ∈ R) and satisfies the following conditions:
(PN-1)Nx(0) = 0,
(PN-2) Nx(t) = 1 for all t > 0 if and only if x = 0
(PN-3) Nαx(t) = Nx(

t
|α|) for all α ∈ R− 0

(PN-4) Nx+y(s+ t) ≥ Nx(s) ∗Ny(t) for all x, y ∈ X and s, t ∈ R+0 .

Example 2.2. Let (X, ||.||) be a normed linear space and µ ∈ D with
µ(0) = 0 and µ 6= h, where

h(t) =

½
0, for all t ≤ 0;
1, for all t > 0.

Define

Nx(t) =

(
h(t), for x = 0;
µ( t
||x||), for x 6= 0,

where x ∈ X, t ∈ R. Then (X,N, ∗) is a PN -space. We define the functions
µ and µ0 on R by
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µ(x) =

½
0, for x ≤ 0;
x
1+x , for x > 0.

and

µ0(x) =
½
0, for x ≤ 0;
exp(−1x ), for x > 0.

Then we obtain the following well known ∗ norms

Nx(t) =

(
h(t), for x = 0;

t
t+||x|| , for x 6= 0.

and

N 0
x(t) =

(
h(t), for x = 0;

exp(−||x||t ), for x 6= 0.
We recall the concepts of convergence and Cauchy sequences for single

sequences in a probabilistic normed space.

Definition 2.4. Let (X,N, ∗) be a PN -space. Then a sequence
x =< xk > is said to be convergent to L ∈ X with respect to the prob-
abilistic norm N if for every ε > 0 and λ ∈ (0, 1), there exists a positive
integer k0 such that Nxk−L(ε) > 1− λ, whenever k > k0. It is denoted by

N − limxk = L or xk
N→ L as k →∞.

Definition 2.5. Let (X,N, ∗) be a PN -space. Then a sequences
x =< xk > is said to be Cauchy sequence with respect to the probabilistic
norm N if for every ε > 0 and λ ∈ (0, 1), there exists a positive integer k0
such that Nxk−xl(ε) > 1− λ, whenever k, l > k0.

Definition 2.6. Let (X,N, ∗) be a PN -space. Then a sequences
x =< xk > is said to be bounded in X if there is r ∈ R such that
Nxk(r) > 1−λ where λ ∈ (0, 1), we denote by N

∞ the spaces of all bounded
sequences in PN -space.

Definition 2.7. A triple sequence x =< xnlk > has Pringsheim limit L
(denoted by P − limx = L) provided that given ε > 0 there exists n0 ∈ N
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such that |xnlk − L| < ε whenever n, l, k > n0.

Now we introduce the following notions.

Definition 2.8. A subset K ∈ N×N×N is said to have triple asymptotic

density δ3(K) if δ3(K) =
lim

n,l,k→∞
1
nlk

nP
i1=1

lP
i2=1

kP
i3=1

χK(i1, i2, i3) exists,

where χK is the characteristic function of K.

Definition 2.9. A real triple sequence x =< xnlk > is said to be ∆-
statistically convergent to L, provided that for each ε > 0. There exists
m = m(ε), p = p(ε)andq = q(ε)suchthatδ3({(n, l, k) ∈ N3 : n ≤ m, l ≤
p, k ≤ q, |∆xnlk −∆xmpq| ≥ ε}) = 0.

Definition 2.10. A real triple sequence x =< xnlk > is said to be ∆-
statistically Cauchy, provided that for each ε > 0. There exists m =
m(ε), p = p(ε)andq=q(ε) such that δ3({(n, l, k) ∈ N3 : n ≤ m, l ≤ p, k ≤
q, |∆xnlk −∆xmpq| ≥ ε}) = 0.

Definition 2.11 Let (X,N, ∗) be a PN -space. Then a triple sequences
x =< xnlk > is said to be ∆-convergent to L ∈ X with respect to the
probabilistic norm N provided that for every ε > 0 and λ ∈ (0, 1), there is
a positive integer k0 such that N∆xnlk−L(ε) > 1− λ whenever n ≥ k0, l ≥
k0, k ≥ k0. In this case we write N∆ − limxnlk = L, where ∆xnlk = xnlk −
xn,l+1,k−xn,l,k+1+xn,l+1,k+1−xn+1,lk+xn+1,l+1,k+xn+1,l,k+1−xn+1,l+1,k+1
and ∆0xnlk =< xnlk >.

Definition 2.12. Let (X,N, ∗) be a probabilistic normed space. A triple
sequence x =< xnlk > is said to be ∆-Cauchy in X with respect to the
probabilistic norm N if for every ε > 0 and λ ∈ (0, 1), there exists positive
integer k0, k1, k2 such that N∆xnlk−∆xpqr(ε) > 1 − λ, whenever n, p ≥ k0,
l, q ≥ k1, k, r ≥ k2.

Definition 2.13. Let (X,N, ∗) be a probabilistic normed space. A triple
sequence x =< xnlk > is said to be ∆-statistically convergent to L in X
with respect to the probabilistic norm N if for every ε > 0 and λ ∈ (0, 1),
δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1 − λ}) = 0. In this case we write
stN∆ − limxnlk = L.
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Definition 2.14. Let (X,N, ∗) be a probabilistic normed space. A triple
sequence x =< xnlk > is said to be∆-statistically Cauchy inX with respect
to the probabilistic normN if for every ε > 0 and λ ∈ (0, 1), there exist pos-
itive integers N,M and P such that δ3({(n, l, k) ∈ N3 : N∆xnlk−∆xpqr(ε) ≤
1− λ}) = 0 for all n, p ≥ N , l, q ≥M , k, r ≥ N .

Definition 2.15 Let (X,N, ∗) be a probabilistic normed space. For x ∈ X,
t > 0 and 0 < r < 1, the ball centered at x with radius r is defined by
B(x, r, t) = {y ∈ X : Nx−y(t) > 1− r}.

3. Main results

Theorem 3.1. Let (X,N, ∗) be a PN -space, then for every ε > 0 and
λ ∈ (0, 1), the following statements are equivalent.

(i)stN∆ − limxnlk = L.

(ii) δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ}) = 0.

(iii)δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− λ}) = 1.

(iv) s3∆ − limN∆xnlk−L(ε) = 1.

Proof. (i)⇒ (ii) Suppose stN∆−limxnlk = L. Then by definition we have,
for every ε > 0 and λ ∈ (0, 1), we have δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤
1− λ}) = 0.

(ii)⇒ (iii) Let ε > 0 and λ ∈ (0, 1), then we have

δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− λ})
= 1− δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ})
= 1 by (ii).

(iii)⇒ (iv) Let ε > 0 and λ ∈ (0, 1), then we have

{(n, l, k) ∈ N3 : |N∆xnlk−L(ε)− 1| ≥ λ} {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤
1− λ} ∪ {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≥ 1 + λ}.
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Therefore we have from the finite additivity property of density
δ3({(n, l, k) ∈ N3 : |N∆xnlk−L(ε)− 1| ≥ λ})
= δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1 − λ}) + δ3({(n, l, k) ∈ N3 :
N∆xnlk−L(ε) ≥ 1 + λ}).

Since, δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ}) = 0 and δ3({(n, l, k) ∈
N3 : N∆xnlk−L(ε) ≥ 1 + λ}) = 0.

Hence δ3({(n, l, k) ∈ N3 : |N∆xnlk−L(ε) − 1| ≥ λ}) = 0 ⇒ s3∆ −
limN∆xnlk−L(ε) = 1.

(iv) ⇒ (i) By hypothesis for a given ε > 0 and λ ∈ (0, 1), we have
δ3({(n, l, k) ∈ N3 : |N∆xnlk−L(ε) − 1| ≥ λ}) = 0 i.e., δ3({(n, l, k) ∈ N3 :

N∆xnlk−L(ε) ≤ 1− λ}) + δ3({(n, l, k) ∈ N3 : N
(ε)−1
∆xnlk−L + λ}) = 0.

⇒ δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ}) = 0, since δ3({(n, l, k) ∈ N3 :
N∆xnlk−L(ε) ≥ 1 + λ}) = 0.

The following result is on the uniqueness of the limit, if it exists.

Theorem 3.2. Let (X,N, ∗) be a PN -space. If a sequence x =< xnlk >
is ∆-statistically convergent with respect to the probabilistic norm, then
stN∆ − limxnlk is unique.

Proof. Let stN∆ − limxnlk = L1 and stN∆ − limxnlk = L2, where
x =< xnlk > is a triple sequence. For a given λ > 0 we choose γ ∈ (0, 1)
such that (1 − γ) (1 − γ) > 1 − λ. Then for any ε > 0, we define the
following sets.

KN,1(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L1(ε) ≤ 1− γ},

KN,2(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L2(ε) ≤ 1− γ}.

Since stN∆ − limxnlk = L1, δ3({KN,1(γ, ε)}) = 0, for all ε > 0.

Furthermore using stN∆ − limxnlk = L2 we get δ3({KN,2(γ, ε)}) =
0, for all ε > 0. Now let KN(γ, ε) = KN,1(γ, ε) ∩ KN,2(γ, ε). Then
δ3({KN(γ, ε)}) = 0, which implies that δ3({N3 − KN (γ, ε)}) = 1. If
(n, l, k) ∈ {N3−KN (γ, ε)}, thenNL1−L2(ε) ≥ N∆xnlk−L1(

ε
2) N∆xnlk−L2(

ε
2) >
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(1− γ) (1− γ) > 1−λ. Since λ > 0 is arbitrary we get NL1−L2(ε) = 1 for
all ε > 0, which yields L1 = L2. Therefore we conclude that stN∆ − limit
of triple sequence is unique.

Theorem 3.3. Let (X,N, ∗) be a PN -space. If N∆ − limxnlk = L, then
stN∆ − limxnlk = L, but not necessarily conversely.

proof. By hypothesis x =< xnlk >, ∆-converges to L with respect to the
probabilistic norm N . Therefore for every λ > 0 and ε > 0 there exists a
positive integer k0 such that N∆xnlk−L(ε) > 1 − λ for all n ≥ k0, l ≥ k0,
k ≥ k0. Thus the set {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1 − λ} has finitely
many terms. Since every finite subset of N3 has density zero, we see that
δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ}) = 0.

Theorem 3.4. Let (X,N, ∗) be a PN -space and x =< xnlk > be a triple
sequence. Then stN∆ − limxnlk = L if and only if there exists a sub-
set K = {(n, l, k) : n, l, k = 1, 2, 3, 4, ...} ⊂ N3 such that δ3(K) = 1 and
N∆ − lim

(n,l,k)∈K
n,l,k→∞

xnlk = L.

Proof. Suppose stN∆ − limxnlk = L. Now for every ε > 0 and r ∈ N , let

(3.1) K(r, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1−
1

r
}.

M(r, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− 1
r}

Then δ3{K(r, ε)} = 0 and

(3.2) M(1, ε) ⊃M(2, ε) ⊃M(3, ε) ⊃ .... ⊃M(i, ε) ⊃M(i+ 1, ε) ⊃ ....

(3.3) δ3{M(r, ε)} = 1 for r = 1, 2, 3, ....

Now we have to show that for (n, l, k) ∈M(r, ε) the sequence x = xnlk
is N∆-convergent to L.

Suppose x =< xnlk > be not N∆-convergent to L. Therefore there
exists γ > 0 such that the set {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1 − γ} has
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infinitely many terms.

Let M(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1 − γ}, γ > 1
r , (r =

1, 2, 3, ...)

Then δ3{M(γ, ε)} = 0 and by (3.2) we have M(r, ε) ⊂M(γ, ε). Hence
M(r, ε) = 0 which contradicts (3.3).

Therefore x =< xnlk > is N∆-convergent to L.

Conversely suppose that there exists a subset K = {(n, l, k) : n, l, k =
1, 2, 3, 4, ...} ⊂ N3 such that δ3(K) = 1 and N∆ − lim

(n,l,k)∈K
n,l,k→∞

xnlk = L.

Then there exists k0 ∈ N , such that for every γ ∈ (0, 1) and ε > 0,

N∆xnlk−L(ε) > 1− γ for n ≥ k0, l ≥ k0, k ≥ k0.

Now, M(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− γ}
⊂ N3−{(nk0+1, lk0+1, kk0+1), (nk0+2, lk0+2, kk0+2), (nk0+3, lk0+3, kk0+3), ...}.

Therefore δ3(M(γ, ε)) ≥ 1− 1 = 0.

Hence stN∆ − limxnlk = L. This completes the proof.

Theorem 3.5. Let (X,N, ∗) be a PN -space and x =< xnlk > be a
sequence whose terms are in the vector space X . Then the following con-
ditions are equivalent.

(a) x is ∆-statistically Cauchy sequence with respect to the probabilis-
tic norm N .

(b) There exists an increasing index sequence K = {(k1, k2, k3)} of N3

such that δ3(K) = 1 and the subsequence {(xk1,k2,k3}(k1,k2,k3)∈K is a ∆-
Cauchy sequence with respect to the probabilistic norm N .

Theorem 3.6. Let (X,N, ∗) be a PN -space. Then
(i) If stN∆−limxnlk = ξ and stN∆−lim ynlk = η, then stN∆−lim(xnlk+

ynlk) = ξ + η.
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(ii) If stN∆ − limxnlk = ξ and α ∈ R, then stN∆ − limαxnlk = αξ.

(iii) If stN∆ − limxnlk = ξ and stN∆ − lim ynlk = η, then stN∆ −
lim(xnlk − ynlk) = ξ − η.

Proof. (i) Let stN∆ − limxnlk = ξ and stN∆ − lim ynlk = η. For a given
ε > 0 and λ ∈ (0, 1) we choose γ ∈ (0, 1) such that (1 − γ) (1 − γ) >
1 − λ. Then we define the following sets. KN,1(γ, ε) = {(n, l, k) ∈ N3 :
N∆xnlk−ξ(ε) ≤ 1− γ}, KN,2(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−η(ε) ≤ 1− γ}.
Since stN∆ − limxnlk = ξ, δ3{KN,1(γ, ε)} = 0, for all ε > 0.

Further using stN∆ − limxnlk = ξ we get δ3{KN,2(γ, ε)} = 0, for all
ε > 0.

Let KN (γ, ε) = KN,1(γ, ε) ∩KN,2(γ, ε).

Then we observe that δ3{KN(γ, ε)} = 0, which implies that δ3{N3 −
KN (γ, ε)} = 1. If (n, l, k) ∈ {N3 −KN (γ, ε)}, then we have
N(∆xnlk−ξ)+(∆ynlk−η)(ε) ≥ N∆xnlk−ξ(

ε
2) N∆ynlk−η(

ε
2)

> (1− γ) (1− γ) > 1− λ.

This shows that δ3{(n, l, k) ∈ N3 : N∆xnlk−ξ)+(∆ynlk−η)(ε) ≤ 1− λ = 0.

Hence stN∆ − lim(xnlk + ynlk) = ξ + η.

(ii) Let stN∆− limxnlk = η, λ ∈ (0, 1) and ε > 0. First we consider the
case of α = 0. In this case, N0∆xnlk−0ξ(ε) = N0(ε) = 1 > 1− λ.

So we have N∆ − lim 0xnlk = 0. Then from Theorem 3.2 we have
stN∆ − lim 0xnlk = 0.

Let α ∈ R(α 6= 0). Since stN∆−limxnlk = ξ, we define the following set

KN(γ, ε) = {(n, l, k) ∈ N3 : N∆xnlk−ξ(ε) ≤ 1− γ}, then we can say
δ3{KN(γ, ε)} = 0 for all ε > 0. In this case δ3{N3 − KN(γ, ε)} = 1. If
(n, l, k) ∈ N3 −KN(γ, ε), then

Nα∆xnlk−αξ(ε) = N∆xnlk−ξ(
ε
|α|)

≥ N∆xnlk−ξ(ε) N0(
ε
|α| − ε)
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= N∆xnlk−ξ(ε) 1
= N∆xnlk−ξ(ε) > 1− λ, α ∈ R(α 6= 0)
This shows that δ3{(n, l, k) ∈ N3 : Nα∆xnlk−αξ(ε) ≤ 1− λ} = 0

Hence stN∆ − limαxnlk = αξ.

(iii) From (i) and (ii) by putting α = −1, one can get (iii).

4. Statistical limit point and statistical cluster point of the class
of difference triple sequences with respect to the probabilistic
norm

Definition 4.1. Let (X,N, ∗) be a PN -space. A subset Y ofX is said to be
bounded if for every r ∈ (0, 1), there exists t0 > 0 such that Nx(t0) > 1− r
for all x ∈ Y .

Definition 4.2. Let (X,N, ∗) be a PN -space, then L ∈ X is called a
∆-limit point of the triple sequence x =< xnlk > with respect to the prob-
abilistic norm N provided that there is a subsequence of x that∆-converges
to L with respect to the probabilistic norm N . Let ΩN∆(x) denote the set
of all limit points of the sequence x. Let {(xn(i1)l(i2)k(i3))} be a subsequence
of x =< xnlk > and K = {(n(i1), l(i2), k(i3)) ∈ N3, i1, i2, i3 ∈ N}, then
we abbreviate {(xn(i1)l(i2)k(i3))} by {x}K , which in case δ3(K) = 0, {x}K
is called a subsequence of density zero or thin subsequence. On the other
hand {x}K is a non-thin subsequence of x if K does not have density zero.

Definition 4.3. Let (X,N, ∗) be a PN -space.Then ξ ∈ X is called a ∆-
statistical limit point of the triple sequence x =< xnlk > with respect to
the probabilistic norm N provided that there is a non-thin subsequence of
x that ∆-converges to ξ ∈ X with respect to the probabilistic norm. In this
case we say ξ is an stN∆-limit point of sequence x =< xnlk >. Throughout
ΛN∆(x) denotes the set of all stN∆-limit points of the sequence x.

Definition 4.4. Let (X,N, ∗) be a PN -space. Then γ ∈ X is called
a ∆-statistical cluster point of the sequence x =< xnlk > with respect
to the probabilistic norm N provided that for ε > 0 and λ ∈ (0, 1),
lim− sup δ3({(n, l, k) ∈ N3 : N∆xnlk−γ(ε) > 1 − λ}) > 0. In this case
we say that γ ∈ X is an stN∆-cluster point of the sequence x =< xnlk >.
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Throughout ΓN∆(x) denote the set of all stN∆-cluster points of the se-
quence x.

Definition 4.5. A probabilistic normed space (X,N, ∗) is said to be ∆-
complete if every ∆-Cauchy sequence is ∆-convergent in X with respect to
the probabilistic norm N .

Theorem 4.1. Let (X,N, ∗) be a PN-space, then for any sequence x =<
xnlk >∈ X, ΛN∆(x) ⊂ ΓN∆(x).

Proof. Let ξ ∈ ΛN∆(x), then there is a non-thin subsequence
(xn(i1)l(i2)k(i3)) of x =< xnlk > that ∆-converges to ξ with respect to the
probabilistic norm N , i.e.
δ3{(n(i1), l(i2), k(i3)) ∈ N3 : N∆xn(i1)l(i2)k(i3)−ξ(ε) > 1− λ} = d > 0.

Since

{(n, l, k) ∈ N3 : N∆xnlk−ξ(ε) > 1 − λ} ⊃ {(n(i1), l(i2), k(i3)) ∈ N3 :
N∆xn(i1)l(i2)k(i3)−ξ(ε) > 1− λ}.

For every ε > 0, we have {(n, l, k) ∈ N3 : N∆xnlk−ξ(ε) > 1 − λ}
⊇ {(n(i1), l(i2), k(i3)) ∈ N3 : i1, i2, i3 ∈ N}− {(n(i1), l(i2), k(i3)) ∈ N3 :
N∆xn(i1)l(i2)k(i3)−ξ(ε) ≤ 1− λ}.

Since (xn(i1)l(i2)k(i3)) is ∆-convergent to ξ with respect to the proba-
bilistic norm N , the set {(n(i1), l(i2), k(i3)) ∈ N3 : N∆xn(i1)l(i2)k(i3)−ξ(ε) ≤
1− λ} is finite, for any ε > 0, therefore

lim sup δ3({(n, l, k) ∈ N3 : N∆xnlk−ξ(ε) > 1− λ})

≥ lim sup δ3{(n(i1), l(i2), k(i3)) ∈ N3 : i1, i2, i3 ∈ N}

- lim sup δ3{(n(i1), l(i2), k(i3)) ∈ N3 : N∆xn(i1)l(i2)k(i3)−ξ(ε) ≤ 1− λ}.

Hence lim sup δ3({(n, l, k) ∈ N3 : N∆xnlk−ξ(ε) > 1 − λ}) > 0, which
implies ξ ∈ ΓN∆(x).

Thus ΛN∆(x) ⊂ ΓN∆(x).



On triple difference sequences of real numbers in probabilistic ... 169

Theorem 4.2. Let (X,N, ∗) be a PN -space. Then for any sequence
x =< xnlk >∈ X, ΓN∆(x) ⊂ ΩN∆(x).

Proof. Let γ ∈ ΓN∆(x), then δ3({(n, l, k) ∈ N3 : N∆xnlk−γ(ε) > 1− λ}) >
0 for every ε > 0 and λ ∈ (0, 1). Let {x}K be a non-thin subsequence of
x such that K = {(n(i1), l(i2), k(i3)) ∈ N3 : N∆xn(i1)l(i2)k(i3)−γ(ε) > 1− λ}
for every ε > 0 and δ3(K) 6= 0. Since there are infinitely many elements in
K,γ ∈ ΩN∆(x).

Thus ΓN∆(x) ⊂ ΩN∆(x).

Theorem 4.3. Let (X,N, ∗) be a PN-space, then for any sequence x =<
xnlk >∈ X, stN∆ − limxnlk = L, implies ΛN∆(x) = ΓN∆(x) = {L}.

Proof. First we prove that ΛN∆(x) = {L}. Suppose that ΛN∆(x) =
{L,M} be such that L 6= M . In this case, there exist non-thin sub-
sequences {xn(i1)l(i2)k(i3)} and {xp(i1)q(i2)r(i3)} of x =< xnlk > those ∆-
converge to L andM respectively with respect to the probabilistic norm N .
Since {xp(i1)q(i2)r(i3)} is∆-convergent toM with respect to the probabilistic
norm N , so for every ε > 0 and λ ∈ (0, 1), K = {(p(i1), q(i2), r(i3)) ∈ N3 :
N∆xp(i1)q(i2)r(i3)−M(ε) ≤ 1− λ} is a finite set and so δ3(K) = 0.

Then {(p(i1), q(i2), r(i3)) ∈ N3 : i1, i2, i3 ∈ N}

= {(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) > 1− λ}

∪{(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) ≤ 1− λ}.

Which implies

(4.1) δ3{(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) > 1− λ} 6= 0.
Since stN∆ − limxnlk = L.

(4.2) δ3{(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ} = 0, for every ε > 0.
Therefore we can write δ3{(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− λ} 6= 0.
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For every L 6=M , we have

{(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) > 1− λ}

∩{(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− λ} = ∅.

Hence {(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) > 1− λ} ⊆
{(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ}.

Therefore

lim sup δ3{(p(i1), q(i2), r(i3)) ∈ N3 : N∆xp(i1)q(i2)r(i3)−M(ε) > 1− λ}

≤ lim sup δ3{(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ} = 0.

This contradicts (4.1).

Hence ΛN∆(x) = {L}.

Next we show that ΓN∆(x) = {L}. Suppose that ΓN∆(x) = {L,Q}
such that L 6= Q. Then

(4.3) lim sup δ3{(n, l, k) ∈ N3 : N∆xnlk−Q(ε) > 1− λ} 6= 0.

Since
{(n, l, k) ∈ N3 : N∆xnlk−L(ε) > 1− λ}∩
{(n, l, k) ∈ N3 : N∆xnlk−Q(ε) > 1− λ} = ∅ for every L 6= Q, so {(n, l, k) ∈
N3 : N∆xnlk−L(ε) ≤ 1− λ} ⊇ {(n, l, k) ∈ N3 : N∆xnlk−Q(ε) > 1− λ}.

Therefore

(4.4) lim sup δ3({(n, l, k) ∈ N3 : N∆xnlk−L(ε) ≤ 1− λ})

≥ lim sup δ3({(n, l, k) ∈ N3 : N∆xnlk−Q(ε) > 1− λ}).
From (4.3), the right hand side of (4.4) is greater than zero and from

(4.2) the left hand side of (4.4) equals zero. This leads to a contradiction.
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Hence ΓN∆(x) = {L}.

Theorem 4.4. Let (X,N, ∗) be a PN -space. Then the set ΓN∆ is closed
in X for each x =< xnlk > of elements of X.

Proof. Let y ∈ ΓN∆(x). Let 0 < r < 1 and t > 0, there exists
γ ∈ ΓN∆(x) ∩B(y, r, t) such that B(y, r, t) = {x ∈ X : Ny−x(t) > 1− r}.

Choose η > 0 such that B(γ, η, t) ⊂ B(y, r, t), then we have

{(n, l, k) ∈ N3 : Ny−∆xnlk > 1 − r} ⊃ {(n, l, k) ∈ N3 : Nγ−∆xnlk(t) >
1− η}.

Since γ ∈ ΓN∆(x) so lim sup δ3{(n, l, k) ∈ N3 : Nγ−∆xnlk(t) > 1− η} >
0.

Hence lim sup δ3{(n, l, k) ∈ N3 : Ny−∆xnlk(t) > 1− r} > 0.

Thus y ∈ ΓN∆(x).This completes the proof.
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