Proyecciones Journal of Mathematics
Vol. 33, N ${ }^{o}$ 2, pp. 157-174, June 2014.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172014000200003

On triple difference sequences of real numbers in probabilistic normed spaces

Binod Chandra Tripathy
Institute of Advanced Study in Science and Technology, India
and
Rupanjali Goswami
Raha Higher Secondary School, Nagaon
Received : December 2013. Accepted: January 2014

Abstract

In this paper we define concept of triple Δ-statistical convergent sequences in probabilistic normed space and give some results. Also we introduce the notions of Δ-statistical limit point and Δ-statistical cluster point and investigate their different properties.

AMS Subject classification : 40A05, 40A35, 40B05, 40D25.
Keyword and phrases : Triple sequence, t-norm, probabilistic norm; cluster point; difference operator.

1. Introduction

The notion of probabilistic normed space ($P N$-space) is a generalization of normed linear space. In an ordinary normed linear space norm of vectors are represented by a positive number. But in a $P N$-space, the norm of vectors are represented by probability distribution functions rather than a positive number. The notion of $P N$-spaces was first introduced by Serstnev [25] in 1963. For detailed history, development and applications in different subjects of the notion of probabilistic normed spaces, one may refer to Alotaibi [1], Alsina etal ([2], [3]), Constantin etal [5], Esi [6], Karakus [11], Menger [18], Lafuerza etal ([14], [15]), Lafuerza etal [16], Schweizer and Sklar ([23], [24]), Tripathy etal [34].

As a generalization of ordinary convergence for sequences of real numbers, the notion of statistical convergence was first introduced by Fast [9]. After then it was studied by many researchers like Connor [4], Fridy [10], Karakus [11], Karakus and Demirci [12], Salat [20], Tripathy ([26], [27]), Tripathy and Baruah [28], Tripathy etal [29], Tripathy and Dutta [32], Tripathy and Sarma [33]. Statistical convergence has been studied in abstract spaces such as the fuzzy number space by Esi ([6], [8]), Fast [9]), locally convex spaces by Maddox [17]. Karakus [11] introduced the notion of statistical convergence in $P N$-spaces and followed by Ideal convergence by Tripathy etal [34], in normed linear spaces by Kolk [13]. Karakus and Demirci [12], studied statistical convergence of double sequences in PN-spaces. In recent times Esi and Özdemir [7] introduced generalized Δ^{m}-statistical convergence in $P N$-spaces for single generalized difference sequences. Also sequences of fuzzy numbers has been studied recently by Tripathy and Borgohain [30] and Tripathy and Debnath [31].

The notion of double sequence was initiated by Priengsheim [19]. In this paper we introduce the concept of statistical convergence of triple difference sequence in probabilistic normed spaces and establish some basic properties in $P N$-spaces.

2. Definitions and Preliminaries

Definition 2.1. A function $f: R \rightarrow R_{0}^{+}$is called a distribution function if it is non-decreasing and left continuous with $\inf _{t \in R} f(t)=0$ and
$\sup _{t \in R} f(t)=1$.
Throughout D denotes the set of all distribution functions.
Definition 2.2. A triangular norm or t-norm is a binary operation on $[0,1]$ which is continuous, commutative, associative, non-decreasing and has 1 as neutral element, i.e., it is the continuous mapping $*:[0,1] \times[0,1] \rightarrow[0,1]$ such that for all $a, b, c \in[0,1]$

1) $a * 1=a$.
2) $a * b=b * a$.
3) $c * d \geq a * b$ if $c \geq a$ and $d \geq b$.
4) $(a * b) * c=a *(b * c)$.

Example 2.1. Consider the $*$ operation defined by $a * b=\max \{a+b-1,0\}$. Then $*$ is a t-norm. Similarly one may consider $a * b=a b, a * b=\min \{a, b\}$ on $[0,1]$ and verify that these are also t-norms.

Definition 2.3. A triplet $(X, N, *)$ is called a probabilistic normed space or a $P N$-space if X is a real vector space, N is a mapping from X into D (for $x \in X$ the distribution function $N(x)$ is denoted by N_{x} and $N_{x}(t)$ is the value of N_{x} at $t \in R$) and satisfies the following conditions:
$(\mathrm{PN}-1) N_{x}(0)=0$,
(PN-2) $N_{x}(t)=1$ for all $t>0$ if and only if $x=0$
(PN-3) $N_{\alpha x}(t)=N_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in R-0$
(PN-4) $N_{x+y}(s+t) \geq N_{x}(s) * N_{y}(t)$ for all $x, y \in X$ and $s, t \in R_{0}^{+}$.
Example 2.2. Let $(X,\|\|$.$) be a normed linear space and \mu \in D$ with $\mu(0)=0$ and $\mu \neq h$, where

$$
h(t)= \begin{cases}0, & \text { for all } t \leq 0 \\ 1, & \text { for all } t>0\end{cases}
$$

Define

$$
N_{x}(t)= \begin{cases}h(t), & \text { for } x=0 \\ \mu\left(\frac{t}{\|x\|}\right), & \text { for } x \neq 0,\end{cases}
$$

where $x \in X, t \in R$. Then $(X, N, *)$ is a $P N$-space. We define the functions μ and μ^{\prime} on R by

$$
\mu(x)= \begin{cases}0, & \text { for } x \leq 0 ; \\ \frac{x}{1+x}, & \text { for } x>0 .\end{cases}
$$

and

$$
\mu^{\prime}(x)= \begin{cases}0, & \text { for } x \leq 0 \\ \exp \left(\frac{-1}{x}\right), & \text { for } x>0\end{cases}
$$

Then we obtain the following well known $*$ norms

$$
N_{x}(t)= \begin{cases}h(t), & \text { for } x=0 ; \\ \frac{t}{t+\|x\|}, & \text { for } x \neq 0\end{cases}
$$

and

$$
N_{x}^{\prime}(t)= \begin{cases}h(t), & \text { for } x=0 \\ \exp \left(\frac{-\|x\|}{t}\right), & \text { for } x \neq 0 .\end{cases}
$$

We recall the concepts of convergence and Cauchy sequences for single sequences in a probabilistic normed space.

Definition 2.4. Let $(X, N, *)$ be a $P N$-space. Then a sequence $x=<x_{k}>$ is said to be convergent to $L \in X$ with respect to the probabilistic norm N if for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exists a positive integer k_{0} such that $N_{x_{k}-L}(\varepsilon)>1-\lambda$, whenever $k>k_{0}$. It is denoted by $N-\lim x_{k}=L$ or $x_{k} \xrightarrow{N} L$ as $k \rightarrow \infty$.

Definition 2.5. Let $(X, N, *)$ be a $P N$-space. Then a sequences $x=\left\langle x_{k}\right\rangle$ is said to be Cauchy sequence with respect to the probabilistic norm N if for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exists a positive integer k_{0} such that $N_{x_{k}-x_{l}}(\varepsilon)>1-\lambda$, whenever $k, l>k_{0}$.

Definition 2.6. Let $(X, N, *)$ be a $P N$-space. Then a sequences $x=<x_{k}>$ is said to be bounded in X if there is $r \in R$ such that $N_{x_{k}}(r)>1-\lambda$ where $\lambda \in(0,1)$, we denote by ℓ_{∞}^{N} the spaces of all bounded sequences in $P N$-space.

Definition 2.7. A triple sequence $x=<x_{n l k}>$ has Pringsheim limit L (denoted by $P-\lim x=L$) provided that given $\varepsilon>0$ there exists $n_{0} \in N$
such that $\left|x_{n l k}-L\right|<\varepsilon$ whenever $n, l, k>n_{0}$.
Now we introduce the following notions.

Definition 2.8. A subset $K \in N \times N \times N$ is said to have triple asymptotic density $\delta_{3}(K)$ if $\delta_{3}(K)=\lim _{n, l, k \rightarrow \infty} \frac{1}{n l k} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{l} \sum_{i_{3}=1}^{k} \chi_{K}\left(i_{1}, i_{2}, i_{3}\right)$ exists,
where χ_{K} is the characteristic function of K.

Definition 2.9. A real triple sequence $x=<x_{n l k}>$ is said to be Δ statistically convergent to L, provided that for each $\varepsilon>0$. There exists $m=m(\varepsilon), p=p(\varepsilon) a n d q=q(\varepsilon) \operatorname{suchthat}_{3}\left(\left\{(n, l, k) \in N^{3}: n \leq m, l \leq\right.\right.$ $\left.\left.p, k \leq q,\left|\Delta x_{n l k}-\Delta x_{m} p q\right| \geq \varepsilon\right\}\right)=0$.

Definition 2.10. A real triple sequence $x=<x_{n l k}>$ is said to be Δ statistically Cauchy, provided that for each $\varepsilon>0$. There exists $m=$ $m(\varepsilon), p=p(\varepsilon)$ andq $=\mathrm{q}(\varepsilon)$ such that $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: n \leq m, l \leq p, k \leq\right.\right.$ $\left.\left.q,\left|\Delta x_{n l k}-\Delta x_{m p q}\right| \geq \varepsilon\right\}\right)=0$.

Definition 2.11 Let $(X, N, *)$ be a $P N$-space. Then a triple sequences $x=<x_{n l k}>$ is said to be Δ-convergent to $L \in X$ with respect to the probabilistic norm N provided that for every $\varepsilon>0$ and $\lambda \in(0,1)$, there is a positive integer k_{0} such that $N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda$ whenever $n \geq k_{0}, l \geq$ $k_{0}, k \geq k_{0}$. In this case we write $N_{\Delta}-\lim x_{n l k}=L$, where $\Delta x_{n l k}=x_{n l k}-$ $x_{n, l+1, k}-x_{n, l, k+1}+x_{n, l+1, k+1}-x_{n+1, l k}+x_{n+1, l+1, k}+x_{n+1, l, k+1}-x_{n+1, l+1, k+1}$ and $\Delta^{0} x_{n l k}=<x_{n l k}>$.

Definition 2.12. Let $(X, N, *)$ be a probabilistic normed space. A triple sequence $x=<x_{n l k}>$ is said to be Δ-Cauchy in X with respect to the probabilistic norm N if for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exists positive integer k_{0}, k_{1}, k_{2} such that $N_{\Delta x_{n l k}-\Delta x_{p q r}}(\varepsilon)>1-\lambda$, whenever $n, p \geq k_{0}$, $l, q \geq k_{1}, k, r \geq k_{2}$.

Definition 2.13. Let $(X, N, *)$ be a probabilistic normed space. A triple sequence $x=<x_{n l k}>$ is said to be Δ-statistically convergent to L in X with respect to the probabilistic norm N if for every $\varepsilon>0$ and $\lambda \in(0,1)$, $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)=0$. In this case we write $s t_{N \Delta}-\lim x_{n l k}=L$.

Definition 2.14. Let $(X, N, *)$ be a probabilistic normed space. A triple sequence $x=<x_{n l k}>$ is said to be Δ-statistically Cauchy in X with respect to the probabilistic norm N if for every $\varepsilon>0$ and $\lambda \in(0,1)$, there exist positive integers N, M and P such that $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\Delta x_{p q r}}(\varepsilon) \leq\right.\right.$ $1-\lambda\})=0$ for all $n, p \geq N, l, q \geq M, k, r \geq N$.

Definition 2.15 Let $(X, N, *)$ be a probabilistic normed space. For $x \in X$, $t>0$ and $0<r<1$, the ball centered at x with radius r is defined by $B(x, r, t)=\left\{y \in X: N_{x-y}(t)>1-r\right\}$.

3. Main results

Theorem 3.1. Let $(X, N, *)$ be a $P N$-space, then for every $\varepsilon>0$ and $\lambda \in(0,1)$, the following statements are equivalent.
(i)st ${ }_{N \Delta}-\lim x_{n l k}=L$.
(ii) $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)=0$.
$(i i i) \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda\right\}\right)=1$.
(iv) $s_{\Delta}^{3}-\lim N_{\Delta x_{n l k}-L}(\varepsilon)=1$.

Proof. $(i) \Rightarrow(i i)$ Suppose $s t_{N \Delta}-\lim x_{n l k}=L$. Then by definition we have, for every $\varepsilon>0$ and $\lambda \in(0,1)$, we have $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq\right.\right.$ $1-\lambda\})=0$.
$($ ii $) \Rightarrow(i i i)$ Let $\varepsilon>0$ and $\lambda \in(0,1)$, then we have

$$
\begin{aligned}
& \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda\right\}\right) \\
= & 1-\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right) \\
= & 1 \text { by }(i i) .
\end{aligned}
$$

$(i i i) \Rightarrow(i v)$ Let $\varepsilon>0$ and $\lambda \in(0,1)$, then we have
$\left\{(n, l, k) \in N^{3}:\left|N_{\Delta x_{n l k}-L}(\varepsilon)-1\right| \geq \lambda\right\}\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq\right.$ $1-\lambda\} \cup\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \geq 1+\lambda\right\}$.

Therefore we have from the finite additivity property of density
$\delta_{3}\left(\left\{(n, l, k) \in N^{3}:\left|N_{\Delta x_{n l k}-L}(\varepsilon)-1\right| \geq \lambda\right\}\right)$
$=\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)+\delta_{3}\left(\left\{(n, l, k) \in N^{3}:\right.\right.$ $\left.\left.N_{\Delta x_{n l k}-L}(\varepsilon) \geq 1+\lambda\right\}\right)$.

Since, $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)=0$ and $\delta_{3}(\{(n, l, k) \in$ $\left.\left.N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \geq 1+\lambda\right\}\right)=0$.

Hence $\delta_{3}\left(\left\{(n, l, k) \in N^{3}:\left|N_{\Delta x_{n l k}-L}(\varepsilon)-1\right| \geq \lambda\right\}\right)=0 \Rightarrow s_{\Delta}^{3}-$ $\lim N_{\Delta x_{n l k}-L}(\varepsilon)=1$.
(iv) $\Rightarrow(i)$ By hypothesis for a given $\varepsilon>0$ and $\lambda \in(0,1)$, we have $\delta_{3}\left(\left\{(n, l, k) \in N^{3}:\left|N_{\Delta x_{n l k}-L}(\varepsilon)-1\right| \geq \lambda\right\}\right)=0$ i.e., $\delta_{3}\left(\left\{(n, l, k) \in N^{3}:\right.\right.$ $\left.\left.N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)+\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}^{(\varepsilon)-1}+\lambda\right\}\right)=0$.
$\Rightarrow \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)=0$, since $\delta_{3}\left(\left\{(n, l, k) \in N^{3}\right.\right.$: $\left.\left.N_{\Delta x_{n l k}-L}(\varepsilon) \geq 1+\lambda\right\}\right)=0$.

The following result is on the uniqueness of the limit, if it exists.
Theorem 3.2. Let $(X, N, *)$ be a $P N$-space. If a sequence $x=<x_{n l k}>$ is Δ-statistically convergent with respect to the probabilistic norm, then $s t_{N \Delta}-\lim x_{n l k}$ is unique.

Proof. Let $s t_{N \Delta}-\lim x_{n l k}=L_{1}$ and $s t_{N \Delta}-\lim x_{n l k}=L_{2}$, where $x=<x_{n l k}>$ is a triple sequence. For a given $\lambda>0$ we choose $\gamma \in(0,1)$ such that $(1-\gamma) \star(1-\gamma)>1-\lambda$. Then for any $\varepsilon>0$, we define the following sets.

$$
\begin{aligned}
& K_{N, 1}(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L_{1}}(\varepsilon) \leq 1-\gamma\right\}, \\
& K_{N, 2}(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L_{2}}(\varepsilon) \leq 1-\gamma\right\} .
\end{aligned}
$$

Since $s t_{N \Delta}-\lim x_{n l k}=L_{1}, \delta_{3}\left(\left\{K_{N, 1}(\gamma, \varepsilon)\right\}\right)=0$, for all $\varepsilon>0$.
Furthermore using $s t_{N \Delta}-\lim x_{n l k}=L_{2}$ we get $\delta_{3}\left(\left\{K_{N, 2}(\gamma, \varepsilon)\right\}\right)=$ 0 , for all $\varepsilon>0$. Now let $K_{N}(\gamma, \varepsilon)=K_{N, 1}(\gamma, \varepsilon) \cap K_{N, 2}(\gamma, \varepsilon)$. Then $\delta_{3}\left(\left\{K_{N}(\gamma, \varepsilon)\right\}\right)=0$, which implies that $\delta_{3}\left(\left\{N^{3}-K_{N}(\gamma, \varepsilon)\right\}\right)=1$. If $(n, l, k) \in\left\{N^{3}-K_{N}(\gamma, \varepsilon)\right\}$, then $N_{L_{1}-L_{2}}(\varepsilon) \geq N_{\Delta x_{n l k}-L_{1}}\left(\frac{\varepsilon}{2}\right) \star N_{\Delta x_{n l k}-L_{2}}\left(\frac{\varepsilon}{2}\right)>$
$(1-\gamma) \star(1-\gamma)>1-\lambda$. Since $\lambda>0$ is arbitrary we get $N_{L_{1}-L_{2}}(\varepsilon)=1$ for all $\varepsilon>0$, which yields $L_{1}=L_{2}$. Therefore we conclude that $s t_{N \Delta}-$ limit of triple sequence is unique.

Theorem 3.3. Let $(X, N, *)$ be a $P N$-space. If $N_{\Delta}-\lim x_{n l k}=L$, then $s t_{N \Delta}-\lim x_{n l k}=L$, but not necessarily conversely.
proof. By hypothesis $x=<x_{n l k}>, \Delta$-converges to L with respect to the probabilistic norm N. Therefore for every $\lambda>0$ and $\varepsilon>0$ there exists a positive integer k_{0} such that $N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda$ for all $n \geq k_{0}, l \geq k_{0}$, $k \geq k_{0}$. Thus the set $\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}$ has finitely many terms. Since every finite subset of N^{3} has density zero, we see that $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right)=0$.

Theorem 3.4. Let $(X, N, *)$ be a $P N$-space and $x=<x_{n l k}>$ be a triple sequence. Then $s t_{N \Delta}-\lim x_{n l k}=L$ if and only if there exists a sub-
 $N_{\Delta}-\lim _{\substack{n, l, k) \in K \\ n, l, k \rightarrow \infty}} x_{n l k}=L$.

Proof. Suppose $s t_{N \Delta}-\lim x_{n l k}=L$. Now for every $\varepsilon>0$ and $r \in N$, let

$$
\begin{align*}
& \text { 1) } K(r, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\frac{1}{r}\right\} . \tag{3.1}\\
& M(r, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\frac{1}{r}\right\}
\end{align*}
$$

Then $\delta_{3}\{K(r, \varepsilon)\}=0$ and

$$
\begin{gather*}
M(1, \varepsilon) \supset M(2, \varepsilon) \supset M(3, \varepsilon) \supset \ldots \supset M(i, \varepsilon) \supset M(i+1, \varepsilon) \supset \ldots \tag{3.2}\\
\delta_{3}\{M(r, \varepsilon)\}=1 \text { for } r=1,2,3, \ldots \tag{3.3}
\end{gather*}
$$

Now we have to show that for $(n, l, k) \in M(r, \varepsilon)$ the sequence $x=x_{n l k}$ is N_{Δ}-convergent to L.

Suppose $x=<x_{n l k}>$ be not N_{Δ}-convergent to L. Therefore there exists $\gamma>0$ such that the set $\left\{(n, l, k) \in N_{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\gamma\right\}$ has
infinitely many terms.
Let $M(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\gamma\right\}, \gamma>\frac{1}{r},(r=$ $1,2,3, \ldots$)

Then $\delta_{3}\{M(\gamma, \varepsilon)\}=0$ and by (3.2) we have $M(r, \varepsilon) \subset M(\gamma, \varepsilon)$. Hence $M(r, \varepsilon)=0$ which contradicts (3.3).

Therefore $x=<x_{n l k}>$ is N_{Δ}-convergent to L.
Conversely suppose that there exists a subset $K=\{(n, l, k): n, l, k=$ $1,2,3,4, \ldots\} \subset N^{3}$ such that $\delta_{3}(K)=1$ and $N_{\Delta}-\underset{\substack{n, l, k) \in K \\ n, l, k \rightarrow \infty}}{ } x_{n l k}=L$.

Then there exists $k_{0} \in N$, such that for every $\gamma \in(0,1)$ and $\varepsilon>0$,

$$
\begin{aligned}
& \quad N_{\Delta x_{n l k}-L}(\varepsilon)>1-\gamma \text { for } n \geq k_{0}, l \geq k_{0}, k \geq k_{0} . \\
& \\
& \text { Now, } M(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\gamma\right\} \\
& \subset \\
& N^{3}-\left\{\left(n_{k_{0}+1}, l_{k_{0}+1}, k_{k_{0}+1}\right),\left(n_{k_{0}+2}, l_{k_{0}+2}, k_{k_{0}+2}\right),\left(n_{k_{0}+3}, l_{k_{0}+3}, k_{k_{0}+3}\right), \ldots\right\} .
\end{aligned}
$$

Therefore $\delta_{3}(M(\gamma, \varepsilon)) \geq 1-1=0$.
Hence $s t_{N \Delta}-\lim x_{n l k}=L$. This completes the proof.
Theorem 3.5. Let $(X, N, *)$ be a $P N$-space and $x=<x_{n l k}>$ be a sequence whose terms are in the vector space X. Then the following conditions are equivalent.
(a) x is Δ-statistically Cauchy sequence with respect to the probabilistic norm N.
(b) There exists an increasing index sequence $K=\left\{\left(k_{1}, k_{2}, k_{3}\right)\right\}$ of N^{3} such that $\delta_{3}(K)=1$ and the subsequence $\left\{\left(x_{k_{1}, k_{2}, k_{3}}\right\}_{\left(k_{1}, k_{2}, k_{3}\right) \in K}\right.$ is a Δ Cauchy sequence with respect to the probabilistic norm N.

Theorem 3.6. Let $(X, N, *)$ be a $P N$-space. Then
(i) If $s t_{N \Delta}-\lim x_{n l k}=\xi$ and $s t_{N \Delta}-\lim y_{n l k}=\eta$, then $s t_{N \Delta}-\lim \left(x_{n l k}+\right.$ $\left.y_{n l k}\right)=\xi+\eta$.
(ii) If $s t_{N \Delta}-\lim x_{n l k}=\xi$ and $\alpha \in R$, then $s t_{N \Delta}-\lim \alpha x_{n l k}=\alpha \xi$.
(iii) If $s t_{N \Delta}-\lim x_{n l k}=\xi$ and $s t_{N \Delta}-\lim y_{n l k}=\eta$, then $s t_{N \Delta}-$ $\lim \left(x_{n l k}-y_{n l k}\right)=\xi-\eta$.

Proof. (i) Let $s t_{N \Delta}-\lim x_{n l k}=\xi$ and $s t_{N \Delta}-\lim y_{n l k}=\eta$. For a given $\varepsilon>0$ and $\lambda \in(0,1)$ we choose $\gamma \in(0,1)$ such that $(1-\gamma) \star(1-\gamma)>$ $1-\lambda$. Then we define the following sets. $K_{N, 1}(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}\right.$: $\left.N_{\Delta x_{n l k}-\xi}(\varepsilon) \leq 1-\gamma\right\}, K_{N, 2}(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\eta}(\varepsilon) \leq 1-\gamma\right\}$. Since $s t_{N \Delta}-\lim x_{n l k}=\xi, \delta_{3}\left\{K_{N, 1}(\gamma, \varepsilon)\right\}=0$, for all $\varepsilon>0$.

Further using $s t_{N \Delta}-\lim x_{n l k}=\xi$ we get $\delta_{3}\left\{K_{N, 2}(\gamma, \varepsilon)\right\}=0$, for all $\varepsilon>0$.

Let $K_{N}(\gamma, \varepsilon)=K_{N, 1}(\gamma, \varepsilon) \cap K_{N, 2}(\gamma, \varepsilon)$.
Then we observe that $\delta_{3}\left\{K_{N}(\gamma, \varepsilon)\right\}=0$, which implies that $\delta_{3}\left\{N^{3}-\right.$ $\left.K_{N}(\gamma, \varepsilon)\right\}=1$. If $(n, l, k) \in\left\{N^{3}-K_{N}(\gamma, \varepsilon)\right\}$, then we have
$N_{\left(\Delta x_{n l k}-\xi\right)+\left(\Delta y_{n l k}-\eta\right)}(\varepsilon) \geq N_{\Delta x_{n l k}-\xi}\left(\frac{\varepsilon}{2}\right) \star N_{\Delta y_{n l k}-\eta}\left(\frac{\varepsilon}{2}\right)$ $>(1-\gamma) \star(1-\gamma)>1-\lambda$.

This shows that $\delta_{3}\left\{(n, l, k) \in N^{3}: N_{\left.\Delta x_{n l k}-\xi\right)+\left(\Delta y_{n l k}-\eta\right)}(\varepsilon) \leq 1-\lambda=0\right.$.
Hence $s t_{N \Delta}-\lim \left(x_{n l k}+y_{n l k}\right)=\xi+\eta$.
(ii) Let $s t_{N \Delta}-\lim x_{n l k}=\eta, \lambda \in(0,1)$ and $\varepsilon>0$. First we consider the case of $\alpha=0$. In this case, $N_{0 \Delta x_{n l k}-0 \xi}(\varepsilon)=N_{0}(\varepsilon)=1>1-\lambda$.

So we have $N_{\Delta}-\lim 0 x_{n l k}=0$. Then from Theorem 3.2 we have $s t_{N \Delta}-\lim 0 x_{n l k}=0$.

Let $\alpha \in R(\alpha \neq 0)$. Since $s t_{N \Delta}-\lim x_{n l k}=\xi$, we define the following set
$K_{N}(\gamma, \varepsilon)=\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\xi}(\varepsilon) \leq 1-\gamma\right\}$, then we can say $\delta_{3}\left\{K_{N}(\gamma, \varepsilon)\right\}=0$ for all $\varepsilon>0$. In this case $\delta_{3}\left\{N^{3}-K_{N}(\gamma, \varepsilon)\right\}=1$. If $(n, l, k) \in N^{3}-K_{N}(\gamma, \varepsilon)$, then

$$
\begin{aligned}
& N_{\alpha \Delta x_{n l k}-\alpha \xi}(\varepsilon)=N_{\Delta x_{n l k}-\xi}\left(\frac{\varepsilon}{|\alpha|}\right) \\
\geq & N_{\Delta x_{n l k}-\xi}(\varepsilon) \star N_{0}\left(\frac{\varepsilon}{|\alpha|}-\varepsilon\right)
\end{aligned}
$$

$=N_{\Delta x_{n l k}-\xi}(\varepsilon) \star 1$
$=N_{\Delta x_{n l k}-\xi}(\varepsilon)>1-\lambda, \alpha \in R(\alpha \neq 0)$
This shows that $\delta_{3}\left\{(n, l, k) \in N^{3}: N_{\alpha \Delta x_{n l k}-\alpha \xi}(\varepsilon) \leq 1-\lambda\right\}=0$
Hence $s t_{N \Delta}-\lim \alpha x_{n l k}=\alpha \xi$.
(iii) From (i) and (ii) by putting $\alpha=-1$, one can get (iii).

4. Statistical limit point and statistical cluster point of the class of difference triple sequences with respect to the probabilistic norm

Definition 4.1. Let $(X, N, *)$ be a $P N$-space. A subset Y of X is said to be bounded if for every $r \in(0,1)$, there exists $t_{0}>0$ such that $N_{x}\left(t_{0}\right)>1-r$ for all $x \in Y$.

Definition 4.2. Let $(X, N, *)$ be a $P N$-space, then $L \in X$ is called a Δ-limit point of the triple sequence $x=<x_{n l k}>$ with respect to the probabilistic norm N provided that there is a subsequence of x that Δ-converges to L with respect to the probabilistic norm N. Let $\Omega_{N \Delta}(x)$ denote the set of all limit points of the sequence x. Let $\left\{\left(x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}\right)\right\}$ be a subsequence of $x=<x_{n l k}>$ and $K=\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}, i_{1}, i_{2}, i_{3} \in N\right\}$, then we abbreviate $\left\{\left(x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}\right)\right\}$ by $\{x\}_{K}$, which in case $\delta_{3}(K)=0,\{x\}_{K}$ is called a subsequence of density zero or thin subsequence. On the other hand $\{x\}_{K}$ is a non-thin subsequence of x if K does not have density zero.

Definition 4.3. Let $(X, N, *)$ be a $P N$-space.Then $\xi \in X$ is called a Δ statistical limit point of the triple sequence $x=<x_{n l k}>$ with respect to the probabilistic norm N provided that there is a non-thin subsequence of x that Δ-converges to $\xi \in X$ with respect to the probabilistic norm. In this case we say ξ is an $s t_{N \Delta}$-limit point of sequence $\left.x=<x_{n l k}\right\rangle$. Throughout $\Lambda_{N \Delta}(x)$ denotes the set of all $s t_{N \Delta}$-limit points of the sequence x.

Definition 4.4. Let $(X, N, *)$ be a $P N$-space. Then $\gamma \in X$ is called a Δ-statistical cluster point of the sequence $x=<x_{n l k}>$ with respect to the probabilistic norm N provided that for $\varepsilon>0$ and $\lambda \in(0,1)$, $\lim -\sup \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\gamma}(\varepsilon)>1-\lambda\right\}\right)>0$. In this case we say that $\gamma \in X$ is an $s t_{N \Delta}$-cluster point of the sequence $x=<x_{n l k}>$.

Throughout $\Gamma_{N \Delta}(x)$ denote the set of all $s t_{N \Delta}$-cluster points of the sequence x.

Definition 4.5. A probabilistic normed space $(X, N, *)$ is said to be Δ complete if every Δ-Cauchy sequence is Δ-convergent in X with respect to the probabilistic norm N.

Theorem 4.1. Let $(X, N, *)$ be a $P N$-space, then for any sequence $x=<$ $x_{n l k}>\in X, \Lambda_{N \Delta}(x) \subset \Gamma_{N \Delta}(x)$.

Proof. Let $\xi \in \Lambda_{N \Delta}(x)$, then there is a non-thin subsequence
$\left(x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}\right)$ of $x=<x_{n l k}>$ that Δ-converges to ξ with respect to the probabilistic norm N, i.e.
$\delta_{3}\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\xi}(\varepsilon)>1-\lambda\right\}=d>0$.
Since
$\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\xi}(\varepsilon)>1-\lambda\right\} \supset\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}:\right.$ $\left.N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\xi}(\varepsilon)>1-\lambda\right\}$.

For every $\varepsilon>0$, we have $\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\xi}(\varepsilon)>1-\lambda\right\}$ $\supseteq\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: i_{1}, i_{2}, i_{3} \in N\right\}-\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}:\right.$ $\left.N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\xi}(\varepsilon) \leq 1-\lambda\right\}$.

Since $\left(x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}\right)$ is Δ-convergent to ξ with respect to the probabilistic norm N, the set $\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\xi}(\varepsilon) \leq\right.$ $1-\lambda\}$ is finite, for any $\varepsilon>0$, therefore

$$
\begin{aligned}
& \lim \sup \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\xi}(\varepsilon)>1-\lambda\right\}\right) \\
& \geq \lim \sup \delta_{3}\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: i_{1}, i_{2}, i_{3} \in N\right\} \\
& -\lim \sup \delta_{3}\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\xi}(\varepsilon) \leq 1-\lambda\right\} .
\end{aligned}
$$

Hence $\limsup \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\xi}(\varepsilon)>1-\lambda\right\}\right)>0$, which implies $\xi \in \Gamma_{N \Delta}(x)$.

Thus $\Lambda_{N \Delta}(x) \subset \Gamma_{N \Delta}(x)$.

Theorem 4.2. Let $(X, N, *)$ be a $P N$-space. Then for any sequence $x=<x_{n l k}>\in X, \Gamma_{N \Delta}(x) \subset \Omega_{N \Delta}(x)$.

Proof. Let $\gamma \in \Gamma_{N \Delta}(x)$, then $\delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-\gamma}(\varepsilon)>1-\lambda\right\}\right)>$ 0 for every $\varepsilon>0$ and $\lambda \in(0,1)$. Let $\{x\}_{K}$ be a non-thin subsequence of x such that $K=\left\{\left(n\left(i_{1}\right), l\left(i_{2}\right), k\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}-\gamma}(\varepsilon)>1-\lambda\right\}$ for every $\varepsilon>0$ and $\delta_{3}(K) \neq 0$. Since there are infinitely many elements in $K, \gamma \in \Omega_{N \Delta}(x)$.

Thus $\Gamma_{N \Delta}(x) \subset \Omega_{N \Delta}(x)$.
Theorem 4.3. Let $(X, N, *)$ be a $P N$-space, then for any sequence $x=<$ $x_{n l k}>\in X, s t_{N \Delta}-\lim x_{n l k}=L$, implies $\Lambda_{N \Delta}(x)=\Gamma_{N \Delta}(x)=\{L\}$.

Proof. First we prove that $\Lambda_{N \Delta}(x)=\{L\}$. Suppose that $\Lambda_{N \Delta}(x)=$ $\{L, M\}$ be such that $L \neq M$. In this case, there exist non-thin subsequences $\left\{x_{n\left(i_{1}\right) l\left(i_{2}\right) k\left(i_{3}\right)}\right\}$ and $\left\{x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}\right\}$ of $x=<x_{n l k}>$ those Δ converge to L and M respectively with respect to the probabilistic norm N. Since $\left\{x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}\right\}$ is Δ-convergent to M with respect to the probabilistic norm N, so for every $\varepsilon>0$ and $\lambda \in(0,1), K=\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}\right.$: $\left.N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon) \leq 1-\lambda\right\}$ is a finite set and so $\delta_{3}(K)=0$.

Then $\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: i_{1}, i_{2}, i_{3} \in N\right\}$

$$
\begin{aligned}
& =\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon)>1-\lambda\right\} \\
& \quad \cup\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon) \leq 1-\lambda\right\} .
\end{aligned}
$$

Which implies

$$
\begin{equation*}
\delta_{3}\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon)>1-\lambda\right\} \neq 0 . \tag{4.1}
\end{equation*}
$$

Since $s t_{N \Delta}-\lim x_{n l k}=L$.

$$
\begin{equation*}
\delta_{3}\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}=0, \text { for every } \varepsilon>0 . \tag{4.2}
\end{equation*}
$$

Therefore we can write $\delta_{3}\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda\right\} \neq 0$.

For every $L \neq M$, we have

$$
\begin{gathered}
\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon)>1-\lambda\right\} \\
\cap\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda\right\}=\emptyset .
\end{gathered}
$$

Hence $\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon)>1-\lambda\right\} \subseteq$ $\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}$.

Therefore
$\limsup \delta_{3}\left\{\left(p\left(i_{1}\right), q\left(i_{2}\right), r\left(i_{3}\right)\right) \in N^{3}: N_{\Delta x_{p\left(i_{1}\right) q\left(i_{2}\right) r\left(i_{3}\right)}-M}(\varepsilon)>1-\lambda\right\}$

$$
\leq \lim \sup \delta_{3}\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}=0
$$

This contradicts (4.1).
Hence $\Lambda_{N \Delta}(x)=\{L\}$.
Next we show that $\Gamma_{N \Delta}(x)=\{L\}$. Suppose that $\Gamma_{N \Delta}(x)=\{L, Q\}$ such that $L \neq Q$. Then

$$
\begin{equation*}
\lim \sup \delta_{3}\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-Q}(\varepsilon)>1-\lambda\right\} \neq 0 \tag{4.3}
\end{equation*}
$$

Since
$\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon)>1-\lambda\right\} \cap$
$\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-Q}(\varepsilon)>1-\lambda\right\}=\emptyset$ for every $L \neq Q$, so $\{(n, l, k) \in$ $\left.N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\} \supseteq\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-Q}(\varepsilon)>1-\lambda\right\}$.

Therefore

$$
\begin{align*}
& \lim \sup \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-L}(\varepsilon) \leq 1-\lambda\right\}\right) \tag{4.4}\\
\geq & \lim \sup \delta_{3}\left(\left\{(n, l, k) \in N^{3}: N_{\Delta x_{n l k}-Q}(\varepsilon)>1-\lambda\right\}\right) .
\end{align*}
$$

From (4.3), the right hand side of (4.4) is greater than zero and from (4.2) the left hand side of (4.4) equals zero. This leads to a contradiction.

Hence $\Gamma_{N \Delta}(x)=\{L\}$.
Theorem 4.4. Let $(X, N, *)$ be a $P N$-space. Then the set $\Gamma_{N \Delta}$ is closed in X for each $x=<x_{n l k}>$ of elements of X.

Proof. Let $y \in \overline{\Gamma_{N \Delta}(x)}$. Let $0<r<1$ and $t>0$, there exists $\gamma \in \Gamma_{N \Delta}(x) \cap B(y, r, t)$ such that $B(y, r, t)=\left\{x \in X: N_{y-x}(t)>1-r\right\}$.

Choose $\eta>0$ such that $B(\gamma, \eta, t) \subset B(y, r, t)$, then we have
$\left\{(n, l, k) \in N^{3}: N_{y-\Delta x_{n l k}}>1-r\right\} \supset\left\{(n, l, k) \in N^{3}: N_{\gamma-\Delta x_{n l k}}(t)>\right.$ $1-\eta\}$.

Since $\gamma \in \Gamma_{N \Delta}(x)$ so $\lim \sup \delta_{3}\left\{(n, l, k) \in N^{3}: N_{\gamma-\Delta x_{n l k}}(t)>1-\eta\right\}>$ 0.

Hence $\limsup \delta_{3}\left\{(n, l, k) \in N^{3}: N_{y-\Delta x_{n l k}}(t)>1-r\right\}>0$.
Thus $y \in \Gamma_{N \Delta}(x)$.This completes the proof.

References

[1] A. Alotaibi, Generalized statistical convergence in probabilistic normed spaces, The Open Math. Jour.,1, pp. 82-88, (2008).
[2] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequat. Math., 46, pp. 91-98, (1993).
[3] C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208, pp. 446-452, (1997).
[4] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences; Analysis, 8, pp. 47-63, (1988).
[5] G. Constantin and I. Istratescu, Elements of Probabilistic Analysis with Applications; vol. 36 Mathematics and Its Applications (East European Series), Kluwer Academic Publishers, Dordrecht, Netherlands, (1989).
[6] A. Esi, The A-statistical and strongly $(A-p)$-Cesàro convergence of sequences, Pure Appl. Math. Sci., XLIII(1-2), pp. 89-93, (1996).
[7] A. Esi and M. K. Ozdemir, Generalized m-statistical convergence in probabilistic normed space, J. Comput. Anal. Appl., 13(5), pp. 923932, (2011).
[8] A.Esi, Statistical convergence of triple sequences in topological groups, Annals Univ. Craiova, Math. Comput. Sci. Ser., 40(1), pp. 29-33, (2013).
[9] H. Fast, Sur la convergence statistique, Colloq. Math., 2, pp. 241-244, (1995).
[10] J. A. Fridy, On statistical convergence, Analysis, 5, pp. 301-313, (1985).
[11] S. Karakus, Statistical convergence on probabilistic normed space, Math. Commun., 12, pp. 11-23, (2007).
[12] S. Karakus and K. Demirci, Statistical convergence of double sequences on probabilistic normed spaces, Int. J. Math. Math. Sci., (2007), 11 pages, (2007).
[13] E. Kolk, Statistically convergent sequences in normed spaces, Tartu, pp. 63-66, (1988).
[14] B. Lafuerza-Guillen, J. Lallena and C. Sempi, Some classes of probabilistic normed spaces, Rend. Mat. Appl., 17(7), pp. 237-252, (1997).
[15] B. Lafuerza-Guillen, J. Lallena and C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232, pp. 183-196, (1999).
[16] B. Lafuerza-Guillen and C. Sempi, Probabilistic norms and convergence of random variables, J. Math. Anal. Appl., 280, pp. 9-16, (2003).
[17] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc., 104, pp. 141-145, (1988).
[18] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences of the United States of America, 28(12), pp. 535-537, (1942).
[19] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Anna., 53, pp. 289-321, (1900).
[20] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30, pp. 139-150, (1980).
[21] E. Savas and A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Annals Univ. Craiova, Math. Comput. Sci. Ser., 39(2), pp. 226-236, (2012).
[22] E. Savas and M. Mursaleen, On statistically convergent double sequences of fuzzy numbers, Inform. Sci., 162(3-4), pp. 183-192, (2004).
[23] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY,USA, (1983).
[24] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic Jour. Math., 10, pp. 313-334, (1960).
[25] A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149, pp. 280-283, (1963).
[26] B. C. Tripathy, Statistically convergent double sequences, Tamkang Jour. Math., 34(3), pp. 231-237, (2003).
[27] B.C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math.,35(5), pp. 655-663, (2004).
[28] B.C. Tripathy and A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(4), pp. 565-574, (2010).
[29] B.C. Tripathy, A. Baruah, M.Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iranian Jour. Sci. Tech., Trans. A : Sci., 36(2), pp. 147-155, (2012).
[30] B.C. Tripathy and S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Advances Fuzzy Syst., 2011, Article ID216414, 6 pages, (2011).
[31] B.C. Tripathy and S. Debnath, On generalized difference sequence spaces of fuzzy numbers, Acta Scientiarum Technology, 35(1), pp. 117121, (2013).
[32] B.C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary $\Delta_{m^{-}}^{n}$ statistical convergence, Anal. Stiintifice ale Universitatii Ovidius, Seria Mat., 20(1), pp. 417-430, (2012).
[33] B.C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sinica(Eng. Ser.), 24(5), pp. 737-742, (2008).
[34] B.C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16, pp. 1021-1027, (2012) DOI 10.1007/s00500-011-0799-8.

Binod Chandra Tripathy

Mathematical Science Division
Institute of Advanced Study in Science and Technology
Pachim Boragaon, Gorchuk
Guwahati-781035, Assam
India
e-mail : tripathybc@yahoo.com, tripathybc@rediffmail.com
and

Rupanjali Goswami

Department of Mathematics
Raha Higher Secondary School
Raha, Nagaon-782103, Assam
India
e-mail : rupanjali.goswami@rediffmail.com.

