The forcing connected detour number of a graph

A. P. Santhakumaran
Hindustan University, India
S. Athisayanathan
St. Xavier's College, India
Received: August 2013. Accepted : December 2013

Abstract

For two vertices u and v in a graph $G=(V, E)$, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. Au-v path of length $D(u, v)$ is called a $u-v$ detour. A set $S \subseteq V$ is called a detour set of G if every vertex in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of its detour sets and any detour set of order $d n(G)$ is a detour basis of G. A set $S \subseteq V$ is called a connected detour set of G if S is detour set of G and the subgraph $G[S]$ induced by S is connected. The connected detour number $\operatorname{cdn}(G)$ of G is the minimum order of its connected detour sets and any connected detour set of order $\operatorname{cdn}(G)$ is called a connected detour basis of G. A subset T of a connected detour basis S is called a forcing subset for S if S is the unique connected detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected detour number of S, denoted by $f c d n(S)$, is the cardinality of a minimum forcing subset for S. The forcing connected detour number of G, denoted by $f c d n(G)$, is $f c d n(G)=\min \{f c d n(S)\}$, where the minimum is taken over all connected detour bases S in G. The forcing connected detour numbers of certain standard graphs are obtained. It is shown that for each pair a, b of integers with $0 \leq a<b$ and $b \geq 3$, there is a connected graph G with $f c d n(G)=a$ and $\operatorname{cdn}(G)=b$.

Key Words : Detour, connected detour set, connected detour basis, connected detour number, forcing connected detour number. AMS
Subject Classification : 05C12.

1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least two vertices. For basic definitions and terminologies we refer to $[1,5]$. For vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. It is known that the detour distance is a metric on the vertex set V. Detour distance and detour center of a graph were studied in $[2,4]$.

A vertex x is said to lie on a $u-v$ detour P if x is a vertex of P including the vertices u and v. A set $S \subseteq V$ is called a detour set if every vertex v in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of a detour set and any detour set of order $d n(G)$ is called a detour basis of G. A vertex v that belongs to every detour basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is a detour vertex in G. These concepts were studied in [3]. A set $S \subseteq V$ is called a connected detour set of G if S is a detour set of G and the subgraph $G[S]$ induced by S is connected. The connected detour number $\operatorname{cdn}(G)$ of G is the minimum order of its connected detour sets and any connected detour set of order $\operatorname{cdn}(G)$ is called a connected detour basis of G. A vertex v in G is a connected detour vertex if v belongs to every connected detour basis of G. If G has a unique connected detour basis S, then every vertex in S a connected detour vertex of G. The connected detour number of a graph was introduced and studied in [6].

For the graph G given in Figure 1.1, the sets $S_{1}=\left\{v_{1}, v_{3}\right\}, S_{2}=\left\{v_{1}\right.$, $\left.v_{5}\right\}$ and $S_{3}=\left\{v_{1}, v_{4}\right\}$ are the three detour bases of G so that $d n(G)=2$. It is clear that no two element subset of V is a connected detour set of G. However the set $S_{4}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a connected detour basis of G so that $\operatorname{cdn}(G)=3$. Also the set $S_{5}=\left\{v_{1}, v_{2}, v_{5}\right\}$ is another connected detour basis of G. Thus there can be more than one connected detour basis for a graph G.

Figure 1.1: G

Graphs are often used to model network of real life problems and some definite part is always present in a minimum possible spanning set in a particular problem. For each connected detour basis S in a connected graph G, there is always some subset T of S that uniquely determines S as the connected detour basis containing T. Such subsets are called forcing subsets for S, and in this paper we briefly describe the properties satisfied by these sets in a graph.

The following theorem is used in the sequel.
Theorem 1.1. [6] All the end vertices and all the cut vertices of a connected graph G belong to every connected detour set of G.

Throughout this paper G denotes a connected graph with at least two vertices.

2. The Forcing Connected Detour Number

Definition 2.1. Let G be a connected graph and S a connected detour basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique connected detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected detour number of S, denoted by $f c d n(S)$, is the cardinality of a minimum forcing subset for S. The forcing connected detour number of G, denoted by $f c d n(G)$, is $f c d n(G)=\min \{f c d n(S)\}$, where the minimum is taken over all connected detour bases S in G.

Example 2.2. For the graph G given in Figure 2.1, $S_{1}=\{u, s, w, t, v\}$ is the unique connected detour basis of G so that $\operatorname{fcdn}(G)=0$ and for the graph G given in Figure 1.1, $S_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $S_{3}=\left\{v_{1}, v_{2}, v_{5}\right\}$ are the only connected detour bases of G so that $f \operatorname{cdn}(G)=1$.

Figure 2.1: G

The next theorem follows immediately from the definitions of connected detour number and forcing connected detour number of a connected graph G.

Theorem 2.3. For every connected graph $G, 0 \leq f c d n(G) \leq \operatorname{cdn}(G)$.
Remark 2.4. The lower bound in Theorem 2.3 is sharp. For the graph G given in Figure 2.2, $f c d n(G)=0$. Also, all the inequalities in Theorem 2.3 can be strict. For the graph G given in Figure 1.1, $\operatorname{cdn}(G)=3$ and $f c d n(G)=1$. Thus $0<f c d n(G)<c d n(G)$.

Figure 2.2: G

The following theorem is an easy consequence of the definition of forcing connected detour number of a graph.

Theorem 2.5. Let G be a connected graph. Then
a) $f c d n(G)=0$ if and only if G has a unique connected detour basis,
b) $f c d n(G)=1$ if and only if G has at least two connected detour bases, one of which is a unique connected detour basis containing one of its elements, and
c) $f \operatorname{cdn}(G)=\operatorname{cdn}(G)$ if and only if no connected detour basis of G is the unique connected detour basis containing any of its proper subsets.

Theorem 2.6. Let G be a connected graph and W be the set of all connected detour vertices of G. Then $f \operatorname{cdn}(G) \leq \operatorname{cdn}(G)-|W|$.

Proof. Let S be a connected detour basis S of G. Then $\operatorname{cdn}(G)=|S|$, $W \subseteq S$ and S is the unique connected detour basis containing $S-W$. Thus $f \operatorname{cdn}(S) \leq|S-W|=|S|-|W|=\operatorname{cdn}(G)-|W|$ and the result follows.

Corollary 2.7. If G is a connected graph with k end-vertices and l cutvertices, then $f c d n(G) \leq c d n(G)-k-l$.

Proof. This follows from Theorems 1.1 and 2.6.
Remark 2.8. The bound in Theorem 2.6 is sharp. For the graph G given in Figure 1.1, $\operatorname{cdn}(G)=3,|W|=2$ and $f c d n(G)=1$ as in Remark 2.4. Also, the inequality in Theorem 2.6 can be strict. For the graph G of Figure 2.3, the sets $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, v_{8}\right\}$, and $S_{2}=\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ are the two connected detour bases of G and $W=\left\{v_{1}, v_{2}, v_{7}, v_{8}\right\}$ so that $\operatorname{cdn}(G)=6,|W|=4$ and $f c d n(G)=1$. Thus $f c d n(G)<\operatorname{cdn}(G)-|W|$. Moreover, the bound in Corollary 2.7 is also sharp. For the graph G given in Figure 1.1, $\operatorname{cdn}(G)=3, k=1, l=1$ and $f c d n(G)=1$. Also, the inequality in Corollary 2.7 can be strict. For the graph G of Figure 2.3, $c d n(G)=6, k=2, l=2$ and $f c d n(G)=1$. Thus $f c d n(G)<c d n(G)-k-l$.

Figure 2.3: G

In the following theorems we proceed to find the forcing numbers of certain graphs G.

Theorem 2.9. Let G be the complete graph $K_{p}(p \geq 2)$ or the cycle C_{p} or the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$. Then a set S of vertices is a connected detour basis if and only if S consists of any two adjacent vertices of G. Furthermore, $c d n(G)=2$ for each of these graphs.

Proof. If G is the complete graph $K_{p}(p \geq 2)$ or the cycle C_{p}, then it is clear that any set of two adjacent vertices is a connected detour basis of G. Let G be the complete bipartite graph $K_{m, n}(2 \leq m \leq n)$. Let X and Y be the bipartite sets of $K_{m, n}(2 \leq m \leq n)$ with $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Let $u \in X$ and $v \in Y$. It is clear that $D(u, v)=$ $2 m-1$. Let $y \in Y-\{v\}$. Then the vertex y lies on a $u-v$ detour $P: u=x_{1}, y, x_{2}, y_{1}, x_{3}, y_{2}, \ldots, x_{m-1}, y_{m-2}, x_{m}, v$, where $y_{1}, y_{2}, \ldots, y_{m-2} \in$ $Y-\{v, y\}$. Thus the set $\{u, v\}$ is a connected detour basis of $K_{m, n}$.

Now, let S be a connected detour basis of G. Let S^{\prime} be any set consisting of two adjacent vertices of G. Then as in the first part of this theorem S^{\prime} is a connected detour basis of G. Hence $|S|=\left|S^{\prime}\right|=2$ and it follows that the two vertices of S are adjacent. The converse is obvious.

Theorem 2.10. a) If G is the complete graph $K_{p}(p \geq 3)$ or the the cycle C_{p} or the complete bipartite graph $K_{m, n}(m, n \geq 2)$, then $\operatorname{cdn}(G)=$ $f c d n(G)=2$.
b) If G is a tree of order $p \geq 2$, then $\operatorname{cdn}(G)=p$ and $f c d n(G)=0$.

Proof. a) By Theorem 2.9, a set S of vertices is a connected detour basis of G if and only if S consists of two adjacent vertices of G. For each vertex v in G there are at least two vertices adjacent with v. Thus the vertex v belongs to more than one connected detour basis of G. Hence it follows that no set consisting of a single vertex is a forcing subset for any connected detour basis of G. Thus $f c d n(G)=2$. Also, by Theorem 2.9, $\operatorname{cdn}(G)=2$ and the result follows.
b) By Theorem 1.1, $\operatorname{cdn}(G)=p$. The set of all vertices of a tree is the unique connected detour basis so that $f c d n(G)=0$ by Theorem 2.5(a).

Theorem 2.11. Let G be a connected graph with cut-vertices and S a connected detour set of G. Then for any cut-vertex v of G, every component of $G-v$ contains an element of S.

Proof. Let v be a cut-vertex of G such that one of the components, say C of $G-v$ contains no vertex of S. Let $u \in V(C)$. Since S is a connected detour set of G, there exist vertices $x, y \in S$ such that the vertex u lies on some $x-y$ detour $P: x=u_{0}, u_{1}, \ldots, u, \ldots, u_{t}=y$ in G. Let P_{1} be the $x-u$ subpath of P and P_{2} be the $u-y$ subpath of P. Since v is a cut-vertex of G both P_{1} and P_{2} contain v so that P is not a detour, which is a contradiction. Thus every component of $G-v$ contains an element of S.

Theorem 2.12. Let $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots \cup K_{n_{r}} \cup k K_{1}\right)+v$ be a block graph of order $p \geq 4$ such that $r \geq 1$, each $n_{i} \geq 2$ and $n_{1}+n_{2}+\ldots+n_{r}+k=p-1$. Then $\operatorname{cdn}(G)=r+k+1$.

Proof. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the end-vertices of G. Let S be any connected detour set of G. Then by Theorem 1.1, $v \in S$ and $u_{i} \in S(1 \leq$ $i \leq k)$. Also by Theorem 2.11, S contains a vertex from each component $K_{n_{i}}(1 \leq i \leq r)$. Now, choose exactly one vertex v_{i} from each $K_{n_{i}}$ such that $v_{i} \in S$. Then $|S| \geq r+k+1$. Let $T=\left\{v, v_{1}, v_{2}, \ldots, v_{r}, u_{1}, u_{2}, \ldots\right.$, $\left.u_{k}\right\}$. Since every vertex of G lies on a detour joining a pair of vertices of T, it follows that T is a detour basis of G. Also, since $G[T]$ is connected, $\operatorname{cdn}(G)=r+k+1$.

Now, in view of Theorem 2.3, we have the following realization result.
Theorem 2.13. For each pair a, b of integers with $0 \leq a<b$ and $b \geq 3$, there is a connected graph G with $f c d n(G)=a$ and $c d n(G)=b$.

Proof. Case 1: $a=0$. For each $b \geq 3$, let G be a tree with b vertices. Then $f c d n(G)=0$ and $c d n(G)=b$ by Theorem 2.10(b).
Case 2: $a \geq 1$. For each integer i with $1 \leq i \leq a$, let F_{i} be a copy of the complete graph K_{2}, where $V\left(F_{i}\right)=\left\{u_{i}, v_{i}\right\}$ and let $H=K_{1, b-a-1}$ be the star whose vertex set is $W=\left\{z_{1}, z_{2}, \ldots, z_{b-a-1}, v\right\}$. Then the graph G is obtained by joining the central vertex v of H to the vertices of $F_{1}, F_{2}, \ldots, F_{a}$. The graph G is connected and is shown in Figure 2.4.

Figure 2.4: G

By Theorem 2.12, $\operatorname{cdn}(G)=b$. Now, we show that $f d n(G)=a$. It is clear that W is the set all connected detour vertices of G. Hence it follows from Theorem 2.6 that $f c d n(G) \leq c d n(G)-|W|=b-(b-a)=a$. Now, since $c d n(G)=b$, it follows from Theorem 2.11 that any connected detour basis of G is of the form $S=W \cup\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$, where $x_{i} \in\left\{u_{i}, v_{i}\right\}$ $(1 \leq i \leq a)$. Let T be a subset of S with $|T|<a$. Then there is a vertex $x_{j}(1 \leq j \leq a)$ such that $x_{j} \notin T$. Let y_{j} be a vertex of F_{j} distinct from x_{j}. Then $S^{\prime}=\left(S-\left\{x_{j}\right\}\right) \cup\left\{y_{j}\right\}$ is also a connected detour basis such that it contains T. Thus S is not the unique connected detour basis containing
T and so T is not a forcing set of S. Since this is true for all connected detour bases of G, it follows that $f \operatorname{cdn}(G) \geq a$ and so $f c d n(G)=a$.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading MA, (1990).
[2] G. Chartrand, H. Escuadro and P. Zhang, Detour distance in graphs, J. Combin. Math. Combin. Comput., 53, pp. 75-94, (2005).
[3] G. Chartrand, L. Johns, and P. Zhang, Detour Number of a Graph, Util. Math. 64, pp. 97-113, (2003).
[4] G. Chartrand and P. Zhang, Distance in Graphs-Taking the Long View, AKCE J. Graphs.1. No.1, pp. 1-13, (2004).
[5] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, (2006).
[6] A. P. Santhakumaran and S. Athisayanathan, The connected detour number of a graph, J. Combin. Math. Combin. Comput., 69, pp. 205218, (2009).
A. P. Santhakumaran

Department of Mathematics
Hindustan University
Hindustan Institute of Technology and Science
Padur, Chennai-603 103, India
e-mail : apskumar1953@yahoo.co.in
and

S. Athisayanathan

Department of Mathematics
St. Xavier's College (Autonomous)
Palayamkottai - 627 002,
India
e-mail:athisayanathan@yahoo.co.in

