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Abstract

In this note, we have obtained some novel bilateral generating func-
tions involving Konhauser biorthogonal polynomials, Y α

n (x; k) which
is converted into trilateral generating functions with Tchebycheff poly-
nomials by group theoretic method. As special cases, we have obtained
the corresponding results on generalised Laguerre polynomials. Some
applications are also given here.
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1. Introduction

In 1965[1], Konhauser extended the notion of a particular pair of biorthog-
onal polynomial sets as introduced by Spencer and Fano [3] and established
general properties of biorthogonal sets. In [2], Konhauser also introduced
two sets of polynomials {Y α

n (x; k)} and {Zα
n (x; k)}, which are biorthogonal

with respect to the weight function xαe−x over the interval (0,∞), α > −1,
k is a positive integer. For previous works on these polynomials one can
see the works[[10]-[15]]. For k = 1, these polynomials reduce to the gener-
alized Laguerre polynomials, Lα

n(x). In the present paper we are interested
only on Y α

n (x; k). In [5], Carlitz gave an explicit representation for the
polynomials Y α

n (x; k) in the following form:

Yα
n(x; k) =

1
n!

Pn
i=0

xi

i!

Pi
j=0 (−1)j

Ã
i
j

!Ã
j+α+1

k

!
n

, where (a)n is the

pochhammer symbol [9].

The aim at presenting this paper is to obtain the trilateral generat-
ing functions for the Konhauser biorthogonal polynomials, Y α

n (x; k) with
Tchebycheff polynomials by the group-theoretic method. At first we shall
obtain the following theorem on bilateral generating functions.

Theorem 1.1. If there exists a unilateral generating relation of the form

G(x, w) =
∞X
n=0

an Y α
n (x; k) w

n(1.1)

then

(1+ kw)
(1+α−k)

k exp[x{1− (1+ kw)
1
k }]G(x(1+ kw)

1
k , wv) =

∞X
n=0

wnσn(x, v),

(1.2)

where σn(x, v) =
Pn

p=0 ap k
n−p

Ã
n
p

!
Y α+pk−nk
n (x; k)vp.

Furthermore, we would like to point it out that we have given some
applications of our theorem in this paper.
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2. Operator and extended form of the group

At first, we seek a linear partial differential operator R of the form: R=A1(x, y, z)
∂
∂x+

A2(x, y, z)
∂
∂y +A3(x, y, z)

∂
∂z +A0(x, y, z), where each Ai(i = 0, 1, 2, 3) is

a function of x, y and z which is independent of n, α such that

R[Y α
n (x; k) y

αzn] = c(n, α)Y α−k
n+1 (x; k)y

α−kzn+1,(2.1)

where c(n, α) is a function of n, α and is independent of x, y and z.
Using (2.1) and with the help of the differential recurrence relation:

x
d

dx
[Y α

n (x; k)] = k(n+ 1)Y α−k
n+1 (x; k) + (x+ k − α− 1)Y α

n (x; k)(2.2)

we easily obtain the following linear partial differential operator: R=xy−kz ∂
∂x+

y−(k−1)z ∂
∂y − (x+ k − 1)y−kz such that

R[Y α
n (x; k) y

αzn] = k(n+ 1) Y α−k
n+1 (x; k)y

α−kzn+1.(2.3)

The extended form of the group generated by R is given by ewRf(x, y, z) =

(1 + kwy−kz)
1−k
k exp[ x{1− (1 + kwy−kz)

1
k } ]

× f

Ã
x(1 + kwy−kz)

1
k , y(1 + kwy−kz)

1
k , z

!
,(2.4)

where f(x, y, z) is an arbitrary function and w is an arbitrary constant.

3. Derivation of generating function

Now writing f(x, y, z) = Y α
n (x; k) y

αzn in (2.4), we get ewR
Ã
Y α
n (x; k) y

αzn
!
=

(1 + kwy−kz)
1+α−k

k exp[ x{1− (1 + kwy−kz)
1
k } ]yαzn

× Y α
n

Ã
x(1 + kwy−kz)

1
k ; k

!
.(3.1)

Again, on the other hand, with the help of (2.3) we have

ewR
Ã
Y α
n (x; k) y

αzn
!
=

∞X
m=0

wm

m!
(n+ 1)m kmY α−mk

n+m (x; k)yα−mkzn+m.

(3.2)
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Equating (3.1) and (3.2) and then substituting wy−kz = t, we get

(1+kt)
1+α−k

k exp[ x{1− (1 + kt)
1
k } ]Y α

n

Ã
x(1 + kt)

1
k ; k

!

=
∞X

m=0

km
Ã

n+m
m

!
Y α−mk
n+m (x; k)tm,(3.3)

which is also found derived in [8] by the classical method.

Corollary 3.1. Putting n=0 in (3.3), we get the following generating re-
lation:

(1 + kt)
1+α−k

k exp[ x{1− (1 + kt)
1
k } ] =

∞X
m=0

kmY α−mk
m (x; k)tm,(3.4)

which is found derived in [8, 12, 14] by different methods.

Special case 1 If we put k = 1, then Y α
n (x; k) reduces to the generalized

Laguerre polynomials, Lα
n(x). Thus putting k = 1 in (3.3), we get the

following generating relation on Laguerre polynomials:

(1 + t)α exp(−xt)Lα
n

Ã
x(1 + t)

!
=

∞X
m=0

Ã
n+m
m

!
Lα−m
n+m(x)t

m,(3.5)

which is found derived in [6, 7, 19,20,21,24].

Sub case 1 Putting n=0 in the above relation, we get the following
generating relation:

(1 + t)α exp(−xt) =
∞X

m=0

Lα−m
m (x)tm,(3.6)

which are found derived in [26].

Sub case 2 Using the relation Lα−n
n (x) = (−x)n

n! Cn(α;x), [4, p.227] and
from the above generating relations we get the following generating relations
on Charlier polynomials [4, p. 226]:

(1− y

x
)α+n exp(y)Cn

Ã
α+ n;x− y

!
=

∞X
m=0

ym

m!
Cn+m

Ã
α+ n;x

!
.(3.7)
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Replacing α− n by α, we get

(1− y

x
)α exp(y)Cn

Ã
α;x− y

!
=

∞X
m=0

ym

m!
Cn+m

Ã
α;x

!
(3.8)

and putting n=0 in the above relation, we get

(1− y

x
)α exp(y) =

∞X
m=0

ym

m!
Cm

Ã
α;x

!
,(3.9)

which are found derived in [16;p.84 , 17; p. 36].
Now we proceed to prove the Theorem 1.

4. Proof of the theorem 1

Let us now consider the generating relation of the form:

G(x,w) =
∞X
n=0

an Y α
n (x; k) w

n.(4.1)

Replacing w by wvz and multiplying both sides of (4.1) by yα and finally
operating ewR on both sides, we get

ewR
"
yα G(x,wvz)

#
= ewR

" ∞X
n=0

an Y α
n (x; k) y

αzn(wv)n
#
.(4.2)

Now the left number of (4.2), with the help of (2.4), reduces to

(1+kwy−kz)
1+α−k

k exp[ x{1− (1 + kwy−kz)
1
k } ]yα

× G

Ã
x(1 + kwy−kz)

1
k , wvz

!
.(4.3)

The right number of (4.2), with the help of(2.3), becomes

=
∞X
n=0

nX
p=0

an−pw
nkp

Ã
n
p

!
Y α−pk
n (x; k)yα−pkznvn−p.(4.4)

Now equating (4.3) and (4.4) and then substituting y = z = 1, we get

(1+ kw)
(1+α−k)

k exp[x{1− (1+ kw)
1
k }]G(x(1+ kw)

1
k , wv) =

∞X
n=0

wnσn(x, v),
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(4.5)

where σn(x, v) =
Pn

p=0 ap k
n−p

Ã
n
p

!
Y α+pk−nk
n (x; k)vp.

This completes the proof of the theorem and does not seem to have
appeared in the earlier works.

Special case 2 Now putting k=1 in our Theorem 1.1 we get the following
result on generalised Laguerre polynomials:

Theorem 4.1. If there exists a unilateral generating relation of the form

G(x, w) =
∞X
n=0

an L(α)n (x) wn(4.6)

then

(1 + w)αexp(−xw)G(x(1 + w), wv) =
∞X
n=0

wnσn(x, v),(4.7)

where σn(x, v) =
Pn

p=0 ap

Ã
n
p

!
L
(α+p−n)
n (x)vp,

which is found derived in [20, 23, 24].

5. Applications

A1. As an application of our Theorem 1.1, we consider the following gen-
erating relation[5,11]:

(1− w)
−(1+α)

k exp

(
− x[(1− w)

−1
k − 1]

)
=

∞X
p=0

Y α
n (x; k)w

n.(5.1)

Taking an = 1, we get G(x,w)=(1-w)
−(1+α)

k exp

(
− x[(1− w)

−1
k − 1]

)
.

By applying our Theorem 1.1, we get

(1+kw)
(1+α−k)

k (1−wv)
−(1+α)

k exp

(
x[1−(1+kw) 1k (1−wv)

−1
k ]

)
=

∞X
n=0

wnσn(x, v),

(5.2)
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where σn(x, v) =
Pn

p=0 kn−p
Ã

n
p

!
Y α+pk−nk
n (x; k)vp.

It is of interest to mention that the result (5.2) fork = 1 is also obtained
by applying Theorem 4.1, on (5.1) for k = 1.

A2. As an application of our Theorem 4.1, we consider the following gen-
erating relation[25]:

(1−w)−c 1F1

"
c; 1 + α;

−xw
1− w

#
=

∞X
p=0

(c)n
(1 + α)n

L(α)n (x)wn.(5.3)

Taking an =
(c)n

(1+α)n
, we get G(x,w)=(1-w)−c 1F1

"
c; 1 + α; −xw1−w

#
.

By applying our Theorem 4.1, we get

(1+w)αexp(−xw)(1−wv)−c 1F1

"
c; 1+α;

−xwv(1 + w)

1− wv

#
=

∞X
n=0

wnσn(x, v),

(5.4)

where σn(x, v) =
Pn

p=0
(c)p

(1+α)p

Ã
n
p

!
L
(α+p−n)
n (x)vp.

6. Trilateral generating functions of biorthogonal polynomi-
als

In this Section the above bilateral generating function has been converted
to trilateral generating relation with Tchebycheff polynomial by means of

the relation Tn(x) =
1
2

"Ã
x+
√
x2 − 1

!n

+

Ã
x−
√
x2 − 1

!n#
, utilizing the

method of Chongdar and Chatterjea [27].

Now to convert the above bilateral generating relation into a trilateral
generating relation with Tchebycheff polynomial as done in [27], we notice
thatP∞

n=0w
nσn(x, v)Tn(u) =

1
2

"
(1+kρ1)

(1+α−k)
k exp[x{1−(1+kρ1)

1
k }]G(x(1+

kρ1)
1
k , ρ1v) + (1+kρ2)

(1+α−k)
k exp[x{1− (1+ kρ2)

1
k }]G(x(1+ kρ2)

1
k , ρ2v)

#
,

where ρ1 = w(u+
√
u2 − 1 ) and ρ2 = w(u−

√
u2 − 1 ). Thus we have

the following general theorem
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Theorem 6.1. If there exists a unilateral generating relation of the form

G(x, w) =
∞X
n=0

an Y α
n (x; k) w

n(6.1)

then

1

2

"
(1 + kρ1)

(1+α−k)
k exp[x{1− (1 + kρ1)

1
k }]G(x(1 + kρ1)

1
k , ρ1v)

+ (1 + kρ2)
(1+α−k)

k exp[x{1− (1 + kρ2)
1
k }]G(x(1 + kρ2)

1
k , ρ2v)

#

=
P∞

n=0w
nσn(x, v)Tn(u),

(6.2)

where σn(x, v) =
Pn

p=0 ap k
n−p

Ã
n
p

!
Y α+pk−nk
n (x; k) vp

which is believed to be new.

Special Case 4 By putting k=1 in our Theorem 6.1, we get the general
theorem on Laguerre polynomials, Lα

n(x) found derived in [27, 28, 29].
Again using (3.3) we get,P∞

m=0 k
m

Ã
n+m
m

!
Y α−mk
n+m (x; k)tmTm(y)

=
1

2

"(
1 + kt(y +

q
y2 − 1)

) 1+α−k
k

exp

Ã
x− x{1 + kt(y +

q
y2 − 1)} 1k

!

Y α
n

Ã
x{1 + kt(y +

q
y2 − 1)} 1k ; k

!
+

(
1 + kt(y −

q
y2 − 1)

) 1+α−k
k

exp

Ã
x− x{1 + kt(y −

q
y2 − 1)} 1k

!
Y α
n

Ã
x{1 + kt(y −

q
y2 − 1)} 1k ; k

!#

(6.3)
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Corollary 6.2. Putting n=0 in 6.3, we get the following generating rela-
tion:

∞X
m=0

kmY α−mk
m (x; k)tmTm(y)

=
1

2

"(
1 + kt(y +

q
y2 − 1)

) 1+α−k
k

exp

Ã
x− x{1 + kt(y +

q
y2 − 1)} 1k

!

+

(
1 + kt(y −

q
y2 − 1)

) 1+α−k
k

exp

Ã
x− x{1 + kt(y −

q
y2 − 1)} 1k

!#

(6.4)

Special Case 5 For k=1, we get the following generating relations on
Laguerre polynomials, Lα

n(x):

∞X
m=0

Ã
n+m
m

!
Lα−m
n+m(x)t

mTm(y)

=
1

2

"(
1+t(y+

q
y2 − 1)

)α

exp

Ã
−xt(y+

q
y2 − 1)

!
Lα
n

Ã
x{1+t(y+

q
y2 − 1)}

!

+

(
1+t(y−

q
y2 − 1)

)α

exp

Ã
−xt(y−

q
y2 − 1)

!
Lα
n

Ã
x{1+t(y−

q
y2 − 1)}

!#
(6.5)
and

∞X
m=0

Lα−m
m (x)tmTm(y)

=
1

2

"(
1 + t(y +

q
y2 − 1)

)α

exp

Ã
− xt(y +

q
y2 − 1)

!

+

(
1 + t(y −

q
y2 − 1)

)α

exp

Ã
− xt(y −

q
y2 − 1)

!#
(6.6)
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Therefore the generating relations (6.3-6.6) are believed to be new.

Finally using (5.2) and (5.4) we get,P∞
n=0w

nσn(x, v)Tn(y)

=
1

2

"(
1 + kw(y +

q
y2 − 1)

) (1+α−k)
k

(
1− wv(y +

q
y2 − 1)

)−(1+α)
k

× exp

(
− x

"
1−
(
1 + kw(y +

q
y2 − 1)

) 1
k
(
1− wv(y +

q
y2 − 1)

)−1
k
#)

+

(
1 + kw(y −

q
y2 − 1)

) (1+α−k)
k

(
1− wv(y −

q
y2 − 1)

)−(1+α)
k

× exp

(
− x

"
1−
(
1 + kw(y −

q
y2 − 1)

) 1
k
(
1− wv(y −

q
y2 − 1)

)−1
k
#)#

(6.7)

where

σn(x, v) =
Pn

p=0 kn−p
Ã

n
p

!
Y α+pk−nk
n (x; k)vp.

and

∞X
n=0

wnσn(x, v)Tn(y)

=
1

2

"(
1+w(y+

q
y2 − 1)

)α(
1−wv(y+

q
y2 − 1)

)c

exp

(
−xw(y+

q
y2 − 1)

)

(6.8)
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× 1F1

"
c; 1 + α;

−xwv(y +
p
y2 − 1)

(
1 + w(y +

p
y2 − 1)

)
1− wv(y +

p
y2 − 1)

#

+

(
1+w(y−

q
y2 − 1)

)α(
1−wv(y−

q
y2 − 1)

)c

exp

(
−xw(y−

q
y2 − 1)

)

× 1F1

"
c; 1 + α;

−xwv(y −
p
y2 − 1)

(
1 + w(y −

p
y2 − 1)

)
1−wv(y −

p
y2 − 1)

##

where

σn(x, v) =
Pn

p=0
(c)p

(1+α)p

Ã
n
p

!
L
(α+p−n)
n (x)vp,

which are believed to be new.

7. Conclusions

From the above discussion, it is clear that whenever one knows a generating
relation of the form (1.1, 4.6) then the corresponding bilateral generating
function can at once be written down from ( 1.2, 4.7). So one can get
a large number of bilateral generating functions by attributing different
suitable values to an in (1.1, 4.6).
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