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Abstract

By using the standard Liapunov-Krasovskii functional approach, in
this paper, new stability, boundedness and ultimately boundedness cri-
teria are established for a class of vector functional differential equa-
tions of third order with retarded argument.
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1. Introduction

Differential equations with retarded argument are used to describe many
phenomena of physical interest. While ordinary differential equations with-
out delay contain derivatives which depend on the solution at the present
value of the independent variable (’time’, differential equations with re-
tarded argument contain in addition derivatives which depend on the so-
lution at previous times. Differential equations with retarded argument
arise in models throughout the sciences. Systems of differential equations
with retarded argument now occupy a place of central importance in all
areas of science and particularly in the biological sciences (e.g., population
dynamics and epidemiology). Interest in such systems often arises when
traditional point wise modeling assumptions are replaced by more realistic
distributed assumptions, for example, when the birth rate of predators is
affected by prior levels of predators or prey rather than by only the current
levels in a predator-prey model. The manner in which the properties of
systems of differential equations with retarded argument differ from those
of systems of ordinary differential equations has been and remains an active
area of research (see, e.g. Ahmad and Rama Mohana Rao [4], Burton [5],
Èl’sgol’ts and Norkin [11], Hale [15], Hara [16], Krasovskii [17], Rauch [24],
Smith [26] and references therein). On the other hand, differential equa-
tions of third order have been proved to be valuable tools in the modeling
of many phenomena in various fields of science and engineering.Indeed, we
can find some applications such as nonlinear oscillations (Afuwape et al.
[3], Fridedrichs [14]), prototypical examples of complex dynamical systems
in a high-dimensional phase space, displacement in a mechanical system,
velocity, acceleration (Chlouverakis and Sprott [6], Eichhorn et al. [10],
Linz [19]), the biological model and other models (Cronin- Scanlon [8]),
electronic theory (Rauch [24]), the boundedness of some minimal chaotic
attractors (Elhadj and Sprott [9]) and etc. Therefore, it is worth to investi-
gate the qualitative behavior of differential equations of third order. At the
same time, the theory of stability and boundedness of solutions are impor-
tant branches of the qualitative theory of differential equations. In the last
60 years, there has been increasing interest in obtaining the sufficient con-
ditions for the stability/instability/boundedness/ ultimately boundedness
etc. of solutions of different classes of differential equations of third order
such as linear and nonlinear ordinary, and functional differential equations;
for a comprehensive treatment of subject, we refer the reader to the book by
Reissig et al. [25] as a survey and the papers by Ademola and Arawomo [1],
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Afuwape and Castellanos [2], Afuwape et. al. [3], Chukwu [7], Ezeilo ([12],
[13]), Hara [16], Mehri and Shadman [20], Meng [21], Omeike and Afuwape
[22], Qian [23], Rauch [24], Smith [26], Swick [27], Tejumola [28], Tunc [29-
40], Tunc and Ates [41], Tunc and Ergören [42], Wall and Moe [43], Zhang
and Yu [44] and references therein). It is well known that an important
tool in the study of stability/instability/boundedness/ ultimately bounded-
ness of solutions of the considerable number of ordinary/neutral/retarded
differential equations of higher order is the Liapunov function/Liapunov-
Krasovskii functional techniques. The Liapunov function technique goes
back for ordinary differential equations as far as the approximation meth-
ods of Liapunov (1857-1918) (see, also, Liapunov [18]), which he developed
in 1899, make it possible to define the stability of sets of ordinary differential
equations and he created the modern theory of the stability of a dynamic
system. Besides, in 1959, Krasovskii (1924-2012) carried out Liapunov-
Krasovskii functional technique for a treatment of global behavior of so-
lutions of a class of nonlinear differential equations with delay by suitable
Liapunov- Krasovskii functionals. In his work, Krasovskii indicated the
extension of Liapunov’s method to a class of general differential equations
with time delay in the literature. Especially, after the work of Krasovskii
[17], stability/instability/boundedness/ convergence/ existence of periodic
solutions, etc. of solutions of scalar neutral/retarded differential equations
of higher order were investigated quite extensively by many authors (see
the mentioned references and the references therein). It should be noted
that, today, the same topics are also being investigated intensely in the lit-
erature and many good results are being obtained by the researchers. We
would not like to give the details.

In 1968, Wall and Moe [43] considered the scalar differential equation
of third order without delay

x00 + (1 + x02)x0 + x0 + x = 0.

The authors proved that the functional relationship to the original equa-
tions is evident by the direct way in which the desired Liapunov function
was obtained from the original differential equations, and they gave suffi-
cient conditions which quarantee globally asymptotic stability of this equa-
tion.

Later, in 2009, the result of Wall and Moe [43] was improved and ex-
tended by Tunc [35] for the stability and boundedness of the following



328 Cemil Tunç and Sizar Abid Mohammed

vector differential equation of third order without delay:

X 00 +Ψ(X 0)X 00 +BX 0 + cX = P (t),

when P (t) ≡ 0 and P (t) = 0, respectively.

After that, in 2010, Omeike and Afuwape [22] studied the ultimate
boundedness of solutions of Eq. (3). By this work, they did a good contribu-
tion to the topic. To the best of our knowledge from the literature, by now,
no attention was given to the investigation of the stability/boundedness/ ul-
timately boundedness of solutions of the vector functional differential equa-
tions of third order with retardation. The basic reason for the absence of
any work on this topic may be the difficulty of the construction or definition
of appropriate Liapunov- Krasovskii functionals for differential equations of
third order with retardation. Further,until now, construction or definition
of suitable Liapunov functions/Liapunov- Krasovskii functionals for higher
order nonlinear differential equations without and with retardation remains
an as open problem in the literature. Therefore, it is worthwhile to do the
discussion of the mentioned properties for those equations.

In this paper, we are concerned with the stability, boundedness and
ultimately boundedness properties of the following type vector functional
differential equations of third order with retarded argument, τ1 > 0 :

X 000 +Ψ(X 0)X 00 +BX 0(t− τ1) + cX(t− τ1) = P (t),(1.1)

where τ1 is the retarded argument; c is a positive constant; B is n × n-
an constant symmetric matrix;Ψ is an n × n− continuous differentiable
symmetric matrix function such that the Jacobian matrix J(Ψ(X 0)X 0 | X 0)
exists and is symmetric and continuous, that is,

J(ψ(X 0)X 0 | X 0) = ∂
∂x0j

(
nP

k=1
ψikx

0
k)

=ψ(X 0) +
nP

k=1

∂ψik
∂x0j

x0k, (i, j = 1, 2, ..., n),

exists and is symmetric and continuous, where (x01, x02, ..., x0n) and (ψik)
are components of X 0 and Ψ, respectively; P : <+ → <n is a continuous
function,<+ = [0,∞) and the primes in Eq.(1) indicate differentiation with
respect to t, t ≥ t0 ≥ 0. For the third order functional differential equation
with the retarded argument, let X = X1, X 0 = X2, X 00 = X3, then Eq.
(1) can be written in the form

X 0
1 = X2,
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X 0
2 = X3,

X 0
3 = −Ψ(X2)X3 −BX2 +

tZ
t−τ1

BX3(s)ds

− cX1 + c

tZ
t−τ1

X2(s)ds+ P (t).(1.2)

Throughout this paper, we assume that the existence and the unique-
ness of the solutions of Eq. (1) hold (Èl0sgol0ts and Norkin [11]. The mo-
tivation of this paper comes from the results established in Wall and Moe
[43], Tunç [35], Omeike and Afuwape [22] and mentioned papers. The main
purpose of this paper is to get some new stability/boundedness/ ultimately
boundedness results of Eq. (1) by using the Liapunov- Krasovskii func-
tional approach. This paper is the first attempt in the literature to obtain
sufficient conditions which guarantee the stability/boundedness/ultimately
boundedness of vector functional differential equations of third order with
retarded argument, and it has a new contribution the topic in the litera-
ture. This case shows the novelty of this work. It should also be noted that
the results to be established here may be useful for researchers working on
the qualitative behaviors of solutions.

One tool to be used here is LaSalle’s invariance principle. If we consider
delay differential system

ẋ = F (xt), xt = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0,

we take C = C([−r, 0],<n) to be the space of continuous function from
[−r, 0] into <n and ask that F : C → <n be continuous. We say that
V : C → < is a Liapunov function on a set G ⊂ C relative to F if V is
continuous on Ḡ, the closure of G, V̇ is defined on G, and V̇ ≤ 0 on G.

The following form of LaSalle’s invariance principle can be found in
Smith [26, Theorem 5.17]. Here, ω denotes the omega limit set of a solution.

Theorem A. If V is a Liapunov function on G and xt(φ) is a bounded
solution such that xt(φ) ∈ G for t ≥ 0, then ω(φ) 6= 0 is contained in the
largest invariant subset of E ≡ {ψ ∈ Ḡ : V̇ (ψ) = 0}.
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2. Main results

Before we state our main results, we give an algebraic result which will be
required in the proofs.

Lemma. Let A be a real symmetric n×n -matrix. Then for any X1 ∈ Rn

δa||X1||2 ≤ hAX1,X1i ≤ ∆a||X1||2,
where δa and ∆a are, respectively, the least and greatest eigenvalues of the
matrix A (see [22]).

Let P (t) ≡ 0. The first main result of this paper is the following theo-
rem.

Theorem 1. In addition to the basic assumptions imposed on Ψ(X2),
B and c, we assume that P (t) ≡ 0 and there exist positive constants
α, ε, a0, a1, b0 and c such that the following conditions hold:

n× n- symmetric matrices B and Ψ commute with each other and

a0b0 − c > 0, 1− αa0 > 0, b0 ≤ λi(B) ≤ b1

and

a0 + ε ≤ λi(Ψ(X2)) ≤ a1 for all X2 ∈ <n.

if

τ1 < min

½
αa0b0c

αa0b0b1 + αa0b0c
,

k1
(2a0 + αa0b0 + 1)c+ a0b1

,

k2
c+ (2 + a0 + αa0b0)b1

¾
,

then, all solutions of Eq. (1) are bounded and the zero solution of Eq. (1)
is globally asymptotically stable, where

k1 = 2(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)
2] > 0

and

k2 = 2ε[1− αa0b0c
−1(a1 − a0)

2] > 0.

Proof. To prove the theorem, we define a differentiable Liapunov- Krasovskii
functional V (t) = V (X1(t),X2(t),X3(t)) by
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2V = a0chX1,X1i+ a0

1Z
0

hσΨ(σX2)X2,X2idσ + αa0b
2
0hX1,X1i

+hBX2,X2i+ hX3,X3i+ 2αa20b0hX1,X2i+ 2αa0b0hX1,X3i

+2a0hX2,X3i+ 2chX1,X2i− αa0b0hX2,X2i

+ 2λ1

0Z
−τ1

tZ
t+s

||X2(θ)||2dθds+ 2η1
0Z

−τ1

tZ
t+s

||X3(θ)||2dθds,(2.1)

where

0 < α < min

½
1

a0
,
a0
b0
,

a0b0 − c

a0b0[a0 + c−1(b1 − b0)2]
,

c

a0b0(a1 − a0)

¾
,(2.2)

a1 > a0, b1 6= b0 and λ1 and η1 are certain positive constants to be
determined later in the proof.

From (4), it follows that

2V = a0b0||a0−
1
2X2 + a0

− 1
2 b0

−1cX1||2 + ||X3 + a0X2 + αa0b0X1||2

+a0
1R
0
hσΨ(σX2)X2,X2idσ − 2a20hX2,X2i+ h(B − b0I)X2,X2i

+αa0b
2
0(1− αa0)hX1,X1i+ c(a0 − cb−10 )hX1,X1i+ a0(a0 − αb0)hX2,X2i

+2λ1
0R

−τ1

tR
t+s
||X2(θ)||2dθds+ 2η1

0R
−τ1

tR
t+s
||X3(θ)||2dθds.

In view of the assumptions of Theorem 1, it is clear that

V (0, 0, 0) = 0,

a0

1Z
0

hσΨ(σX2)X2,X2idσ − 2a20hX2,X2i

= a0

1Z
0

h(σΨ(σX2)− a0I)X2,X2idσ ≥ εa0||X2||2,
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h(B − b0I)X2,X2 ≥ 0,

αa0b
2
0(1− αa0)hX1,X1i = µ1||X1||2,

µ1 = αa0b
2
0(1− αa0) > 0,

c(a0 − cb−10 )hX1,X1i = µ2||X1||2,

µ2 = c(a0 − cb−10 ) > 0,

a0(a0 − αb0)hX2,X2i = µ3||X2||2,

µ3 = a0(a0 − αb0) > 0.

By noting the above discussion, we get

V ≥ 1
2a0b0||a

−1
2

0 X2 + a
− 1
2

0 b−10 cX1||2 + 1
2 ||X3 + a0X2 + αa0b0X1||2

+1
2 (µ1 + µ2) kX1k2 + 1

2 (a0ε+ µ3) kX2k2

+2λ1
0R

−τ1

tR
t+s
||X2(θ)||2dθds+ 2η1

0R
−τ1

tR
t+s
||X3(θ)||2dθds.

Thus, one can obtain from the above estimate that there exist suffi-
ciently small positive constants di, (i = 1, 2, 3), such that

V ≥ d1||X1||2 + d2||X2||2 + d3||X3||2.

Then, we conclude that Liapunov-Krasovskii functional V is positive
definite. Let

d4 = min{d1, d2, d3}.
Then, it is clear that

V ≥ d4(||X1||2 + ||X2||2 + ||X3||2).

Let(X1,X2,X3) = (X1(t),X2(t),X3(t)) be any solution of system (2).
Differentiating this functional, (3), with respect to along system (2), we
have
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V̇ = −αa0b0chX1,X1i− a0hX2, BX2i+ chX2,X2i

+αa20b0hX2,X2i− αa0b0hX1,Ψ(X2)X3i

+αa20b0hX1,X3i− hΨ(X2)X3,X3i

+a0hX3,X3i− αa0b0hX1, BX2i

+αa0b
2
0hX1,X2i+ hX3,

tR
t−τ1

BX3(s)dsi

+hX3, c
tR

t−τ1
X2(s)dsi+ αa0b0hX1,

tR
t−τ1

BX3(s)dsi

+αa0b0chX1,
tR

t−τ1
X2(s)dsi+ a0hX2,

tR
t−τ1

BX3(s)dsi

+a0chX2,
tR

t−τ1
X2(s)dsi+ λ1τ1hX2,X2i+ η1τ1hX3,X3i

−λ1
tR

t−τ1
||X2(s)||2ds− η1

tR
t−τ1

||X3(s)||2ds

= −12αa0b0chX1,X1i− h(a0B − cI − αa20b0I)X2,X2i

−h(Ψ(X2)− a0I)X3,X3i

−14αa0b0
°°°c 12X1 + 2c

−1
2 (Ψ(X2)− a0I)X3

°°°2
+1
4αa0b0

°°°2c− 1
2 (Ψ(X2)− a0I)X3

°°°2
−14αa0b0

°°°c 12X1 + 2c
−1
2 (B − b0I)X2

°°°2
+1
4αa0b0

°°°2c− 1
2 (B − b0I)X2

°°°2
+hX3,

tR
t−τ1

BX3(s)dsi+ hX3, c
tR

t−τ1
X2(s)dsi

+αa0b0hX1,
tR

t−τ1
BX3(s)dsi+ αa0b0chX1,

tR
t−τ1

X2(s)dsi

+a0hX2,
tR

t−τ1
BX3(s)dsi+ a0chX2,

tR
t−τ1

X2(s)dsi

+λ1τ1hX2,X2i+ η1τ1hX3,X3i
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−λ1
tR

t−τ1
||X2(s)||2ds− η1

tR
t−τ1

||X3(s)||2ds.

Using the assumptions of Theorem 1 and elementary estimates, we ob-
tain

hX3,
tR

t−τ1
BX3(s)ds ≤ ||X3||

°°°°° tR
t−τ1

BX3(s)

°°°°° ds
≤ b1||X3||

tR
t−τ1

||X3(s)||ds

≤ 1
2b1

tR
t−τ1

{||X3(t)||2 + ||X3(s)||2}ds

= 1
2b1τ1||X3||2 + 1

2b1
tR

t−τ1
||X3(s)||2ds,

hX3, c
tR

t−τ1
X2(s)dsi ≤ c||X3||

°°°°° tR
t−τ1

X2(s)ds

°°°°°
≤ c||X3||

tR
t−τ1

||X2(s)||ds

≤ 1
2c

tR
t−τ1

{||X3(t)||2 + ||X2(s)||2}ds

= 1
2cτ1||X3||2 +

1
2c

tR
t−τ1

||X2(s)||2ds,

αa0b0hX1,
tR

t−τ1
BX3(s)dsi ≤ αa0b0b1||X1||

°°°°° tR
t−τ1

X3(s)ds

°°°°°
≤ αa0b0b1||X1||

tR
t−τ1

||X3(s)||ds

≤ 1
2αa0b0b1

tR
t−τ1

{||X1(t)||2 + ||X3(s)||2}ds

= 1
2αa0b0b1τ1||X1||2 +

1
2αa0b0b1

tR
t−τ1

||X3(s)||2ds,

αa0b0chX1,
tR

t−τ1
X2(s)dsi ≤ αa0b0c||X1||

°°°°° tR
t−τ1

X2(s)ds|
°°°°°

≤ αa0b0c||X1||
tR

t−τ1
||X2(s)||ds

≤ 1
2αa0b0c

tR
t−τ1

{||X1(t)||2 + ||X2(s)||2}ds

= 1
2αa0b0cτ1||X1||2 +

1
2αa0b0c

tR
t−τ1

||X2(s)||2ds,
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a0hX2,
tR

t−τ1
BX3(s)dsi ≤ a0||X2||

°°°°° tR
t−τ1

BX3(s)ds

°°°°°
≤ a0b1||X2||

tR
t−τ1

||X3(s)||ds

≤ 1
2a0b1

tR
t−τ1

{||X2(t)||2 + ||X3(s)||2}ds

= 1
2a0b1τ1||X2||2 +

1
2a0b1

tR
t−τ1

||X3(s)||2ds,

a0chX2,
tR

t−τ1
X2(s)dsi ≤ a0c||X2||

°°°°° tR
t−τ1

X2(s)ds

°°°°°
≤ a0c||X2||

tR
t−τ1

||X2(s)||ds

≤ 1
2a0c

tR
t−τ1

{||X2(t)||2 + ||X2(s)||2}ds

= 1
2a0cτ1||X2||2 +

1
2a0c

tR
t−τ1

||X2(s)||2ds.

Hence, it follows that

V̇ (t) ≤ −12αa0b0chX1,X1i− h(a0B − cI − αa20b0I)X2,X2i

−h(Ψ(X2)− a0I)X3,X3i

−14αa0b0||c
1
2X1 + 2c

− 1
2 (Ψ(X2)− a0I)X3||2

+1
4αa0b0||2c

−1
2 (Ψ(X2)− a0I)X3||2

−14αa0b0||c
1
2X1 + 2c

− 1
2 (B − b0I)X2||2

+1
4αa0b0||2c

−1
2 (B − b0I)X2||2

+1
2αa0b0b1τ1||X1||2 + 1

2αa0b0cτ1||X1||2

+1
2a0b1τ1||X2||2 + 1

2a0cτ1||X2||2

+1
2b1τ1||X3||2 + 1

2cτ1||X3||2

+λ1τ1hX2,X2i+ η1τ1hX3,X3i
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−{λ1 − 1
2(a0 + αa0b0 + 1)c}

tR
t−τ1

||X2(s)||2ds

−{η1 − (1 + a0 +
1
2αa0b0)b1}

tR
t−τ1

||X3(s)||2ds.

Let

λ1 =
1

2
(a0 + αa0b0 + 1)c

and

η1 = (1 + a0 +
1

2
αa0b0)b1.

Then

V̇ (t) ≤ −12αa0b0chX1,X1i

-h(a0B − cI − αa20b0I)X2,X2i

-h(Ψ(X2)− a0I)X3,X3i

+1
4αa0b0||2c

−1
2 (Ψ(X2)− a0I)X3||2

+1
4αa0b0||2c

−1
2 (B − b0I)X2||2

+1
2(αa0b0b1 + αa0b0c)τ1||X1||2 + 1

2(a0b1 + a0c)τ1||X2||2

+1
2(a0 + αa0b0 + 1)cτ1||X2||2 + 1

2(b1 + c)τ1||X3||2

+1
2(1 + a0 + αa0b0)b1τ1||X3||2.

In view of the estimates

1
4αa0b0||2c

− 1
2 (B − b0I)X2||2

= αa0b0hc−1(B − b0I)X2, (B − b0I)X2i
and

1
4αa0b0||2c

− 1
2 (Ψ(X2)− a0I)X3||2

= αa0b0h(c−1(Ψ(X2)− a0I))X3, (Ψ(X2)− a0I)X3 >,

it follows that
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V̇ (t) ≤ −12αa0b0chX1,X1i

−h(a0B − cI − αa20b0I)X2,X2i

+αa0b0hc−1(B − b0I)X2, (B − b0I)X2i

−h(Ψ(X2)− a0I)X3,X3i

+αa0b0hc−1(Ψ(X2)− a0I)X3, (Ψ(X2)− a0I)X3i

+1
2(αa0b0b1 + αa0b0c)τ1||X1||2 + 1

2(a0b1 + a0c)τ1||X2||2

+1
2(a0 + αa0b0 + 1)cτ1||X2||2 + 1

2(b1 + c)τ1||X3||2

+1
2(1 + a0 + αa0b0)b1τ1||X3||2.

By noting Lemma and the assumptions of Theorem 1, it can be obtained
that

V̇ (t) ≤ −12{αa0b0c− (αa0b0b1 + αa0b0c)τ1}||X1||2

−h{(a0B − cI)− αa0b0[a0I + c−1(B − b0I)
2]}X2,X2i

+1
2(a0b1 + a0c)τ1||X2||2

+1
2(a0 + αa0b0 + 1)cτ1||X2||2

-h{(Ψ(X2)− a0I)[I − αa0b0c
−1(Ψ(X2)− a0I)]}X3,X3i

+1
2(b1 + c)τ1||X3||2

+1
2(1 + a0 + αa0b0)b1τ1||X3||2

≤ −12{αa0b0c− (αa0b0b1 + αa0b0c)τ1}||X1||2

−{(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)
2]}||X2||2

+1
2{(2a0 + αa0b0 + 1)c+ a0b1}τ1||X2||2

−ε[1− αa0b0c
−1(a1 − a0)

2]||X3||2
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+1
2(2b1 + c+ a0b1 + αa0b0b1)τ1||X3||2.

Let

k1 = 2(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)
2] > 0

and

k2 = 2ε[1− αa0b0c
−1(a1 − a0)

2] > 0.

Hence
V̇ (t) ≤ −12{αa0b0c− (αa0b0b1 + αa0b0c)τ1}||X1||2

−12{k1 − [(2a0 + αa0b0 + 1)c+ a0b1]τ1}||X2||2

−12{k2 − (2b1 + c+ a0b1 + αa0b0b1)τ1}||X3||2.

If

τ1 < min

½
αa0b0c

αa0b0b1 + αa0b0c
,

k1
(2a0 + αa0b0 + 1)c+ a0b1

,

k2
c+ (2 + a0 + αa0b0)b1

¾
,

then, for some positive constants ρ1, ρ2 and ρ3, it follows that

V̇ (t) ≤ −ρ1||X1||2 − ρ2||X2||2 − ρ3||X3||2 ≤ 0.

In addition, we can easily see that

V (X1,X2,X3)→∞ as ||X1||2 + ||X2||2 + ||X3||2 →∞.

We will now apply LaSalle’s invariance principle, so consider the set

E ≡ {(X1,X2,X3) : V̇ (X1,X2,X3) = 0}.

Observe that (X1,X2,X3) ∈ E implies that X1 = X2 = X3 = 0.
Clearly, the largest invariant set contained in E is (0, 0, 0) ∈ E, and so the
zero solution of system (2) is globally asymptotically stable. Hence, the
zero solution of Eq. (1) is globally asymptotically stable.

This completes the proof of Theorem 1.
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In the case P (t) 6= 0, the second result of this paper is the following
theorem.

Theorem 2. We assume that all assumptions of Theorem 1 hold, except
P (t) ≡ 0 In addition, we assume that there exists a non-negative and
continuous function θ = θ(t) such that the following condition holds:

||P (t)|| ≤ θ(t) for all t ≥ 0,maxθ(t) <∞ and θ ∈ L1(0,∞),

where L1(0,∞) denotes the space of Lebesgue integrable functions.
If

τ1 < min

½
αa0b0c

αa0b0b1 + αa0b0c
,

k1
(2a0 + αa0b0 + 1)c+ a0b1

,
k2

c+ (2 + a0 + αa0b0)b1

¾
,

where

k1 = 2(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)
2] > 0

and

k2 = 2ε[1− αa0b0c
−1(a1 − a0)

2] > 0,

then there exists a constantD > 0 such that any solution (X1(t),X2(t),X3(t))
of system (2) determined by

X1(0) = X10,X2(0) = X20,X3(0) = X30

satisfies

||X1(t)|| ≤ D, ||X2(t)|| ≤ D, ||X3(t)|| ≤ D

for all t ∈ <+.

Proof. In the case of P (t) 6= 0 under the assumptions of Theorem 2, it
can be easily seen that

V̇ (t) ≤ −12{αa0b0c− (αa0b0b1 + αa0b0c)τ1}||X1||2

−12{k1 − [(2a0 + αa0b0 + 1)c+ a0b1]τ1}||X2||2
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−12{k2 − (2b1 + c+ a0b1 + αa0b0b1)τ1}||X3||2

+hX3, P (t)i+ αa0b0hX1, P (t)i+ a0hX2, P (t)i

≤ (αa0b0||X1||+ a0||X2||+ ||X3||)||P (t)||

≤ σ(||X1||+ ||X2||+ ||X3||)||P (t)||

≤ σ(3 + ||X1||2 + ||X2||2 + ||X3||2)θ(t),
where

σ = max{αa0b0, a0, 1}.
On the other hand, it is easy to see that

||X1||2 + ||X2||2 + ||X3||2 ≤ d−14 V.

In view of the above discussion, we get

V̇ (t) ≤ 3σθ(t) + d−14 V (t)θ(t).

Integrating both sides of the last estimate from 0 to t, (t ≥ 0) , one can
easily obtain

V (t)− V (0) ≤ 3σ
tZ
0

θ(s)ds+ d−14

tZ
0

V (s)θ(s)ds.

Then

V (t) ≤ d+ d−14

∞Z
0

V (s)θ(s)ds,

where

d = V (0) + 3σ

∞Z
0

θ(s)ds.

By using Gronwall-Bellman inequality (see Ahmad and Rama Mohana
Rao [4]), we conclude that

V (t) ≤ d exp(d−14

∞Z
0

θ(s))ds.
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Thus, all solutions of system (2) are bounded.

For the case P (t) 6= 0 , the third and last main result is the following
theorem.

Theorem 3. We assume that all assumptions of Theorem 1 hold, except
P (t) ≡ 0. In addition, we assume that there exists a positive constant δ0
such that the condition

||P (t)|| ≤ δ0, (t ≥ 0),

holds.

If

τ1 < min

½
αa0b0c

αa0b0b1 + αa0b0c
,

k1
(2a0 + αa0b0 + 1)c+ a0b1

,
k2

c+ (2 + a0 + αa0b0)b1

¾
,

where

k1 = 2(a0b0 − c)− αa0b0[a0 + c−1(b1 − b0)
2] > 0

and

k2 = 2ε[1− αa0b0c
−1(a1 − a0)

2] > 0,

then there exists a constant d > 0 such that any solution (X1(t),X2(t),X3(t))
of system (2) determined by

X1(0) = X10,X2(0) = X20,X3(0) = X30

ultimately satisfies

||X1(t)||2 + ||X2(t)||2 + ||X3(t)||2 ≤ d

for all t ∈ <+.

Proof. When P (t) 6= 0, under the assumptions of Theorem 3, we can
re-arrange the time derivative of the Liapunov- Krasovskii functional V̇ (t)
as the following:

V̇ (t) ≤ −ρ1||X1||2 − ρ2||X2||2 − ρ3||X3||2
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+(αa0b0||X1||2 + a0||X2||+ ||X3||)||P (t)||

≤ −ρ1||X1||2 − ρ2||X2||2 − ρ3||X3||2

+(αa0b0δ0||X1||2 + a0δ0||X2||+ δ0||X3||).
Let

d̄2 =
1

2
max{ρ1, ρ2, ρ3}

and

d̄3 = max{αa0b0δ0, a0b0δ0, δ0}.
Therefore,

V̇ (t) ≤ −2d̄2{||X1||2 + ||X2||2 + ||X3||2}+ d̄3(||X1||+ ||X2||+ ||X3||).

In view of Schwarz’s inequality, it can be written that

V̇ (t) ≤ −2d̄2{||X1||2 + ||X2||2 + ||X3||2}+ d̄4(||X1||2 + ||X2||2 + ||X3||2)
1
2 ,

where d̄4 =
√
3d̄3.

If
(||X1||2 + ||X2||2 + ||X3||2)

1
2 ≥ d̄5 = d̄4d̄2

−1
,

then we get

V̇ (t) ≤ −d̄2(||X1||2 + ||X2||2 + ||X3||2).
Hence, it follows that there exists a positive constants d̄6 such that

V̇ (t) ≤ −1

if||X1||2 + ||X2||2 + ||X3||2 ≥ d26.
The remaining of the proof can be completed easily by following a sim-

ilar was as shown in Meng [21]. Therefore, we would not like to give the
details of the proof.

3. Conclusion

A class of vector functional differential equations of third order with a
constant retardation has been considered. The stability/boundedness/ ul-
timately boundedness of solutions of these equations have been discussed by
using the Liapunov- Krasovskii functional approach. The obtained results
extend and improve some recent results in the literature.
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[34] C. Tunç, On the stability and boundedness of solutions to third or-
der nonlinear differential equations with retarded argument. Nonlinear
Dynam. 57, No. 1-2, pp. 97-106, (2009).
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