Proyecciones Journal of Mathematics Vol. 33, N^o 3, pp. 315-324, September 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000300006

Generalized *b*-closed sets in ideal bitopological spaces

Binod Chandra Tripathy Institute of Advanced Study in Sc. and Tech., India and Diganta Jyoti Sarma Central Institute of Technology, India Received : April 2014. Accepted : May 2014

Abstract

In this article we introduce the concept of generalized b-closed sets with respect to an ideal in bitopological spaces, which is the extension of the concepts of generalized b-closed sets.

Key words and phrases: Bitopological spaces; (i, j) - Igb-closed sets; (i, j) - Igb-open sets; (i, j) - gb-closed sets; (i, j) - gb-open sets.

AMS Classification No: 54A10; 54C08; 54C10; 54D15.

1. Introduction.

The concept of bitopological spaces (X, τ_1, τ_2) was introduced by Kelly [6]. The bitopological spaces are equipped with two arbitrary topologies τ_1 and τ_2 . The concept of ideals has been applied in topological spaces and studied by Kuratowski [7], Vaidyanathasamy [17] and Jankovic and Hamlett [5] and others.

An ideal I on a non-empty set X is a collection of subsets of X which satisfies $(i)A \in I$ and $B \subset A$ implies $B \in I$ and $(ii)A \in I$ and $B \in I$ implies $A \cup B \in I$. The notion of ideal has been applied for investigations in different directions. In sequence spaces ideal convergence has recently been studied by Tripathy and Hazarika [9], Tripathy and Mahanta [10], Tripathy etal. [16] and many others.

If I is an ideal on X, then (X, τ_1, τ_2, I) is called an ideal bitopological space. Andrijevic [3] introduced the notion of b-open sets in topological spaces. Later on this notion has been extended to bitopological setting by Abo Khadra and Nasef [1], Al-Hawary and Al-Omari [2] and many others. Recently, Sarsak and Rajesh [8], Tripathy and Sarma ([12], [13], [14]) have done some works on bitopological spaces using this notion. During recent years many topologists were interested in the study of different types of generalized closed sets. Mean while Fukutake [4] introduced the concept of generalized closed sets in bitopological spaces. On the other hand Tripathy and Sarma [15] introduced the notion of generalized b-closed sets in bitopological spaces and studied their basic properties. Recently different properties of the mixed topological spaces have been investigated from fuzzy settings by Tripathy and Ray [11] and others.

In this paper we introduce generalized *b*-closed sets with respect to an ideal in bitopological spaces and have studied some of its basic properties.

2. Preliminaries.

Throughout the paper (X, τ_1, τ_2) denotes a bitopological space on which no separation axioms are assumed and (X, τ_1, τ_2, I) be an ideal bitopological space, where $i, j \in \{1, 2\}, i \neq j$. Let A be a subset of X.

We use the following notations.

(*i*) A is open with respect to τ_i if and only if A is *i*-open in (X, τ_1, τ_2, I) .

(ii)A is closed with respect to τ_i if and only if A is *i*-closed in (X, τ_1, τ_2, I) .

Now we list some known definitions and results those will be used throughout this article.

The following definitions and results are due to Al-Hawary and Al-Omari [2].

Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be

(i) (i, j) - b-open if $A \subset \tau_i - int(\tau_j - cl(A)) \cup \tau_j - cl(\tau_i - int(A))$.

(*ii*) (i, j) - b-closed if $\tau_i - cl(\tau_j - int(A)) \cap \tau_j - int(\tau_i - cl(A)) \subset A$. By (i, j) we mean the pair of topologies (τ_i, τ_j) .

Definition 2.2. Let A be a subset of a bitopological space (X, τ_1, τ_2) .

(i) The (i, j) - b-closure of A denoted by (i, j) - bcl(A), is defined by the intersection of all (i, j) - b-closed sets containing A.

(*ii*) The (i, j) - b-interior of A denoted by (i, j) - bint(A), is defined by the union of all (i, j) - b-open sets contained in A.

Lemma 2.1. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. Then

- (i) (i, j) bint(A) is (i, j) b-open.
- (ii) (i, j) bcl(A) is (i, j) b-closed.
- (*iii*) A is (i, j) b-open if and only if A = (i, j) bint(A).
- (iv) A is (i, j) b-closed if and only if A = (i, j) bcl(A).

Lemma 2.2. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of

X. Then

(i) $x \in (i, j) - bcl(A)$ if and only if for every (i, j) - b-open set U containing $x, U \cap A \neq \emptyset$.

(*ii*) $x \in (i, j) - bint(A)$ if and only if there exists an (i, j) - b-open set U such that $x \in U \subset A$.

(*iii*) If $A \subset B$, then $(i, j) - bint(A) \subset (i, j) - bint(B)$ and $(i, j) - bcl(A) \subset (i, j) - bcl(B)$.

The following result is due to Sarsak and Rajesh [8].

Lemma 2.3. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. Then

(i)
$$X - (i, j) - bint(A) = (i, j) - bcl(X - A).$$

$$(ii) \ X - (i, j) - bcl(A) = (i, j) - bint(X - A).$$

The following definition is due to Tripathy and Sarma [15].

Definition 2.3. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-generalized *b*-closed (in short, (i, j)-gb-closed) set if $(j, i)-bcl(A) \subset U$ whenever $A \subset U$ and U is τ_i -open in X.

3. (i, j) - I-generalized *b*-closed Sets

Definition 3.1. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is said to be (i, j) - I-generalized b-closed (in short, (i, j) - Igb-closed) set if $(j, i) - bcl(A) \setminus B \in I$ whenever $A \subset B$ and B is τ_i -open in X, for i, j = 1, 2 and $i \neq j$.

Theorem 3.1. Every (i, j) - gb-closed set is (i, j) - Igb-closed.

Proof. Easy, so omitted.

Remark 3.1. The converse of the above Theorem is not necessarily true.

This is clear from the following example.

Example 3.1. Let $X = \{a, b, c\}$, consider the topologies $\tau_1 = \{\emptyset, \{a\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $I = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. Here $\{a\}$ is (1, 2)-*Igb*-closed set but not (1, 2)-*gb*-closed since (2, 1)-*bcl* $(\{a\}) = X$ not a subset of $\{a\}$.

Theorem 3.2. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A is (i, j) - Igb-closed and $A \subset B \subset (j, i)$ -bcl(A) in X, then B is (i, j) - Igb-closed in X, where i, j = 1, 2 and $i \neq j$.

Proof. Let $B \subset V$ and V is τ_i -open. Since $A \subset B \subset (j,i) - bcl(A)$, we have $A \subset V$. By hypothesis $(j,i) - bcl(A) \setminus V \in I$. Further $B \subset (j,i) - bcl(A)$ implies that $(j,i) - bcl(B) \setminus V \subset (j,i) - bcl(A) \setminus V \in I$. Thus $(j,i) - bcl(B) \setminus V \in I$. Consequently B is (i,j) - Igb-closed.

Theorem 3.3. Union of two (i, j) - Igb-closed sets in an ideal bitopological space (X, τ_1, τ_2, I) is also (i, j) - Igb-closed.

Proof. Let A and B be two (i, j) - Igb-closed sets with $A \cup B \subset V$, where V is τ_i -open. Clearly $A \subset V$ and $B \subset V$. Since A and B are (i, j) - Igb-closed, we have $(j, i) - bcl(A) \setminus V \in I$ and $(j, i) - bcl(B) \setminus V \in I$. Now $(j, i) - bcl(A \cup B) \setminus V = ((j, i) - bcl(A) \cup (j, i) - bcl(B)) \setminus V =$ $((j, i) - bcl(A) \setminus V) \cup ((j, i) - bcl(B) \setminus V) \in I$. Thus $(j, i) - bcl(A \cup B) \setminus V \in I$ and hence $A \cup B$ is (i, j) - Igb-closed set.

Remark 3.2. The intersection of two (i, j)-*Igb*-closed sets is not necessarily a (i, j) - Igb-closed set is clear from the following example.

Example 3.2. Let $X = \{a, b, c\}$, consider the topologies $\tau_1 = \{\emptyset, \{a\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $I = \{\emptyset\}$. Here $\{a, b\}$ and $\{a, c\}$ are (1, 2)-*Igb*-closed sets but $\{a, b\} \cap \{a, c\} = \{a\}$ is not (1, 2)-*Igb*-closed.

Theorem 3.4. Let (X, τ_1, τ_2, I) be an ideal bitopological space. Suppose A is (i, j) - Igb-closed in X and $A \subset Y \subset X$. Then A is (i, j) - Igb-closed relative to the subspace Y of X and with respect to the ideal $I_Y = \{P \subset Y : P \in I\}$.

Proof. Let V be τ_i -open in X and $A \subset Y \cap V$. Therefore we have $A \subset V$.

Since A is (i, j) - Igb-closed, therefore we have $(j, i) - bcl(A) \setminus V \in I$. Further we see that $((j, i) - bcl(A) \cap Y) \setminus (Y \cap V) = ((j, i) - bcl(A) \setminus V) \cap Y \in I_Y$. Thus for $A \subset Y \cap V$ and V is τ_i -open, we have $((j, i) - bcl(A) \cap Y) \setminus (Y \cap V) \in I_Y$. Hence A is (i, j) - Igb-closed relative to the subspace $(Y, \tau_1 | Y, \tau_2 | Y)$.

Definition 3.2. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is said to be (i, j) - I-generalized b-open(in short, (i, j) - Igb-open) set if $X \setminus A$ is (i, j) - Igb-closed, for i, j = 1, 2 and $i \neq j$.

Theorem 3.5. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is (i, j) - Igb-open in X if and only if $B \setminus P \subset (j, i) - bint(A)$ for some $P \in I$, whenever $B \subset A$ and B is τ_i -closed.

Proof. Let $B \subset A$ and B be τ_i -closed. Clearly $X \setminus A \subset X \setminus B$. Since A is (i, j) - Igb-open, therefore we have $X \setminus A$ is (i, j) - Igb-closed. By definition $(j, i) - bcl(X \setminus A) \setminus (X \setminus B) \in I$. This implies $(j, i) - bcl(X \setminus A) \subset (X \setminus B) \cup P$ for some $P \in I$. This gives that $X \setminus ((X \setminus B) \cup P) \subset X \setminus (j, i) - bcl(X \setminus A)$. Thus $B \setminus P \subset X \setminus (X \setminus (j, i) - bint(A))$ and hence $B \setminus P \subset (j, i) - bint(A)$.

Conversely suppose that $B \subset A$ and B is τ_i -closed. By hypothesis we have $B \setminus P \subset (j,i) - bint(A)$ where $P \in I$. This implies $B \setminus P \subset X \setminus (j,i) - bcl(X \setminus A)$. Thus $X \setminus (X \setminus (j,i) - bcl(X \setminus A)) \subset X \setminus (B \setminus P)$ and consequently we have $(j,i) - bcl(X \setminus A) \subset (X \setminus B) \cup P$. Hence $(j,i) - bcl(X \setminus A) \setminus (X \setminus B) \in I$ for some $P \in I$. This shows that $X \setminus A$ is (i,j) - Igb-closed and so A is (i,j) - Igb-open.

Theorem 3.6. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A is (i, j) - Igb-open in X and (j, i)-bint $(A) \subset B \subset A$, then B is (i, j) - Igb-open in X.

Proof. Assume that A be (i, j) - Igb-open. Then $X \setminus A$ is (i, j) - Igb-closed. Since $(j, i) - bint(A) \subset B \subset A$, we have $X \setminus A \subset X \setminus B \subset X \setminus (j, i) - bint(A) = (j, i) - bcl(X \setminus A)$. Then by Theorem 3.2, we have $X \setminus B$ is (i, j) - Igb-closed and hence B is (i, j) - Igb-open.

Theorem 3.7. The intersection of two (i, j) - Igb-open sets in an ideal bitopological space (X, τ_1, τ_2, I) is also (i, j) - Igb-open.

Proof. Suppose A and B be two (i, j) - Igb-open sets in X. Then $X \setminus A$ and $X \setminus B$ are (i, j) - Igb-closed. Now we have $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

is (i, j) - Igb-closed, by Theorem 3.3. Hence $A \cap B$ is (i, j)-Igb-open.

Theorem 3.8. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A and B are two (i, j) - Igb-open sets in X such that $(j, i) - bcl(A) \cap B = \emptyset$ and $A \cap (j, i) - bcl(B) = \emptyset$, then $A \cup B$ is (i, j) - Igb-open.

Proof. Let A and B be two (i, j) - Igb-open sets in X such that $(j, i) - bcl(A) \cap B = \emptyset$ and $A \cap (j, i) - bcl(B) = \emptyset$. Suppose V is τ_i -closed and $V \subset A \cup B$. Clearly $V \subset A$ and $V \subset B$. Then $V \cap (j, i) - bcl(A) \subset A \cap (j, i) - bcl(A) = A$ and $V \cap (j, i) - bcl(B) \subset B \cap (j, i) - bcl(B) = B$. By hypothesis we have $(V \cap (j, i) - bcl(A)) \setminus P \subset (j, i) - bint(A)$ and $(V \cap (j, i) - bcl(B)) \setminus Q \subset (j, i) - bint(B)$ for some $P, Q \in I$. This implies $(V \cap (j, i) - bcl(A)) \setminus (j, i) - bint(A) \in I$ and $(V \cap (j, i) - bcl(B)) \setminus (j, i) - bint(B) \in I$. Then $((V \cap (j, i) - bcl(A)) \cup ((V \cap (j, i) - bcl(B))) \setminus (j, i) - bint(B)) \in I$. Which implies $(V \cap ((j, i) - bcl(A)) \cup (j, i) - bcl(A) \cup (j, i) - bcl(A) \cup (j, i) - bint(A) \cup (j, i) - bint(B)) \in I$. Thus $(V \cap (j, i) - bcl(A \cup B)) \setminus ((j, i) - bint(A) \cup (j, i) - bint(B)) \in I$. Thus $(V \cap (j, i) - bcl(A \cup B)) \setminus ((j, i) - bint(A) \cup (j, i) - bint(B)) \in I$. Thus $(V \cap (j, i) - bcl(A \cup B)) \setminus ((j, i) - bint(A) \cup (j, i) - bint(B)) \in I$. Thus $(V \cap (j, i) - bcl(A \cup B)) \setminus ((j, i) - bint(A) \cup (j, i) - bint(B)) \in I$. Thus $(V \cap (j, i) - bcl(A \cup B)) \setminus ((j, i) - bint(A \cup B) \subset (V \cap (j, i) - bcl(A \cup B)) \setminus (j, i) - bint(A \cup B) \subset (V \cap (j, i) - bcl(A \cup B)) \setminus (j, i) - bint(B)) \in I$. This shows that $V \setminus R \subset (j, i) - bint(A \cup B)$ for some $R \in I$. Hence $A \cup B$ is (i, j) - Igb-open.

Theorem 3.9. Let (X, τ_1, τ_2, I) be an ideal bitopological space. If A is (i, j) - Igb-open set relative to B such that $A \subset B \subset X$ and B is (i, j) - Igb-open relative to X, then A is (i, j) - Igb-open relative to X.

Proof. Let $U \subset A$ and U be τ_i -closed. Suppose A is (i, j) - Igb-open relative to B. Then we have $U \setminus P \subset (j, i) - bint_B(A)$ for some $P \in I_B$, where I_B denotes the ideal of the set B. Which implies that there exists a (j, i) - b-open set V_1 such that $U \setminus P \subset V_1 \cap B \subset A$. Let $U \subset B$ and U is τ_i -closed. Suppose B is (i, j) - Igb-open relative to X. Then we have $U \setminus Q \subset (j, i) - bint(B)$ for some $Q \in I$. Which implies that there exists a (j, i) - b-open set V_2 such that $U \setminus Q \subset V_2 \subset B$. Further $U \setminus (P \cup Q) = (U \setminus P) \cap (U \setminus Q) \subset (V_1 \cap B) \cap V_2) \subset (V_1 \cap B) \cap B = V_1 \cap B \subset A$. This shows that $U \setminus (P \cup Q) \subset (j, i)$ -bint(A) for some $P \cup Q \in I$. Hence A is (i, j) - Igb-open relative to X.

References

- A. A. Abo Khadra and A. A. Nasef, On extension of certain concepts from a topological space to a bitopological space, Proc. Math. Phys. Soc. Egypt 79, pp. 91-102, (2003).
- [2] T. Al-Hawary and A. Al-Omari, b-open and b-continuity in Bitopological Spaces, Al-Manarah, 13 (3), pp. 89-101, (2007).
- [3] D. Andrijevic, On *b*-open sets, Mat. Vesnik, 48, pp. 59-64, (1996).
- [4] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35, pp. 19-28, (1985).
- [5] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97, pp. 295-310, (1985).
- [6] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3 (13), pp. 71-89, (1963).
- [7] K. Kuratowski, Topology, Academic Press, New York, (1966).
- [8] M. S. Sarsak and N. Rajesh, Special Functions on Bitopological Spaces, Internat. Math. Forum, 4 (36), pp. 1775-1782, (2009).
- [9] B. C. Tripathy and B. Hazarika : *I*-convergent sequence spaces associated with multiplier sequence spaces; Mathematical Inequalities and Applications; 11 (3), pp. 543-548, (2008).
- [10] B. C. Tripathy and S. Mahanta : On *I*-acceleration convergence of sequences; Journal of the Franklin Institute, 347, pp. 591-598, (2010).

- [11] B. C. Tripathy and G. C. Ray, On Mixed fuzzy topological spaces and countability, Soft Computing, 16(10), pp. 1691-1695, (2012).
- [12] B. C. Tripathy and D. J. Sarma, On b-locally open sets in Bitopological spaces, Kyungpook Math. J., 51(4), pp. 429-433, (2011).
- [13] B. C. Tripathy and D. J. Sarma, On pairwise b-locally open and pairwise b-locally closed functions in bitopological spaces, Tamkang Jour. Math., 43 (4), pp. 533-539, (2012).
- [14] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopological spaces, Acta Sci. Technol., 35 (3), pp. 521-525, (2013).
- [15] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in bitopological spaces, (communicated).
- [16] B. C. Tripathy, M. Sen and S. Nath : *I*-convergence in probabilistic n-normed space; Soft Comput., 16, 1021-1027, DOI 10.1007/s00500-011-0799-8, (2012).
- [17] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., 20, pp.51-61, (1945).

Binod Chandra Tripathy

Mathematical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon; Garchuk GUWAHATI - 781035; ASSAM India e-mail: tripathybc@yahoo.com tripathybc@rediffmail.com

and

Diganta Jyoti Sarma Department of Mathematics Central Institute of Technology Kokrajhar-783370 Assam, India e-mail: djs_math@rediffmail.com