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Abstract

Recently Savas and Das [12] introduced the notion of I -statistical
convergence of sequences of real numbers. In this article we introduced

the sequence spacesW I(S)(M,A, p),W
I(S)
0 (M,A, p) andW

I(S)
∞ (M,A, p)

of real numbers defined by I-statistical convergence using sequences of
Orlicz function.We study some basic topological and algebraic proper-
ties of these spaces. We investigate some inclusion relations involving
these spaces.
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1. Introduction

The notion of statistical convergence was introduced by Fast [4] and Schoen-
berg [11], independently.Over the years and under different names statisti-
cal convergence has been discussed in the theory of Fourier analysis, ergodic
theory and number theory by Buck [1], Esi and Et [3]. Moreover, statistical
convergence is closely related to the concept of convergence in probability.

i.e. XA (k) =

⎧⎪⎨⎪⎩
1 if k ∈ A

0 if k ∈ N \ A
and dn (A) =

1

n

nX
k=1

XA (k)

The idea of statistical convergence depends on the density of subsets
of the set N of natural numbers. Let N be the set of natural numbers. If
A ⊆ N , then χA denotes the characteristic function of the set A

Then the number d(A) = lim inf dn(A) and d(A) = lim sup dn(A) are
called the lower and upper asymptotic density of A respectively. If d(A)
=d(A)=d(A) then d(A) is called the asymptotic density of A. We see that
asymptotic density is limit of frequencies of numbers in the set {0, 1, 2, . . .},
therefore it is (when it exists) intuitively correct measure of size of subsets
of integers. It is clear that any finite subset of N has natural density zero
and d(Ac) =1- d(A). Asymptotic density is (in some context) appropriate
way to describe whether a subset of natural numbers is small or large.

A sequence x = (xn) is said to be statistically convergent to a number
L ∈ R if for each ε > 0 , d(A(ε)) = 0,where A(ε)= {n ∈ N : |xn − L| ≥ ε}.

In recent years, generalizations of statistical convergence have appeared
in the study of strong integral summability and the structure of ideals of
bounded continuous functions on locally compact spaces. Kostyrko et.al.[7]
presented a new generalization of statistical convergence and called it I-
convergence. They used the notion of an ideal I of subsets of the set N to
define such a concept.

Let X be a non-empty set. Then a family of sets I ⊂ 2X is said to be an
ideal if I is additive, i.e, A,B ∈ I ⇒ A ∪B ∈ I and hereditary i.e. A ∈ I,
B ⊂ A⇒ B ∈ I. A non-empty family of sets F ⊂ 2X is said to be a filter
on X if and only if i)∅ /∈ F ii) for all A,B ∈ F ⇒ A ∩ B ∈ F iii)A ∈ F ,
A ⊂ B ⇒ B ∈ F . An ideal I ⊂ 2X is called non-trivial if I 6= 2X . A non-
trivial ideal I is called admissible iff I ⊃ {{x} : x ∈ X}. A non-trivial ideal
I is maximal if there does not exist any non-trivial ideal J 6= I, containing
I as a subset. For each ideal I there is a filter F (I) corresponding to I i.e
F (I) = {K ⊆ N : Kc ∈ I}, where Kc = N −K.
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A sequence x = (xn) is said to be I-convergent to a number L ∈ R if
for a given ε > 0,we have A(ε)= {n ∈ N : |xn − L| ≥ ε} ∈ I. The element
L is called the I- limit of the sequence x = (xn).

Example 1.1: Let I=If={A ⊆ N : A is finite}. Then If is nontrivial
admissible ideal of N and the corresponding convergence coincides with or-
dinary convergence. If I=Id={A ⊆ N : d(A) = 0}, where d(A) denotes the
asymtotic density of the set A. Then Id is a non-trivial admissible ideal of
N and the corresponding convergence coincide with statistical convergence.
For more on I-convergence one may refer to [2,16,19,20,21,23].

An Orlicz function M :[0,∞) → [0,∞) is a continuous, convex, non-
decreasing function defined for x > 0 such that M(0) = 0 and M(x) > 0.
If convexity of Orlicz function is replaced by M(x + y) ≤ M(x) +M(y),
then this function is called modulus function. An Orlicz function M is
said to satisfy 42-condition for all values of u, if there exists K > 0 such
that M(2u) ≤ KM(u), u ≥ 0. Let M be an Orlicz function which satisfies
42-condition and let 0 < δ < 1. Then for each t ≥ δ, we have M(t) <
Kδ−1tM(2) for some constant K > 0. Two Orlicz functions M1 and M2

are said to be equivalent if there exists positive constants α, β and x0 such
that M1(α) ≤M2(x) ≤M1(β), for all 0 ≤ x < x0.

Lindenstrass and Tzafriri [8] studied some Orlicz type sequence spaces
defined as follows:

cM = {(xk) ∈ w :
X

M(
|xk|
ρ
) <∞, forρ > 0}

The space cM with the norm

kxk = inf{ρ > 0 :
X

M(
|xk|
ρ
) ≤ 1},

becomes a Banach space which is called an Orlicz sequence space. The
space cM is closely related to cp which is an Orlicz sequence space with
M(t)=|t|p, for 1 ≤ p <∞. Different classes of Orlicz sequence spaces were
introduced and studied by Parasar and Choudhury [10], Esi and Et [3],
Tripathy and Hazarika [17] and many others.

The notion of paranormed sequences was introduced by Nakano [9]. It
was further investigated by Tripathy et. al.[14,15,22] and many others.

Definition 1.2: (Savas and Das[12]) A sequence x = (xk) is said to be
I-statistically convergent to a number L ∈ R if for each ε > 0, {n ∈ N :
1
n |k ≤ n : kxk − Lk ≥ ε| ≥ δ} ∈ I.
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The number L is called I-statistical limit of the sequence (xk) and we write
I − st− limxk = L.

Remark 1.3: (Savas and Das[12]) Let I=If={A ⊆ N : A is finite}. Then
If is nontrivial admissible ideal of N and I-statistical convergence coincides
with statistical convergence.

Definition 1.4: A sequence space E is said to be solid (or normal) if
(yk) ∈ E whenever (xk) ∈ E and |yk| ≤ |xk| for all k ∈ N .

Lemma 1.5: (One may refer to Kamthan and Gupta[6]) A sequence space
E is normal implies that it is monotone.

Lemma 1.6: If I ⊂ 2N is a maximal ideal then for each A ⊂ N , we have
either A ∈ I or N −A ∈ I.

The following well-known inequality will be used throughout the article.
Let p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤

sup pk = G and D = max{1, 2G−1}. Then |ak + bk|pk ≤ D(|ak|pk + |bk|pk)
for all k ∈ N and ak, bk ∈ C.

Also |ak|pk ≤ max{1, |a|G} for all a ∈ C.

2. Main Result

Let M = (Mk) be a sequence of Orlicz functions and A = (aik) be an
infinite matrix and x = (xk) be a sequence of real or complex numbers. We
write Ax=(Ak(x)) if Ak(x) =

P
k aikxk converges for each i.

We define the following sequence spaces in this article:
W I(S)(M,A, p)={(xk) ∈ w : {n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(x)−Lk
ρ )]pk ≥

ε}| ≥ δ} ∈ I for some ρ > 0 and L ∈ R}.

W
I(S)
0 (M,A, p)={(xk) ∈ w : {n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(x)k
ρ )]pk ≥

ε}| ≥ δ} ∈ I for some ρ > 0 }.

W
I(S)
∞ (M,A, p)={(xk) ∈ w : {n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(x)k
ρ )]pk ≥

M}| ≥ δ} ∈ I for some M > 0 }.

W∞(M,A, p)={(xk) ∈ w : {n ∈ N : sup 1n
Pn

k=1[Mk(
kAk(x)k

ρ )]pk <∞ }}.

From the above definition it is obvious that
W

I(S)
0 (M,A, p) ⊂W I(S)(M,A, p) ⊂W

I(S)
∞ (M,A, p).
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Theorem 2.1: The spaces W
I(S)
0 (M,A, p), W I(S)(M,A, p) and

W
I(S)
∞ (M,A, p) are linear space.

Proof: We prove the result for the space W
I(S)
0 (M,A, p). The other result

can be established in similar way.

Let x = (xk) and y = (yk) be any two elements inW
I(S)
0 (M,A, p). Then

there exists ρ1 > 0 and ρ2 > 0 such that
A = {n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(x)k
ρ1

)]pk ≥ ε
2}| ≥ δ} ∈ I

and B = {n ∈ N : 1n |{k ≤ n :
Pn

k=1[Mk(
kAk(x)k

ρ2
)]pk ≥ ε

2}| ≥ δ} ∈ I

Let a,b be any scalars. By the continuity of the sequence M = (Mk)
the following inequality holds:

Pn
k=1[Mk(

kAk(ax+by)k
|a|ρ1+|b|ρ2 )]

pk ≤ DK
Pn

k=1[Mk(
kAk(x)k

ρ1
)]pk+DK

Pn
k=1[Mk(

kAk(y)k
ρ2

)]pk

≤ D
Pn

k=1[
|a|

|a|ρ1+|b|ρ2Mk(
kAk(x)k

ρ1
)]pk +D

Pn
k=1[

|b|
|a|ρ1+|b|ρ2Mk(

kAk(x)k
ρ1

)]pk

where K = max{1, |a|
|a|ρ1+|b|ρ2 ,

|b|
|a|ρ1+|b|ρ2 }.

From the above relation we get the following:
{n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(ax+by)k
|a|ρ1+|b|ρ2 )]

pk ≥ ε
2}| ≥ δ} ⊆

{n ∈ N : 1n |{k ≤ n :
Pn

k=1DK[Mk(
kAk(x)k

ρ1
)]pk ≥ ε

2}| ≥ δ}
S{n ∈ N : 1n |{k ≤ n :

Pn
k=1DK[Mk(

kAk(y)k
ρ2

)]pk ≥ ε
2}| ≥ δ}

This completes the proof.

Theorem 2.2: The spaceW∞(M,A, p) is a paranormed spaces (not totally
paranormed) with the paranorm g defined by:

g(x) = inf{ρ
pk
H : supkMk(

kAk(x)k
ρ ) ≤ 1, for ρ > 0}, where H =

max{1, supk pk}.

Proof: It is obvious that g(θ) = 0 (where θ is the sequence of zeros),
g(−x) = g(x) and it can be easily shown that g(x+ y) ≤ g(x) + g(y).

Let tn → L, where tn, L ∈ C and let g(xn − x) → 0, as n → ∞. To
prove that g(tnxn − Lx)→ 0, as n→∞. We put
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A = {ρ1 > 0 : sup
k
[Mk(

kAk(x)k
ρ1

)]pk ≤ 1}

and

B = {ρ2 > 0 : sup
k
[Mk(

kAk(x)k
ρ2

)]pk ≤ 1}

.

By the continuity of the sequence M = (Mk), we observe that

Mk(
kAk(tnxn−Lx)k
|tn−L|ρ1+|L|ρ2 ) ≤Mk(

kAk(tnxn−Lxn)k
|tn−L|ρ1+|L|ρ2 ) +Mk(

kAk(Lxn−Lx)k
|tn−L|ρ1+|L|ρ2 )

≤ |tn−L|ρ1
|tn−L|ρ1+|L|ρ2Mk(

kAk(xn)k
ρ1

) + |L|ρ2
|tn−L|ρ1+|L|ρ2Mk(

kAk(xn−x)k
ρ2

)

From the above inequality it follows that

sup
k
[Mk(

kAk(tnxn − Lx)k
|tn − L|ρ1 + |L|ρ2

)]pk ≤ 1

and hence

g(tnxn − Lx) = inf{(|tn − L|ρ1 + |L|ρ2)
pk
H : ρ1 ∈ A, ρ2 ∈ B}

≤ (|tn − L|)
pk
H inf{ρ

pk
H
1 : ρ1 ∈ A}+ (|L|)

pk
H inf{ρ

pk
H
2 : ρ2 ∈ B}

≤ max{|tn − L|, (|tn − L|)
pk
H }g(xn) + max{|L|, (|L|)

pk
H }g(xn − x)

As g(xn) ≤ g(x) + g(xn− x) for all n ∈ N , hence the right hand side of
the above relation tends to zero as n→∞.

This completes the proof.

Proposition 2.3: Let M = (Mk) and N = (Nk) be sequences of Orlicz
functions. Then the following hold:
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(i) W
I(S)
0 (N,A, p) ⊆W

I(S)
0 (MoN,A, p), provided p = (pk) such that

G0 = inf pk > 0.

(ii)W
I(S)
0 (M,A, p)

T
W

I(S)
0 (N,A, p) ⊆W

I(S)
0 (M +N,A, p).

Theorem 2.4: The spaces W
I(S)
0 (M,A, p) and W I(S)(M,A, p) are normal

and monotone.

Proof: Let x = (xk) ∈W
I(S)
0 (M,A, p) and y = (yk) be such that

|yk| ≤ |xk|. Then for ε > 0,
{n ∈ N : 1n |{k ≤ n :

Pn
k=1[Mk(

kAk(x)k
ρ )]pk ≥ ε}| ≥ δ}

⊇ {n ∈ N : 1n |{k ≤ n :
Pn

k=1[Mk(
kAk(y)k

ρ )]pk ≥ ε}| ≥ δ} ∈ I.

The result follows from the above relation. Thus the spaceW
I(S)
0 (M,A, p)

is normal and hence monotone by lemma 1.5. Similarly for the other.

Proposition 2.5: Let 0 < pk ≤ qk and
qk
pk
be bounded. ThenW

I(S)
0 (M,A, q)

⊆ W
I(S)
0 (M,A, p)

Proposition 2.6: For any two sequence p = (pk) and q = (qk) of positive
real numbers, the following hold:

Z(M,A, p)
T
Z(M,A, q) 6= ∅ for Z=W I(S), W

I(S)
0 , W

I(S)
∞ .

References

[1] Buck R. C., The measure theoretic approach to density, Amer. J. Math.,
68, pp. 560-580, (1946).

[2] Debnath S. and Debnath J., Some generalized statistical convergent
sequence spaces of fuzzy numbers via ideals, Math. Sci. Lett., 2, No. 2,
pp. 151-154, (2013).

[3] Esi A. and Et M., Some new spaces defined by Orlicz functions, Indian
J. Pure and Appl. Math., 31 (8), pp. 967-972, (2000).

[4] Fast H., Sur la convergence statistique, Colloq.Math., pp. 2241-244,
(1951).



284 Shyamal Debnath and Jayanta Debnath

[5] Fridy J. A., On statistical convergence, Analysis, pp. 301-313, (1985).

[6] Kamthan P. K. and Gupta M., Sequence spaces and series (1980).

[7] Kostyrko P. Salat T., and Wilczynski W., I-convergence, Real analysis
exchange, 26 (2), pp. 669-686, (2000/2001).

[8] Lindenstrauss J. and Tzafriri L., On Orlicz sequence spaces, Israel J.
Math., 101, pp. 379-390, (1971).

[9] Nakano H., Modular sequence spaces, Proc. Japan Acad., 27, pp. 508-
512, (1951).

[10] Parashar S.D and Choudhury B., Sequence space defined by orlicz
functions, Indian J. Pure and Appl. Math., 25(14), pp. 419-428, (1994).

[11] Salat T., On statistically convergent sequences of real numbers, Math.
Slovaka, 30, pp. 139-150, (1980).

[12] Savas E. and Das P., A generalized statistical convergence via ideals,
Applied mathematics letters, 24, pp. 826-830, (2011).

[13] Schoenburg I. J., The integrability of certain functions and related
summability methods, Am. Math. Mon., 66, pp. 361-375, (1951).

[14] Tripathy B. C. and Chandra P., On some generalized difference para-
normed sequence spaces associated with multiplier sequences defined by
modulus function, Anal. Theory Appl., 27 (1), pp. 21-27, (2011).

[15] Tripathy B. C. and Dutta H., On some new paranormed difference
sequence spaces defined by Orlicz functions, Kyungpook Mathematical
Journal, 50 (1), pp. 59-69, (2010).

[16] Tripathy B. C., and Dutta A. J., On I-acceleration convergence of
sequences of fuzzy real numbers, Math. Modell. Analysis, 17 (4), pp.
549-557, (2012).

[17] Tripathy B. C. and Hazarika B., Some I-convergent sequence spaces
defined by orlicz functions, Acta Math. Appl. Sin., 27(1), pp. 149-154,
(2011).

[18] Tripathy B. C. and Hazarika B., Paranorm I-convergent sequence
spaces, Math. Slovaka, 59 (4), pp. 485-494, (2009).



On I-statistically convergent sequence spaces defined by ... 285

[19] Tripathy B. C. and Hazarika B., I-convergent sequence spaces asso-
ciated with multiplier sequence spaces, Mathematical Inequalities and
Applications, 11 (3), pp. 543-548, (2008).

[20] Tripathy B. C. and Hazarika B., I-monotonic and I-convergent se-
quences, Kyungpook Math. Journal, 51 (2), pp. 233-239, (2011).

[21] Tripathy B. C. and Mahanta S., On I-acceleration convergence of se-
quences, Journal of the Franklin Institute, 347, pp. 591-598, (2010).

[22] Tripathy B. C. and Sen M., Characterization of some matrix classes
involving paranormed sequence spaces,Tamkang Jour. Math., 37(2), pp.
155-162, (2006).

[23] Tripathy B.C., Sen M., and Nath S., I-convergence in probabilis-
tic n-normed space, Soft Comput., 16, pp. 1021-1027, (2012), DOI
10.1007/s00500-011-0799-8.

Shyamal Debnath

Department of Mathematics,

Tripura University,

Agartala-799022,

India

e-mail : shyamalnitamath@gmail.com

and

Jayanta Debnath

Department of Mathematics,

National Institute of Technology,

Agartala-799055,

India

e-mail : mailme jdebnath@rediffmail.com




