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Abstract

In this article we introduce the Zweier I-convergent sequence spaces
zI zI and ZL,. We prove the decomposition theorem and study topo-
logical, algebraic properties and have established some inclusion rela-
tions of these spaces.
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1. Introduction

Let N,R and C be the sets of all natural, real and complex numbers
respectively. We write

w={zx=(z) 2z €Ror C},

the space of all real or complex sequences.
Let ¢, c and ¢y denote the Banach spaces of bounded,convergent and
null sequences respectively normed by

[12lloo = sup |z].

A sequence space A with linear topology is called a K-space provided
each of maps p; — C defined by p;(x) = x; is continuous for all i € N.

A K-space ) is called an FK-space provided ) is a complete linear met-
ric space.

An FK-space whose topology is normable is called a BK-space.

Let A and p be two sequence spaces and A = (ayx) be an infinite ma-
trix of real or complex numbers (a,), where n,k € N. Then we say that
A defines a matrix mapping from A to u, and we denote it by writting
AN — p.

If for every sequence z = (xj) € A the sequence Az = {(Ax),}, the A
transform of z is in p, where

(1.1) (Ax), = Zankxk, (neN).
k

By (A : ), we denote the class of matrices A such that A : A — pu.
Thus, A € (A: u) if and only if series on the right side of (1) converges for
each n € N and every = € A

The approach of constructing new sequence spaces by means of the ma-
trix domain of a particular limitation method have recently been employed
by Altay,Basar and Mursaleen [1], Basar and Altay [2], Malkowsky [13], Ng
and Lee [14], and Wang [21].
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Sengoniil[18] defined the sequence y = (y;) which is frequently used as
the ZP transform of the sequence z = (x;) i. e.,

yi =pxi + (1 —p)ai—

where z_1 =0, 1 < p < co and ZP denotes the matrix ZP = (z;;;) defined
by
p, (i = k),
Zik = 1—p,(2—1:k),<Z,kEN),
0, otherwise.

Following Bagar and Altay|[2], Sengoniil[18] introduced the Zweier se-
quence spaces Z and Zg as follows :

Z={x=(21) ew:ZPz € c}

Zy={z = (xp) €w: ZPx € ¢p}.

Here we list below some of the results of Sengoniil [18] which we will
need as a reference in order to establish analogously some of the results of
this article.

Theorem 1.1. The sets Z and Z are linear spaces with the co-ordinate
wise addition and scalar multiplication which are the BK-spaces with the
norm

l|lz]|z = ||z||z, = ||ZPx||.[See (Theorem 2.1. [18])].

Theorem 1.2. The sequence spaces Z and Zj are linearly isomorphic to
the spaces ¢ and ¢g respectively, i.e Z = ¢ and Zy = ¢y [See (Theorem
2.2.[18])]

Theorem 1.3. The inclusions Zy C Z strictly hold for p # 1. [See (Theo-
rem 2.3. [18])].

Theorem 1.4. Zj is solid.[See (Theorem 2.6.[18])].
Theorem 1.5. Z is not a solid sequence space.[See (Theorem 3.6. [18])].
The concept of statistical convergence was first introduced by Fast [7]

and also independently by Buck [3] and Schoenberg [17] for real and com-
plex sequences.Further this concept was studied by Connor [4, 5], Connor,
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Fridy and Kline [6] and many others. Statistical convergence is a general-
ization of the usual notion of convergence that parallels the usual theory of
convergence. A sequence x = (zy) is said to be statistically convergent to
L if for a given € > 0

1
h;lgnEHZ deg — Ll >e,1 <k} =0.

The notion of I-convergence generalizes and unifies different notions of
convergence including the notion of statistical convergence. At the initial
stage it was studied by Kostyrko, Salat, Wilczyriski [12]. Later on it was
studied by Saldt, Tripathy, Ziman [15, 16]. Recentlly further it was studied
by Tripathy [19, 20, 21, 22, 23, 24, 25, 26, 27], and V. A.Khan and Khalid
Ebadullah [9-11].

Here we give some preliminaries about the notion of I-convergence.

Let X be a non empty set. Then a family of sets IC 2% (2% denoting
the power set of X) is said to be an ideal if I is additive i.e A,Bel =AU
Bel and hereditary i.e A€l, BCA=-Bel.

A non-empty family of sets £(I) C 2% is said to be filter on X if and
only if 0 ¢ £(I), for A, Be £(I) we have ANB€ £(I) and for each A€ £(I)
and ACB implies Be £(I).

An Ideal IC 2% is called non-trivial if I£ 2%,
A non-trivial ideal IC 2% is called admissible if {{z} : z € X} CI. A non-
trivial ideal I is maximal if there cannot exist any non-trivial ideal J#I
containing I as a subset.

For each ideal I, there is a filter £(I) corresponding to I. i.e
L£(I)={K CN:K°eI}, where K°=N —K.

Definition 1.6. A sequence (zj) € w is said to be I-convergent to a number
L if for every € > 0.

{keN:|xp—L|>c} el

In this case we write I — limaj, = L. The space ¢! of all I-convergent
sequences to L is given by

' ={(zp) ew:{keN: |z — L| > ¢} €I,for some Le C }.
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Definition 1.7. A sequence () € w is said to be I-null if L = 0. In this
case we write I — limz; = 0.

Definition 1.8. A sequence (z}) € w is said to be I-Cauchy if for every
€ > 0 there exists a number m = m(e) such that

{keN:|zp—azpn|>c} el

Definition 1.9. A sequence (zj) € w is said to be I-bounded if there exists
M > 0 such that
{keN:|xg| > M} el

Example 1.10. Take for I the class Iy of all finite subsets of N. Then
Iy is a non-trivial admissible ideal and Iy convergence coincides with the
usual convergence with respect to the metric in X. (see [12]).

Definition 1.11. For I = Iy and A C N with 6(A) = 0 respectively. I
is a non-trivial admissible ideal, Is-convergence is said to be logarithmic
statistical convergence(see[12]).

Definition 1.12. A map & defined onadomain D C Xieh: DC X - R
is said to satisfy Lipschitz condition if
() = h(y)| < Kz —yl,
where K is known as the Lipschitz constant.The class of K-Lipschitz func-
tions defined on D is denoted by h € (D, K)(see[15,16]).
Definition 1.13. A convergence field of I-covergence is a set
F(I) = {x = (z1) € lso : there exists [ — limx € R}.
The convergence field F(I) is a closed linear subspace of [, with respect

to the supremum norm, F(I) = lo N ¢! (See [15,16]).

Define a function & : F(I) — R such that i(z) = I — limz, for all
x € F(I), then the function h : FI(I) — R is a Lipschitz function. (see [15,
16]).

Definition 1.14. Let (xf), (yx) be two sequences. We say that (z) = (yx)
for almost all k relative to I (a.a.k.r.I), if

{k € N :xp # yr} € I(see[19, 20]).
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The following Lemmas will be used for establishing some re-
sults of this article :

Lemma 1.15. Let E be a sequence space. If E is solid then E is mono-
tone.(see [8],page 53).

Lemma 1.16. If I ¢ 2V and MCN. If M ¢I, then MNN ¢1. (see [19,20]).

2. Main Results

In this section we introduce the following classes of sequence
spaces :

Zl={oz= (1) €cw:{keN:I—1limZPz =L, forsomeLe C }};
Zl={o = (2p) cw: {k e N: I —limZPz = 0}};
zZL = {2z = (z) €w: {k € N:sup|ZPz| < co}}.
k

We also denote by
mbk =2, nz!

and
mb, = 2o N Z{.

Throughout the article, for the sake of conveinence now we will denote
by
Zp(xk) = $/, Zp(yk) = y/7 Zp(zk) = Z/ for T,Y,z € w.

Theorem 2.1. The classes of sequences Z! ,Z({ ,mé and mfzo are linear
spaces.

Proof. We shall prove the result for the space Z'.
The proof for the other spaces will follow similarly.
Let (1), (yx) € Z! and let «, 3 be scalars. Then

I —lim |xé — Li| =0, forsome L;e C;
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I —lim |y,é — Lo| =0, for some L€ C;

That is for a given € > 0, we have
R, £
Alz{/{?GN. |J}k—L1| >§}€I,
/ €
(21) AQZ{kENZ’yk—L2‘>§}€I.
we have
(), + Byt) — (L + BL2)| < lal(lf, — Lul) + 181(Iy} — Lal)
< \fté — L] + ’y;é — Lo
Now, by (1) and (2), {k € N: |(az),+By])— (aL1+BLs)| > €} C AjUA,.
Therefore (azy + Byx) € Z1
Hence Z! is a linear space.

Theorem 2.2. The spaces mIZ and mIZO are normed linear spaces,normed
by

(22) ]l = sup | 27(),

where x,/c = ZP(x).

Proof: It is clear from Theorem 2.1 that mIZ and méo are linear spaces.
It is easy to verify that (3) defines a norm on the spaces m% and mIZO.

Theorem 2.3. A sequence © = (z1) € mL I-converges if and only if for
every € > 0 there exists N, € N such that

(2.3) {keN: |z, —ah | <e}emk
Proof. Suppose that L = I —lima/. Then

Bgz{keN:|xg—L|<%}emfz for all & > 0
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. Fix an N, € B.. Then we have
€

€
o, — il < ley, = LI+ L= o] < 5+ 5

=¢
which holds for all k € B..
Hence {k € N : |3U,/C — x?va\ <e}emk.

Conversely, suppose that {k € N : ]:vé - 535\/6’ <e}emk.
That is {k € N : ]wé - w?ve\ < e} €mk for all € > 0. Then the set
C: = {keN:a:é € [m{vg —8,:65\[5 +¢]} € mk for all € > 0.

Let J. = [a:{\,6 — €, ac;vg + ¢].If we fix an € > 0 then we have C, € m% as

well as C% € mL. Hence C. N C% € mL.This implies that
J=J.NJs#¢

that is
{kGN::BQEJ}EmIZ

that is
diamJ < diamJ;

where the diam of J denotes the length of interval J. In this way, by induc-
tion we get the sequence of closed intervals

with the property that diamliy < %diam[k_l for (k=2,34,.....) and
(ke N:al €L} eml for (k=1,2,34,......).

Then there exists a & € NI, where k € N such that &/ = I — lima/,
that is L = I — lima/.

Theorem 2.4.Let I be an admissible ideal. Then the following are equiva-
lent.

(a) (zx) € Z2%;

(b) there exists (yx) € Z such that xp = yy, for a.a.k.r.I;
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(c) there exists (yr) € Z and (z) € Z{ such that x), = yi + 2 for all
keNand{keN:|y,—L| >e}€l;

(d) there exists a subset K = {k1 < kg....} of N such that K € £(I)
and lim_ |z, — L] = 0.

Proof.(a) implies (b). Let (x;) € ZI. Then there exists L € C such that
{keN:\x,é—Lyza}eI
.Let (my) be an increasing sequence with m; € N such that
(h<my:|e] I z%}el.
Define a sequence (yi) by
Yk = ok, for all k <mgy.

For my < k <mgyyq,t € N.

g — 4 @ it @) — L < t71,
b L, otherwise.

Then (yx) € Z and form the following inclusion
(k<mi:ap £y}t C{k<my:|al —L >e el

We get x = ypi, for a.a.k.r.L.
(b) implies (c).For (zy) € Z7.

Then there exists (yi) € Z such that xp = yi, for a.a.k.r.IL.
Let K = {k € N : 2} # yx}, then K € I.

Define a sequence (zj) by

L) TE Yk ifke K,
b 0, otherwise.

Then z;, € Z{ and y € Z.
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(c) implies (d).Let Py = {k € N :|2zx| > e} € I and
K=P ={k1 <kys<ksg<..}e£()

. Then we have lim |z, — L| = 0.
n—oo

(d) implies (a). Let K = {k1 < k2 < k3 < ...} € £(I) and q}LHOlomk" -
L|=0.

Then for any € > 0, and by Lemma , we have
{keN: |xé—L| >e} CKU{ke K: |J}£—L| > €}
Thus (z;) € Z7.
Theorem 2.5. The inclusions Zé czl ¢ ZC{O are proper.

Proof: Let (z) € Z. Then there exists L € C such that

I—liml|zl, —L| =0

We have |z),| < 1|z — L| + 1|L].
Taking the supremum over k on both sides we get (z3) € ZL.
The inclusion Z c 27 is obvious.

Theorem 2.6. The function A : mlz — R is the Lipschitz function,where
mL = ZI' N 2., and hence uniformly continuous.

Proof:Let z,y € mé, x # y.Then the sets
Ay = {k eN:la —h@)| > |lo/ —y/|l.} €1,
Ay = {k e N:lyp = hy)| = le/ /|l € L.
Thus the sets,
By = {k € N: [z}, — h(a)| < ||/ —y/|l.} € mk,

By ={k € N: |y, —h(y))] < |lo/ = y/|l.} € mE.
Hence also B = B, N B, € mIZ, so that B # ¢.
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Now taking k in B,
h(2)) = hy)| < 1)) = 2| + o — yhl + 1y = Ry < 3ll2/ =3/,
Thus # is a Lipschitz function.

For méo the result can be proved similarly.

Theorem 2.7. If z,y € m%, then (z.y) € m& and A(xy) = A(z)h(y).
Proof: For e >0
B, ={keN:|z/ —n(2/)| < e} € mk,
By ={keN:[y/ —n(y/)| <e} e mk.
Now,
!y = n@n(y)| = o)y’ — 2/ B(y!) + 2/ By’) = n@ )Ry

(2.4) < |2/lly’ = h(y")| + [h(y)lle’ — n(a’)]

As mL C Z., there exists an M € R such that |2/| < M and
[h(y/)] < M.

Using eqn(b) we get
2/ 5y — h(zh(y!)| < Me + Mvare = 2Me
For all k € B, N B, € m&.
Hence (z.y) € mL and A(xy) = A(z)A(y).
For méo the result can be proved similarly.
Theorem 2.8. The spaces Z{ and mfzo are solid and monotone .
Proof: We prove the result for the case Zé .

Let (z) € Z{.Then
(2.5) I~ lim )| =0
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Let (o) be a sequence of scalars with |ag| < 1 for all £ € N. Then the
result follows from (6) and the following inequality

ol | < onllz)| < |z for all k € N.

That the space Z{ is monotone follows from the Lemma 1.15.

For méo the result can be proved similarly.

Theorem 2.9.The spaces Z! and mé are neither monotone nor solid, if 1
is neither maximal nor I = I in general .

Proof: Here we give a counter example.
Let I = I5. Consider the K-step space X of X defined as follows,

Let (zx) € X and let (yx) € Xk be such that

( /)::{ (}),if k is odd,

i 1, otherwise.

Consider the sequence (a:é) defined by (mé) =k~ for all k € N.

Then (zy) € ZI but its K-stepspace preimage does not belong to Z!.
Thus Z! is not monotone. Hence Z7 is not solid.

Theorem 2.10. The spaces Z! and Zé are sequence algebras.
Proof: We prove that Zé is a sequence algebra.

Let (zx), (yx) € Z§. Then
I—lim|z)| =0

and
I—lim|yl| =0

Then we have
I —Tim |(},y)| = 0

Thus (zx.yx) € 2
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Hence Z{ is a sequence algebra.

For the space Z!, the result can be proved similarly.
Theorem 2.11. The spaces Z! and Z{ are not convergence free in general.
Proof: Here we give a counter example.

Let I = Iy. Consider the sequence ($£) and (y,é) defined by
1
x’/“:E and y,é:k for all k € N
Then (zx) € Z1 and 2§, but (yx) ¢ Z and Z{.

Hence the spaces Z! and Z{ are not convergence free.

Theorem 2.12. If I is not maximal and I # Iy, then the spaces ZI and
Z} are not symmetric.

Proof: Let A € I be infinite.
If

T = .
k 0, otherwise.

/ { 1,for k € A,

Then by lemma 1.16. 2 € 2§ € Z!. Let K C N be such that K ¢ I and
N-K¢IlLet¢: K— Aand: N— K — N — A be bijections, then the
map 7 : N — N defined by

[ $(k)fork e K,
m(k) = { ¥ (k), otherwise.

is a permutation on N, but z,;) ¢ Z! and Trk) & z4.
Hence 27 and Z{ are not symmetric.

Theorem 2.13. The sequence spaces Z! and Zé are linearly isomorphic

to the spaces ¢! and ¢} respectively, i.e 27 = ¢! and Zf = ¢f.
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Proof.We shall prove the result for the space Z! and ¢!.
The proof for the other spaces will follow similarly.

We need to show that there exists a linear bijection between the spaces
Z! and ¢!. Define a map T : 21 — ¢! such that ¢ — 2/ = Tz

T(xg) = prg + (1 — p)zg—1 = xé
where x_1 =0,p# 1, 1 < p < o0.

Clearly T is linear.

Further,it is trivial that x = 0 = (0,0,0, ...... ), whenever Tx = 0 and
hence injective.

Let xé € ¢! and define the sequence = = x;, by
k . .
o= MY (~1)"INM (e N),
i=0
where M = 1 and N = =2
P P

Then we have
lim pzy + (1 — p)zgp_1
k—oo

k k—1
I P _1Yk—iprk—i, ./ . : _1\k—iprk—i ./
= pklgloloM;:O( DNzl + (1 —p) IclggoM ZE:O( LNl

= lim xé
k—oo

which shows that = € Z1.
Hence T is a linear bijection.

Also we have ||z||« = || ZPz||c-

Therefore,
||z[|« = sup |pzg + (1 — p)ag_1,
keN
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k k—1
= sup |pM Z(—l)k_sz_Z:L‘{ +(1—-pM Z(—l)k_ZNk_’:Bﬂ
keN i=0 i=0

— sup || = [/ |1
keN

Hence 21 =~ ¢!,
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