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Abstract

In this article we introduce the Zweier I-convergent sequence spaces
ZI ,ZI

0 and ZI
∞. We prove the decomposition theorem and study topo-

logical, algebraic properties and have established some inclusion rela-
tions of these spaces.
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1. Introduction

Let N,R and C be the sets of all natural, real and complex numbers
respectively. We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences.
Let c∞, c and c0 denote the Banach spaces of bounded,convergent and

null sequences respectively normed by

||x||∞ = sup
k
|xk|.

A sequence space λ with linear topology is called a K-space provided
each of maps pi −→ C defined by pi(x) = xi is continuous for all i ∈ N.

A K-space λ is called an FK-space provided λ is a complete linear met-
ric space.

An FK-space whose topology is normable is called a BK-space.

Let λ and µ be two sequence spaces and A = (ank) be an infinite ma-
trix of real or complex numbers (ank), where n, k ∈ N. Then we say that
A defines a matrix mapping from λ to µ, and we denote it by writting
A : λ −→ µ.

If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A
transform of x is in µ, where

(Ax)n =
X
k

ankxk, (n ∈N).(1.1)

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ.
Thus, A ∈ (λ : µ) if and only if series on the right side of (1) converges for
each n ∈N and every x ∈ λ.

The approach of constructing new sequence spaces by means of the ma-
trix domain of a particular limitation method have recently been employed
by Altay,Başar and Mursaleen [1], Başar and Altay [2], Malkowsky [13], Ng
and Lee [14], and Wang [21].
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Şengönül[18] defined the sequence y = (yi) which is frequently used as
the Zp transform of the sequence x = (xi) i. e.,

yi = pxi + (1− p)xi−1

where x−1 = 0, 1 < p < ∞ and Zp denotes the matrix Zp = (zik) defined
by

zik =

⎧⎪⎨⎪⎩
p, (i = k),

1− p, (i− 1 = k); (i, k ∈ N),
0, otherwise.

Following Başar and Altay[2], Şengönül[18] introduced the Zweier se-
quence spaces Z and Z0 as follows :

Z = {x = (xk) ∈ ω : Zpx ∈ c}

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Here we list below some of the results of Şengönül [18] which we will
need as a reference in order to establish analogously some of the results of
this article.

Theorem 1.1. The sets Z and Z0 are linear spaces with the co-ordinate
wise addition and scalar multiplication which are the BK-spaces with the
norm

||x||Z = ||x||Z0 = ||Zpx||c[See (Theorem 2.1. [18])].

Theorem 1.2. The sequence spaces Z and Z0 are linearly isomorphic to
the spaces c and c0 respectively, i.e Z ∼= c and Z0 ∼= c0 [See (Theorem
2.2.[18])]

Theorem 1.3. The inclusions Z0 ⊂ Z strictly hold for p 6= 1. [See (Theo-
rem 2.3. [18])].

Theorem 1.4. Z0 is solid.[See (Theorem 2.6.[18])].

Theorem 1.5. Z is not a solid sequence space.[See (Theorem 3.6. [18])].

The concept of statistical convergence was first introduced by Fast [7]
and also independently by Buck [3] and Schoenberg [17] for real and com-
plex sequences.Further this concept was studied by Connor [4, 5], Connor,
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Fridy and Kline [6] and many others. Statistical convergence is a general-
ization of the usual notion of convergence that parallels the usual theory of
convergence. A sequence x = (xk) is said to be statistically convergent to
L if for a given ε > 0

lim
k

1

k
|{i : |xi − L| ≥ ε, i ≤ k}| = 0.

The notion of I-convergence generalizes and unifies different notions of
convergence including the notion of statistical convergence. At the initial
stage it was studied by Kostyrko, Šalát, Wilczyński [12]. Later on it was
studied by Šalát, Tripathy, Ziman [15, 16]. Recentlly further it was studied
by Tripathy [19, 20, 21, 22, 23, 24, 25, 26, 27], and V. A.Khan and Khalid
Ebadullah [9-11].

Here we give some preliminaries about the notion of I-convergence.

Let X be a non empty set. Then a family of sets I⊆ 2X(2X denoting
the power set of X) is said to be an ideal if I is additive i.e A,B∈I ⇒A∪
B∈I and hereditary i.e A∈I, B⊆A⇒B∈I.

A non-empty family of sets £(I) ⊆ 2X is said to be filter on X if and
only if ∅ /∈ £(I), for A, B∈ £(I) we have A∩B∈ £(I) and for each A∈ £(I)
and A⊆B implies B∈ £(I).

An Ideal I⊆ 2X is called non-trivial if I6= 2X .
A non-trivial ideal I⊆ 2X is called admissible if {{x} : x ∈ X} ⊆I. A non-
trivial ideal I is maximal if there cannot exist any non-trivial ideal J6=I
containing I as a subset.

For each ideal I, there is a filter £(I) corresponding to I. i.e

£(I) = {K ⊆ N : Kc ∈ I}, where Kc = N −K.

Definition 1.6. A sequence (xk) ∈ ω is said to be I-convergent to a number
L if for every ε > 0.

{k ∈ N : |xk − L| ≥ ε} ∈ I.

In this case we write I − limxk = L. The space cI of all I-convergent
sequences to L is given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C }.
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Definition 1.7. A sequence (xk) ∈ ω is said to be I-null if L = 0. In this
case we write I − limxk = 0.

Definition 1.8. A sequence (xk) ∈ ω is said to be I-Cauchy if for every
ε > 0 there exists a number m = m(ε) such that

{k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.9. A sequence (xk) ∈ ω is said to be I-bounded if there exists
M > 0 such that

{k ∈ N : |xk| > M} ∈ I.

Example 1.10. Take for I the class If of all finite subsets of N. Then
If is a non-trivial admissible ideal and If convergence coincides with the
usual convergence with respect to the metric in X. (see [12]).

Definition 1.11. For I = Iδ and A ⊂ N with δ(A) = 0 respectively. Iδ
is a non-trivial admissible ideal, Iδ-convergence is said to be logarithmic
statistical convergence(see[12]).

Definition 1.12. A map h̄ defined on a domainD ⊂ X i.e h̄ : D ⊂ X → R
is said to satisfy Lipschitz condition if

|h̄(x)− h̄(y)| ≤ K|x− y|,

where K is known as the Lipschitz constant.The class of K-Lipschitz func-
tions defined on D is denoted by h̄ ∈ (D,K)(see[15,16]).

Definition 1.13. A convergence field of I-covergence is a set

F (I) = {x = (xk) ∈ l∞ : there exists I − limx ∈ R}.

The convergence field F (I) is a closed linear subspace of l∞ with respect
to the supremum norm, F (I) = l∞ ∩ cI(See [15,16]).

Define a function h̄ : F (I) → R such that h̄(x) = I − limx, for all
x ∈ F (I), then the function h̄ : F (I)→ R is a Lipschitz function. (see [15,
16]).

Definition 1.14. Let (xk), (yk) be two sequences. We say that (xk) = (yk)
for almost all k relative to I (a.a.k.r.I), if

{k ∈N : xk 6= yk} ∈ I(see[19, 20]).
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The following Lemmas will be used for establishing some re-
sults of this article :

Lemma 1.15. Let E be a sequence space. If E is solid then E is mono-
tone.(see [8],page 53).

Lemma 1.16. If I ⊂ 2N and M⊆N. If M /∈I, then M∩N /∈I. (see [19,20]).

2. Main Results

In this section we introduce the following classes of sequence
spaces :

ZI = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = L, for some L∈ C }};

ZI
0 = {x = (xk) ∈ ω : {k ∈ N : I − limZpx = 0}};

ZI
∞ = {x = (xk) ∈ ω : {k ∈N : sup

k
|Zpx| <∞}}.

We also denote by
mI
Z = Z∞ ∩ ZI

and
mI
Z0 = Z∞ ∩ Z

I
0 .

Throughout the article, for the sake of conveinence now we will denote
by
Zp(xk) = x/, Zp(yk) = y/, Zp(zk) = z/ for x, y, z ∈ ω.

Theorem 2.1. The classes of sequences ZI ,ZI
0 ,m

I
Z and mI

Z0 are linear
spaces.

Proof. We shall prove the result for the space ZI .

The proof for the other spaces will follow similarly.

Let (xk), (yk) ∈ ZI and let α, β be scalars. Then

I − lim |x/k − L1| = 0, for some L1∈ C;
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I − lim |y/k − L2| = 0, for some L2∈ C;

That is for a given ε > 0, we have

A1 = {k ∈ N : |x/k − L1| >
ε

2
} ∈ I,

A2 = {k ∈ N : |y/k − L2| >
ε

2
} ∈ I.(2.1)

we have

|(αx/k + βy
/
k)− (αL1 + βL2)| ≤ |α|(|x/k − L1|) + |β|(|y/k − L2|)

≤ |x/k − L1| + |y/k − L2|

Now, by (1) and (2), {k ∈ N: |(αx/k+βy
/
k)−(αL1+βL2)| > �} ⊂ A1∪A2.

Therefore (αxk + βyk) ∈ ZI

Hence ZI is a linear space.

Theorem 2.2. The spaces mI
Z and mI

Z0 are normed linear spaces,normed
by

||x/k||∗ = sup
k
|Zp(x)|,(2.2)

where x
/
k = Zp(x).

Proof: It is clear from Theorem 2.1 that mI
Z and mI

Z0 are linear spaces.

It is easy to verify that (3) defines a norm on the spaces mI
Z and mI

Z0 .

Theorem 2.3. A sequence x = (xk) ∈ mI
Z I-converges if and only if for

every � > 0 there exists N� ∈ N such that

{k ∈ N : |x/k − x
/
N�
| < ε} ∈ mI

Z(2.3)

Proof. Suppose that L = I − limx/. Then

Bε = {k ∈N : |x/k − L| < ε

2
} ∈ mI

Z for all ε > 0
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. Fix an Nε ∈ Bε. Then we have

|x/Nε
− x

/
k| ≤ |x

/
Nε
− L|+ |L− x

/
k| <

�

2
+

ε

2
= ε

which holds for all k ∈ Bε.

Hence {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z .

Conversely, suppose that {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z .

That is {k ∈ N : |x/k − x
/
Nε
| < ε} ∈ mI

Z for all ε > 0. Then the set

Cε = {k ∈N : x
/
k ∈ [x

/
Nε
− ε, x

/
Nε
+ ε]} ∈ mI

Z for all ε > 0.

Let Jε = [x
/
Nε
− ε, x

/
Nε
+ ε].If we fix an � > 0 then we have C� ∈ mI

Z as

well as C ε
2
∈ mI

Z . Hence Cε ∩ C ε
2
∈ mI

Z .This implies that

J = Jε ∩ J ε
2
6= φ

that is
{k ∈N : x

/
k ∈ J} ∈ mI

Z

that is
diamJ ≤ diamJε

where the diam of J denotes the length of interval J. In this way, by induc-
tion we get the sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2diamIk−1 for (k=2,3,4,.....) and

{k ∈ N : x
/
k ∈ Ik} ∈ mI

Z for (k=1,2,3,4,......).

Then there exists a ξ ∈ ∩Ik where k ∈ N such that ξ/ = I − limx/,
that is L = I − limx/.

Theorem 2.4.Let I be an admissible ideal.Then the following are equiva-
lent.
(a) (xk) ∈ ZI ;

(b) there exists (yk) ∈ Z such that xk = yk, for a.a.k.r.I;
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(c) there exists (yk) ∈ Z and (zk) ∈ ZI
0 such that xk = yk + zk for all

k ∈ N and {k ∈ N : |yk − L| ≥ �} ∈ I ;

(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I)
and lim

n→∞
|xkn − L| = 0.

Proof.(a) implies (b). Let (xk) ∈ ZI . Then there exists L ∈ C such that

{k ∈ N : |x/k − L| ≥ ε} ∈ I

.Let (mt) be an increasing sequence with mt ∈ N such that

{k ≤ mt : |x/k − L| ≥ 1
t
} ∈ I.

Define a sequence (yk) by

yk = xk, for all k ≤ m1.

For mt < k ≤ mt+1, t ∈N.

yk =

(
xk, if |x/k − L| < t−1,

L, otherwise.

Then (yk) ∈ Z and form the following inclusion

{k ≤ mt : xk 6= yk} ⊆ {k ≤ mt : |x/k − L| ≥ �} ∈ I.

We get xk = yk, for a.a.k.r.I.
(b) implies (c).For (xk) ∈ ZI .

Then there exists (yk) ∈ Z such that xk = yk, for a.a.k.r.I.

Let K = {k ∈N : xk 6= yk}, then K ∈ I.

Define a sequence (zk) by

zk =

(
xk − yk, if k ∈ K,
0, otherwise.

Then zk ∈ ZI
0 and yk ∈ Z.
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(c) implies (d).Let P1 = {k ∈N : |zk| ≥ ε} ∈ I and

K = P c
1 = {k1 < k2 < k3 < ...} ∈ £(I)

. Then we have lim
n→∞

|xkn − L| = 0.

(d) implies (a). Let K = {k1 < k2 < k3 < ...} ∈ £(I) and lim
n→∞

|xkn −
L| = 0.

Then for any � > 0, and by Lemma , we have

{k ∈N : |x/k − L| ≥ �} ⊆ Kc ∪ {k ∈ K : |x/k − L| ≥ �}.

Thus (xk) ∈ ZI .

Theorem 2.5. The inclusions ZI
0 ⊂ ZI ⊂ ZI

∞ are proper.

Proof: Let (xk) ∈ ZI . Then there exists L ∈ C such that

I − lim |x/k − L| = 0

We have |x/k| ≤ 1
2 |x

/
k − L|+ 1

2 |L|.
Taking the supremum over k on both sides we get (xk) ∈ ZI

∞.
The inclusion ZI

0 ⊂ ZI is obvious.

Theorem 2.6. The function h̄ : mI
Z → R is the Lipschitz function,where

mI
Z = ZI ∩ Z∞, and hence uniformly continuous.

Proof:Let x, y ∈ mI
Z , x 6= y.Then the sets

Ax = {k ∈ N : |x/k − h̄(x/)| ≥ ||x/ − y/||∗} ∈ I,

Ay = {k ∈ N : |y/k − h̄(y/)| ≥ ||x/ − y/||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |x/k − h̄(x/)| < ||x/ − y/||∗} ∈ mI
Z ,

By = {k ∈ N : |y/k − h̄(y/)| < ||x/ − y/||∗} ∈ mI
Z .

Hence also B = Bx ∩By ∈ mI
Z , so that B 6= φ.



On Zweier I-convergent sequence spaces 269

Now taking k in B,

|h̄(x/)− h̄(y/)| ≤ |h̄(x/)− x
/
k|+ |x

/
k − y

/
k|+ |y/ − h̄(y/)| ≤ 3||x/ − y/||∗.

Thus h̄ is a Lipschitz function.

For mI
Z0 the result can be proved similarly.

Theorem 2.7. If x, y ∈ mI
Z , then (x.y) ∈ mI

Z and h̄(xy) = h̄(x)h̄(y).

Proof: For � > 0

Bx = {k ∈ N : |x/ − h̄(x/)| < ε} ∈ mI
Z ,

By = {k ∈ N : |y/ − h̄(y/)| < ε} ∈ mI
Z .

Now,

|x/.y/ − h̄(x/)h̄(y/)| = |x/.y/ − x/h̄(y/) + x/h̄(y/)− h̄(x/)h̄(y/)|

≤ |x/||y/ − h̄(y/)|+ |h̄(y/)||x/ − h̄(x/)|(2.4)

As mI
Z ⊆ Z∞, there exists an M ∈ R such that |x/| < M and

|h̄(y/)| < M .

Using eqn(5) we get

|x/.y/ − h̄(x/)h̄(y/)| ≤Mε+Mvarε = 2Mε

For all k ∈ Bx ∩By ∈ mI
Z .

Hence (x.y) ∈ mI
Z and h̄(xy) = h̄(x)h̄(y).

For mI
Z0 the result can be proved similarly.

Theorem 2.8. The spaces ZI
0 and mI

Z0 are solid and monotone .

Proof: We prove the result for the case ZI
0 .

Let (xk) ∈ ZI
0 .Then

I − lim
k
|x/k| = 0(2.5)



270 Vakeel A. Khan, Khalid Ebadullah and Yasmeen

Let (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Then the
result follows from (6) and the following inequality

|αkx/k| ≤ |αk||x
/
k| ≤ |x

/
k| for all k ∈ N.

That the space ZI
0 is monotone follows from the Lemma 1.15.

For mI
Z0 the result can be proved similarly.

Theorem 2.9.The spaces ZI and mI
Z are neither monotone nor solid, if I

is neither maximal nor I = If in general .

Proof: Here we give a counter example.

Let I = Iδ. Consider the K-step space XK of X defined as follows,

Let (xk) ∈ X and let (yk) ∈ XK be such that

(y
/
k) =

(
(x

/
k), if k is odd,
1, otherwise.

Consider the sequence (x
/
k) defined by (x

/
k) = k−1 for all k ∈ N.

Then (xk) ∈ ZI but its K-stepspace preimage does not belong to ZI .
Thus ZI is not monotone. Hence ZI is not solid.

Theorem 2.10. The spaces ZI and ZI
0 are sequence algebras.

Proof: We prove that ZI
0 is a sequence algebra.

Let (xk), (yk) ∈ ZI
0 . Then

I − lim |x/k| = 0

and
I − lim |y/k| = 0

Then we have
I − lim |(x/k.y

/
k)| = 0

Thus (xk.yk) ∈ ZI
0
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Hence ZI
0 is a sequence algebra.

For the space ZI , the result can be proved similarly.

Theorem 2.11. The spaces ZI and ZI
0 are not convergence free in general.

Proof: Here we give a counter example.

Let I = If . Consider the sequence (x
/
k) and (y

/
k) defined by

x
/
k =

1

k
and y

/
k = k for all k ∈ N

Then (xk) ∈ ZI and ZI
0 , but (yk) /∈ ZI and ZI

0 .

Hence the spaces ZI and ZI
0 are not convergence free.

Theorem 2.12. If I is not maximal and I 6= If , then the spaces ZI and
ZI
0 are not symmetric.

Proof: Let A ∈ I be infinite.

If

x
/
k =

(
1, for k ∈ A,
0, otherwise.

Then by lemma 1.16. xk ∈ ZI
0 ⊂ ZI . Let K ⊂ N be such that K /∈ I and

N−K /∈ I.Let φ : K → A and ψ : N−K →N−A be bijections, then the
map π : N→N defined by

π(k) =

(
φ(k), for k ∈ K,
ψ(k), otherwise.

is a permutation on N, but xπ(k) /∈ ZI and xπ(k) /∈ ZI
0 .

Hence ZI and ZI
0 are not symmetric.

Theorem 2.13. The sequence spaces ZI and ZI
0 are linearly isomorphic

to the spaces cI and cI0 respectively, i.e ZI ∼= cI and ZI
0
∼= cI0.
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Proof.We shall prove the result for the space ZI and cI .

The proof for the other spaces will follow similarly.

We need to show that there exists a linear bijection between the spaces
ZI and cI . Define a map T : ZI −→ cI such that x→ x/ = Tx

T (xk) = pxk + (1− p)xk−1 = x
/
k

where x−1 = 0, p 6= 1, 1 < p <∞.

Clearly T is linear.

Further,it is trivial that x = 0 = (0, 0, 0, ......), whenever Tx = 0 and
hence injective.

Let x
/
k ∈ cI and define the sequence x = xk by

xk =M
kX
i=0

(−1)k−iNk−ix/i (i ∈ N),

where M = 1
p and N = 1−p

p .

Then we have

lim
k→∞

pxk + (1− p)xk−1

= p lim
k→∞

M
kX
i=0

(−1)k−iNk−ix/i + (1− p) lim
k→∞

M
k−1X
i=0

(−1)k−iNk−ix/i

= lim
k→∞

x
/
k

which shows that x ∈ ZI .

Hence T is a linear bijection.

Also we have ||x||∗ = ||Zpx||c.

Therefore,

||x||∗ = sup
k∈N

|pxk + (1− p)xk−1|,
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= sup
k∈N

|pM
kX
i=0

(−1)k−iNk−ix/i + (1− p)M
k−1X
i=0

(−1)k−iNk−ix/i |

= sup
k∈N

|x/k| = ||x/||cI .

Hence ZI ∼= cI .
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[12] Kostyrko, P., Šalát, T.,Wilczyński,W.I-convergence. Real Analysis Ex-
change, 26 (2), pp. 669-686, (2000).

[13] Malkowsky, E. Recent results in the theory of matrix transformation
in sequence spaces. Math. Vesnik. (49), pp. 187-196, (1997).

[14] Ng, P., N. and Lee P., Y. Cesaro sequence spaces of non-absolute type.
Comment. Math. Pracc. Math. 20 (2), pp. 429-433, (1978).
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