Proyecciones Journal of Mathematics Vol. 33, N^o 3, pp. 245-257, September 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000300002

On (γ, δ) -Bitopological semi-closed set via topological ideal

Binod Chandra Tripathy and

Santanu Acharjee Institute of Advanced Study in Science and Technology, India Received : January 2014. Accepted : April 2014

Abstract

In this paper we introduce a new class of generalized closed sets in bitopological space using local function, two extension operators and semi-open sets. We have also investigated some properties in subspace bitopology defining kernel and image.

Keyword and phrases: Topological ideals; local function; γ -operator, continuous function, irresolute function.

AMS Classification (2000). *54H05; 54C08;54D10;54C10; 54D99; 54E55.*

1. Introduction

Levine [2], introduced the concept of generalized closed set (briefly g-closed set) in 1970. An ideal I of a topological space (X, τ) is a non-empty collection of subsets satisfying the following two properties:

1) $A \in I$ and $B \subset A$ implies $B \in I$.

2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

The notions of ideals have been applied in different branches of mathematics. In sequence spaces ideals of natural numbers have been considered and different types of ideal convergent (*I*-convergent) sequence spaces have been introduced and their algebraic and topological properties have been investigated by Tripathy and Hazarika ([8], [9]), Tripathy and Mahanta [10], Tripathy, Sen and Nath [11] and many others.

Kuratowski [3] introduced the notion of local function of $A \subseteq X$ with respect to I and τ (briefly A^*). Let $A \subseteq X$, then $A^*(I) = \{x \in X | U \cap A \notin I, for every open neighbourhood U of x\}.$

Jankovic and Hamlett [4] introduced τ^* -closed set by $A \subset (X, \tau, I)$ is called τ^* -closed if $A^* \subseteq A$.

It is well known that $cl^*(A) = A^* \cup A$, defines a Kuratowski closure operator for a topology $\tau^*(I)$ finer than τ .

An operator γ (see for instance Kasahara [5], Ogata [6]) on a given topological space (X, τ) is a function from the topology τ into the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Tong [7] called the γ -operator as an expansion. The following operators are examples of the operator γ : the closure operator $\gamma_{cl}(U) = cl(U)$, the identity operator $\gamma_{id}(U) = U$ and the interior closure operator $\gamma_{ic}(U)$ = int(cl(U)). Another example of the operator γ is the γ_f - operator is defined by $U^{\gamma_f} = X \setminus Fr(U)$ where Fr(U) denotes the frontier of U. Two operators γ_1 and γ_2 are called mutually dual (Tong [7]) if $U^{\gamma_1} \cap U^{\gamma_2} = U$ for each $U \in \tau$. For example identity operator is mutually dual to any other operator while the γ_f -operator is mutually dual to the closure operator.

Dontchev et al. [1], introduced the concept of (I, γ) - generalized closed set and investigated their properties.

Definition1.1. A subset A of a topological space (X, τ) is called :

(1) semi-open if $A \subseteq cl(intA)$ and semi-closed if $int(clA) \subseteq A$.

(2) generalized closed set (see for instance [2])(briefly g-closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open, where cl(A) denotes the closure of A.

(3) (I, γ) -generalized closed set (Dontchev etal.[1]) (briefly (I, γ) -g-closed set) if $A^* \subseteq U^{\gamma}$ whenever $A \subseteq U$ and U is open in (X, τ) .

(4) A subset of a topological space is clopen if it is both closed and open set.

2. Some properties of (γ, δ) -BSC-sets

At first we define some existing definitions in topological space in terms of bitopological space. Let (X, τ_1, τ_2) be a bitopological space. We define γ -operator in a bitopological space as $\tau_i - \gamma : \tau_i \to P(X)$ such that $\tau_i - U \subseteq \tau_i - U^{\gamma}$ whenever i = 1, 2.

This may be extended to semi-open sets such that $\tau_i^s - \gamma$: $\tau_i^s \to P(X)$ such that $\tau_i^s - U \subseteq \tau_i^s - U^{\gamma} (= U^{\tau_i^s - \gamma})$ whenever i = 1, 2. Here $\tau_i^s - U$ indicates a semiopen set U of τ_i

Now we redefine local function on (X, τ_1, τ_2) with respect to an ideal Ion X by $A^*(I, \tau_i)$ or $\tau_i - A^* = \{x \in X | U \cap A \notin I \text{ for every } U \in \tau_i, x \in U\}$ and $\tau_i^s - A^* = \{x \in X | U \cap A \notin I \text{ for every } U \in \tau_i^s, x \in U\}.$

A is called τ_i^* -closed set if $\tau_i A^* \subseteq A$ and A is called τ_i^{s*} -closed set if

 $\tau_i^s \text{-} A^* \subseteq A$

$$\tau_i - cl^*(A) = A \cup \tau_i - A^* \text{ and } \tau_i^s - cl^*(A) = A \cup \tau_i^s - A^*$$

We define ideal in product bitopological space by if I_1 and I_2 are ideals of two bitopological space. We define $I_1 \times I_2 = \{A \times B | A \in I_1, B \in I_2\}$, Then clearly $I_1 \times I_2$ is an ideal of product bitopological space.

So, we define $(\tau\theta)_i \cdot (A \times B)^* = \{(x, y) | (U \times V) \cap (A \times B) \text{ is not subset}$ of $P_1 \times P_2 \in I_1 \times I_2, x \in U, y \in V; U \in \tau_i, V \in \theta_i\}$ for i = 1, 2.

Throughout this paper BS denotes the word bitopological space.

Definition 2.1. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a $BS, A \subseteq X$ is said to be (γ, δ) -BSC-set if $\tau_2^s U^{\gamma} \subseteq \tau_1 A^* \subseteq \tau_2^s U^{\delta}$ whenever $A \subseteq \tau_2^s U$ where γ, δ are two expansion operators as defined above.

 $(X, \tau_1, \tau_2, I_1, \gamma, \delta)$ and $(Y, \theta_1, \theta_2, I_2, \zeta, \eta)$ be two bitopological spaces then $(A \times B) \subseteq (X \times Y)$ is said to be *Product-2-* (γ, δ) -*BSC*-set if $\tau_2^s - U^\gamma \times \theta_2^s - V^\zeta \subseteq (\tau \theta)_1 - (A \times B)^* \subseteq \tau_2^s - U^\delta \times \theta_2^s - V^\eta$, whenever $(A \times B) \subseteq (\tau_2^s - U \times \theta_2^s - V)$.

Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X$ is called (γ, δ) -BSO-set if $(X \setminus A)$ is (γ, δ) -BSC-set.

The collection of all (γ, δ) -BSC-set of $(X, \tau_1, \tau_2, I, \gamma, \delta)$ is denoted by BSC(X) and (γ, δ) -BSO-set is denoted by BSO(X).

Example 2.1. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{b\}\}, I = \{\emptyset, \{c\}\}.$ We define $U^{\tau_2^s - \gamma} = \tau_2^s \cdot U$ and $U^{\tau_2^s - \delta} = \tau_2 \cdot cl(\tau_2^s - U)$. Let us consider $A = \{a, b\}$ then τ_2 -semi-open set containing A is X. Then $\tau_1 \cdot A^* = X, U^{\tau_2^s - \gamma} = X, U^{\tau_2^s - \delta} = X$. Thus $A = \{a, b\}$ is a $(\gamma_{id}, \delta_{cl})$ -BSC-set. Hence $\{c\}$ is $(\gamma_{id}, \delta_{cl})$ -BSO-set

Theorem 2.1. Arbitrary union of (γ, δ) -BSC-sets is (γ, δ) -BSC-set.

Proof. Let $\bigcup_{i \in I} A_i \subseteq \tau_2^s \cdot U$. Then $A_i \subseteq \tau_2^s \cdot U$ for all $i \in I$. As A_i is (γ, δ) -BSC-set then $\tau_2^s \cdot U^{\gamma} \subseteq \tau_1 \cdot A_i^* \subseteq \tau_2^s \cdot U^{\delta}$. Thus $\tau_2^s \cdot U^{\gamma} \subseteq \bigcup_{i \in I} (\tau_1 \cdot A_i^*) \subseteq \tau_2^s \cdot U^{\delta}$ which implies $\tau_2^s \cdot U^{\gamma} \subseteq \tau_1 \cdot (\bigcup_{i \in I} A_i)^* \subseteq \tau_2^s \cdot U^{\delta}$. Thus $\bigcup_{i \in I} A_i$ is $(\gamma, \delta) \cdot BSC$ set. From above result it can be easily proved, if $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space then arbitrary intersection of locally finite family of (γ, δ) -BSO-sets is (γ, δ) -BSO-set.

Theorem 2.2. A subset of a (γ, δ) -BSC-set is not necessarily a (γ, δ) -BSC-set.

Proof. The result can be verified on considering the following example.

Example 2.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{b\}\}, I = \{\emptyset, \{c\}\}.$ We define $U^{\tau_2^s - \gamma} = \tau_2^s - U$ and $U^{\tau_2^s - \delta} = \tau_2 - cl(\tau_2^s - U)$. Let $A = X, B = \{a, b\}, C = \{a\}$; then A, B are $(\gamma_{id}, \delta_{cl}) - BSC$ -set. Then τ_2 semi-open sets containing C is $X, \{a, b\}$. Here $\tau_1 - C^* = \{a, c\}$. It can verified that C is not $(\gamma_{id}, \delta_{cl}) - BSC$ -set.

Note 2.1. The above theorem implies that superset of a (γ, δ) -BSO-set may not be (γ, δ) -BSO-set.

Theorem 2.3. A superset of a (γ, δ) -BSC-set is a (γ, δ) -BSC-set.

Proof. Let $A \subseteq B$ and A is (γ, δ) -BSC set. Let $B \subseteq U$ and if possible let B be not a (γ, δ) -BSC-set. Then obviously $\tau_2^s - U^\gamma \subseteq \tau_1 - A^* \subseteq \tau_1 - B^*$ but as B is not a (γ, δ) -BSC-set; only criteria is $\tau_1 - B^*$ is not a subset of $\tau_2^s - U^{\delta}$. This implies A is not (γ, δ) -BSC-set; but this is a contradiction. Thus B is a (γ, δ) -BSC-set.

Note 2.2. The above theorem implies that a subset of a (γ, δ) -BSO-set is (γ, δ) -BSO-set.

Remark 2.1. \emptyset is not a (γ, δ) -BSC set but X is not necessarily a (γ, δ) -BSC set.

Proof. For any ideal I, always $\emptyset \in I$, then $\tau_1 \cdot \emptyset^* = \emptyset$. Let $\emptyset \neq \tau_2^s \cdot U$. If possible let \emptyset be $(\gamma, \delta) \cdot BSC$ -set then $\emptyset \subseteq \tau_2^s \cdot U \subseteq \tau_2^s \cdot U^{\gamma} \subseteq \emptyset$ whenever $\emptyset \subseteq \tau_2^s \cdot U$. It implies $\tau_2^s \cdot U = \emptyset$; a contradiction. Thus \emptyset is not a $(\gamma, \delta) \cdot BSC$ set. The next part follows from the following example

Example 2.3. Let us consider $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \{a, b\}\}$

 $\tau_2 = \{\emptyset, X, \{b\}\}, I = \{\emptyset, \{c\}\}.$ We define $U^{\tau_2^s - \gamma} = \tau_2^s - U$ and $U^{\tau_2^s - \delta} = \tau_2 - cl(\tau_2^s - U);$ then X is $(\gamma_{id}, \delta_{cl}) - BSC$ -closed set.

Next we consider $X = \{a, b\}, \tau_1 = \{\emptyset, X, \{a\}\}, \tau_2 = \{\emptyset, X, \{b\}\}$ and $I = \{\emptyset, \{a\}\}$. Define $U^{\tau_2^s - \gamma} = \tau_2^s \cdot U$ and $U^{\tau_2^s - \delta} = \tau_2 \cdot cl(\tau_2^s \cdot U)$; then X is not $(\gamma_{id}, \delta_{cl}) \cdot BSC$ -closed set.

Corollary 2.1. If A, B are (γ, δ) -BSC sets then $(A \cap B)$ is not necessarily a (γ, δ) -BSC set.

Proof. It is clear from Theorem 2.2.

Corollary 2.2. If $A \in BSC(X)$ and $B \in BSC(Y)$ then $(A \times B)$ is *Product-2-* (γ, δ) -*BSC*-set.

Proof. Proof is straight forward in view of $(\tau \theta)_1 - (A \times B)^* = \tau_1 - A^* \times \theta_1 - B^*$.

Definition 2.2. A is said to be I- τ_2 -gs-closed set in $(X, \tau_1, \tau_2, I, \gamma, \delta)$ if τ_1 - $A^* \subseteq \tau_2^s$ -U whenever $A \subseteq \tau_2^s$ -U.

A is said to be $I^s - \tau_2 - gs$ -closed set in $(X, \tau_1, \tau_2, I, \gamma, \delta)$ if $\tau_1 - A^* \subseteq (\tau_2^s - U) \cap S$ whenever $A \subseteq (\tau_2^s - U) \cap S$ where $S \subseteq X$.

Theorem 2.4. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X, F \subseteq X$. If A is $I - \tau_2 - gs$ closed set and F is τ_2 -closed set and τ_1^* -closed set in $(X, \tau_1, \tau_2, I, \gamma, \delta)$ then $(A \cap F)$ is a $I - \tau_2 - gs$ -closed set.

Proof. Let $(A \cap F) \subseteq \tau_2^s$ -U. Then $A \subseteq (\tau_2^s - U) \cup (X \setminus F)$. Then clearly $(\tau_2^s - U) \cup (X \setminus F)$ is τ_2 semi open. Also $\tau_1 - F^* \subseteq F$.

Now $(\tau_1 - A^*) \subseteq (\tau_2^s - U) \cup (X \setminus F)$ implies $(\tau_1 - A^*) \cap F \subseteq \tau_2^s - U$.

Then $\tau_1 \cdot (A \cap F)^* \subseteq (\tau_1 \cdot A^*) \cap (\tau_1 \cdot F^*) \subseteq (\tau_1 \cdot A^*) \cap F \subseteq (\tau_2^s \cdot U)$. Thus $(A \cap F)$ is a $I \cdot \tau_2 \cdot gs$ -closed set.

Corollary 2.3. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X, F \subseteq X$. A is $I^s - \tau_2 - gs$ -closed set, F is τ_2 -closed set and τ_1^* -closed set in (X, τ_1, τ_2) . If $(U \cap S)$ is τ_2 -clopen set for all τ_2 -semi-open sets U and $S \subseteq X$ then $(A \cap F)$ is a $I^s - \tau_2 - gs$ -closed set.

251

Proof. Let $(A \cap F) \subseteq (\tau_2^s - U) \cap S$. Then $(\tau_2^s - U) \cap S$ is τ_2 -clopen, so it is also τ_2 -semi-open set. Then proceeding as previous we have the result.

Corollary 2.4. If A is I- τ_2 -gs closed subset of $(X, \tau_1, \tau_2, I, \gamma, \delta)$ and $F \subseteq X$, F is τ_2 -closed and τ_1^* -closed in (X, τ_1, τ_2) . If $(U \cap S)$ is τ_2 -clopen set for all τ_2 -semi-open sets U and $S \subseteq X$ then $(A \cap F)$ is a I^s - τ_2 -gs-closed set.

We procure the following two results due to Dontchev etal [1] to establish Theorem 2.5.

Lemma 2.1. If A and B are subsets of (X, τ, I) , then $(A \cap B)^*(I) \subseteq A^*(I) \cap B^*(I)$.

A subset S of a topological space (X, τ, I) is a topological space with an ideals $I_S = \{F \cap S : F \in I\}$.

Lemma 2.2. Let (X, τ, I) be a topological space and $A \subseteq S \subseteq X$ then $A^*(I_s, \tau|_S) = A^*(I, \tau) \cap S$ holds.

Theorem 2.5. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq S \subseteq X$. If A is τ_1^* -closed set and $I_S \cdot \tau_2|_S \cdot gs$ -closed set in $(S, \tau_1|_S, \tau_2|_S)$ contained in τ_2 -open set but not contained in any τ_2 -semi-open sets which is not τ_2 -open set, then A is $I^s \cdot \tau_2 \cdot gs$ -closed set in $(X, \tau_1, \tau_2, I, \gamma, \delta)$.

Proof. A is $I_S \tau_2|_S$ -gs-closed set in $(S, \tau_1|S, \tau_2|_S)$. So, $A^*(I_S, \tau_1|_S) \subseteq \tau_2|_S$ -V whenever $A \subseteq \tau_2|_S$ -V. This implies $A^*(I, \tau_1) \cap S \subseteq S \cap \tau_2$ -U Whenever $A \subseteq S \cap \tau_2$ -U (say). As we know that every τ_i , i = 1, 2 open sets are τ_i , i = 1, 2 semi-open sets and thus τ_1 - $A^* \subseteq (\tau_2^s$ -U) $\cap S$ Whenever $A \subseteq (\tau_2^s$ -U) $\cap S$. This establishes the result.

Definition 2.3. Let $A \subseteq X$, then $\omega(A) = \bigcup \{G \mid G \subseteq A, G \text{ is a } (\gamma, \delta)\text{-}BSC\text{-set}\}$

Proposition 2.1. Let $A \subseteq X$ then

(i) $\omega(A) \subseteq \tau_i \text{-}cl^*(A)$ (ii) $\omega(A) \subseteq \tau_i \text{-}cl(A)$ **Theorem 2.6.** If τ_i - $cl^*(A) \subseteq \omega(A)$ then A is τ_i^* -closed.

Proof. $\tau_i - cl^*(A) \subseteq \omega(A)$ then $\omega(A) = \bigcup G$ where $G \subseteq A$ and G is (γ, δ) -BSC-set. then $\tau_i - cl^*(A) \subseteq \bigcup G \subseteq A$ then $\tau_i - cl^*(A) \subseteq A$. Hence the result.

Theorem 2.7. If $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X$ and

- (i) $\tau_1^s cl^*(A) \subseteq \omega(A)$.
- (ii) A is (γ, δ) -BSC-set.
- (iii) $\tau_1^s cl^*(A)$ is $(\gamma, \delta) BSC$ -set.

Then $(i) \Rightarrow (ii) \Rightarrow (iii)$.

Proof. (i) \Rightarrow (ii) $\tau_1^s - cl^*(A) \subseteq \omega(A)$ implies $A \subseteq \omega(A)$. So, $A \subseteq (\cup G)$ where $G \subseteq A$ and G is (γ, δ) -BSC-set.

Then $A = A \cap (\cup G) = \cup (A \cap G) = \cup G$, which is (γ, δ) -BSC-set. Thus A is (γ, δ) -BSC-set.

(ii) \Rightarrow (iii) A is (γ, δ) -BSC-set then clearly by Theorem 2.3, τ_1^s - $cl^*(A)$ is (γ, δ) -BSC-set.

Corollary 2.5. If A is (γ, δ) -BSC-set then the inclusion τ_1^s - $cl^*(A) \subseteq \omega(A)$ may not hold in general.

This result can be verified by the following example.

Example 2.4. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{b\}\}, I = \{\emptyset, \{c\}\}.$ We define $U^{\tau_2^s - \gamma} = \tau_2^s - U$ and $U^{\tau_2^s - \delta} = \tau_2 - cl(\tau_2^s - U)$. Let $A = \{a, b\}$ then $\tau_1^s - cl^*(A) = X$. Clearly A is $(\gamma_{id}, \delta_{cl}) - BSC$ -set. But A is the only $(\gamma_{id}, \delta_{cl}) - BSC$ -set which is contained in A. thus $\omega(A) = A$ and $\tau_1^s - cl^*(A)$ is not a subset of $\omega(A)$. Hence the result.

Definition 2.4. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space. Then the Kernel of $(X, \tau_1, \tau_2, I, \gamma, \delta)$ is denoted by $\text{Ker}(\gamma, \delta)$ which is defined by $\text{Ker}(\gamma, \delta) = \{A \subseteq X \mid \tau_1 - A^* = \emptyset, A \notin BSC(X)\}.$ Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space. Then Image of $(X, \tau_1, \tau_2, I, \gamma, \delta)$ is denoted by $\operatorname{Img}(\gamma, \delta)$ which is defined by $\operatorname{Img}(\gamma, \delta) = \{A \subseteq X \mid \tau_1 - A^* \neq \emptyset, A \notin BSC(X)\}.$

Remark 2.2. Ker $(\gamma, \delta) \neq \emptyset$.

Theorem 2.8. If $A \subseteq X$ and $A \in \text{Ker}(\gamma, \delta)$ then $\tau_j|_A \subseteq \text{Ker}(\gamma, \delta), j = 1, 2$.

Proof. Let $B \in \tau_j|_A$ then $B = (A \cap \tau_j - U)$, then $\tau_1 - B^* = \emptyset$ and clearly $B \notin BSC(X)$. Thus $B \in \text{Ker}(\gamma, \delta), j = 1, 2$. Hence the proof.

Theorem 2.9. If $A \subseteq X$ and $A \in \text{Img}(\gamma, \delta)$ then $\tau_j|_A \setminus \{\emptyset\} \subseteq \text{Img}(\gamma, \delta)$, j = 1, 2.

Proof. Let $B \in \tau_j|_A \setminus \{\emptyset\}$, then $B = (A \cap \tau_j - U) \neq \emptyset$ and $\tau_1 - A^* \neq \emptyset$, then clearly $\tau_1 - B^* \neq \emptyset$ and $B \notin BSC(X)$. This establishes the result.

Definition 2.5. Let $A \subseteq X$, then (γ, δ) -closure of A and (γ, δ) -interior of A is denoted by (γ, δ) - $cl(A) = \cap \{C | A \subseteq C, C \in BSC(X)\}$ and (γ, δ) - $int(A) = \cup \{P | P \subseteq A, P \in BSO(X)\}$.

If $(X, \tau_1, \tau_2, I_1, \gamma, \delta)$ and $(Y, \theta_1, \theta_2, I_2, \zeta, \eta)$ be two bitopological spaces and $A \subseteq X, B \subseteq Y$ then (γ, δ) - $cl(A \times B) = \cap \{C \times D | A \times B \subseteq C \times D; C \in BSC(X), D \in BSC(Y)\}$ and (γ, δ) - $int(A \times B) = \cup \{P \times Q | P \times Q \subseteq A \times B; P \in BSO(X), Q \in BSO(Y)\}.$

Proposition 2.2. If $(X, \tau_1, \tau_2, I_1, \gamma, \delta)$ and $(Y, \theta_1, \theta_2, I_2, \zeta, \eta)$ be two bitopological spaces, then

- (i) $A \subseteq (\gamma, \delta)$ -cl(A) where $A \subseteq X$.
- (ii) $A \subseteq B \Rightarrow (\gamma, \delta)$ - $cl(A) \subseteq (\gamma, \delta)$ -cl(B) where $A, B \subseteq X$.

(iii)
$$(\gamma, \delta)$$
- $cl(A \cup B) = (\gamma, \delta)$ - $cl(A) \cup (\gamma, \delta)$ - $cl(B)$.

- (iv) (γ, δ) - $cl(A \cap B) \subseteq (\gamma, \delta)$ - $cl(A) \cap (\gamma, \delta)$ -cl(B).
- (v) (γ, δ) - $cl(A \times B) = (\gamma, \delta)$ - $cl(A) \times (\zeta, \eta)$ -cl(B) where $A \subseteq X, B \subseteq Y$.

Proposition 2.3. If $(X, \tau_1, \tau_2, I_1, \gamma, \delta)$ and $(Y, \theta_1, \theta_2, I_2, \zeta, \eta)$ be two bitopological spaces, then

(i)
$$(\gamma, \delta)$$
- $int(A) \subseteq A$ where $A \subseteq X$.
(ii) $A \subseteq B \Rightarrow (\gamma, \delta)$ - $int(A) \subseteq (\gamma, \delta)$ - $int(B)$ where $A, B \subseteq X$.
(iii) (γ, δ) - $int(A \cap B) = (\gamma, \delta)$ - $int(A) \cap (\gamma, \delta)$ - $int(B)$.
(iv) (γ, δ) - $int(A \cup B) \supseteq (\gamma, \delta)$ - $int(A) \cup (\gamma, \delta)$ - $int(B)$.
(v)) (γ, δ) - $int(A \times B) = (\gamma, \delta)$ - $int(A) \times (\zeta, \eta)$ - $int(B)$ where $A \subseteq X, B \subseteq Y$.

Theorem 2.10. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space, $A \subseteq X$ and $x \in X$. Then $x \in (\gamma, \delta)$ -cl(A) if and only if $U \cap A \neq \emptyset$ where $x \in U, U \in BSO(X)$.

Proof. Let $x \in (\gamma, \delta)$ -cl(A). If possible, let $x \in U, U \in BSO(X)$ such that $U \cap A = \emptyset$. So, $A \subseteq (X \setminus U)$, then clearly $x \notin U$, which is a contradiction. So, $U \cap A \neq \emptyset$ where $x \in U, U \in BSO(X)$.

Conversely, let $U \cap A \neq \emptyset$ where $x \in U, U \in BSO(X)$. If possible let $x \notin (\gamma, \delta)$ -cl(A). Then $x \notin \cap C$, where $A \subset C$, C is a (γ, δ) -BSC set. so $x \notin A$ implies $U \cap A = \emptyset$ - a contradiction. Hence $x \in (\gamma, \delta)$ -cl(A).

Corollary 2.6. (i) (γ, δ) - $cl(X \setminus A) = X \setminus (\gamma, \delta)$ -int(A).

(ii) (γ, δ) -int $(X \setminus A) = X \setminus (\gamma, \delta)$ -cl(A).

Definition 2.6. A is called (γ, δ) -closed if (γ, δ) -cl(A) = A and then $(X \setminus A)$ is called (γ, δ) -open.

A is called *Product*-2- (γ, δ) -closed if $(\gamma, \delta) - cl(A \times B) = (A \times B)$ and then $(X \times Y \setminus (A \times B))$ is called *Product*-2- (γ, δ) -open.

A is called (γ, δ) -clopen set if A is both (γ, δ) -closed and (γ, δ) -open.

Theorem 2.11. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X$.

A is (γ, δ) -open if and only if $A = (\gamma, \delta)$ -int(A).

Theorem 2.12. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space. If A is (γ, δ) -BSC set; then (γ, δ) -cl(A) \ A does not contain any non-empty (γ, δ) -open set.

Proof. Let $F \neq \emptyset$, F is (γ, δ) -open set. If possible, let us assume that $F \subseteq (\gamma, \delta)$ - $cl(A) \setminus A$ Then $F \subseteq (\gamma, \delta)$ -cl(A) but $A \subseteq (X \setminus F)$. Then, (γ, δ) - $cl(A) \subseteq (X \setminus F)$. Thus $F \subseteq (\gamma, \delta)$ - $cl(A) \cap (X \setminus (\gamma, \delta)$ - $cl(A))) = \emptyset$. So $F = \emptyset$, - a contradiction. Hence the result.

Definition 2.7. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X$. Then we define $Ker(A) = \cap \{U \in BSO(X) : A \subseteq U\}$.

If $A \in BSO(X)$, then it is easy to verify that Ker(A) = A.

Theorem 2.13. Let $(X, \tau_1, \tau_2, I, \gamma, \delta)$ be a bitopological space and $A \subseteq X$. Then following results hold-

(i)
$$A \subseteq Ker(A)$$
.

(ii) $A \subseteq B \Rightarrow Ker(A) \subseteq Ker(B)$.

(iii) $x \in Ker(A)$ if and only if $A \cap M \neq \emptyset$ where $x \in M$ and $M \in BSC(X)$.

Proof. proofs of (i) and (ii) are easy and so omitted.

(3) Let $x \in Ker(A)$. If possible let $A \cap M = \emptyset$ where $x \in M$ and $M \in BSC(X)$. Then $A \subseteq (X \setminus M)$. So, $Ker(A) \subseteq Ker(X \setminus M) = (X \setminus M)$. Which implies $x \notin M$, a contradiction. Hence $A \cap M \neq \emptyset$.

Conversely, let $x \notin Ker(A)$ and let $A \cap M \neq \emptyset$ where $x \in M$ and $M \in BSC(X)$. Then $\exists U \in BSO(X), x \notin U, A \subseteq U$. So, $(X \setminus U) \in BSC(X)$. Thus $x \notin A$. Now by the assumption, $A \cap (X \setminus U) \neq \emptyset$ i.e. A is not subset of U, a contradiction. Thus $x \in Ker(A)$.

Acknowledgement

Authors are thankful to the reviewer for the valuable comments, those improved the presentation of this paper.

References

- J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon., 49, pp. 395-401, (1999).
- [2] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, pp. 89-96, (1970).
- [3] K. Kuratowski, Topologie I, warszawa, (1933).
- [4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer.Math.Monthly, 97, pp. 295-310, (1990).
- [5] S. Kasahara, Operation-compact spaces, Math. Japon, 24, pp. 97-105, (1979).
- [6] H. Ogata, operations on topological spaces and Associated topology, Math. Japon, 36, pp. 175-184, (1991).
- [7] J. Tong, Expansion of open sets and decomposition of continuous mappings, Expansion of open sets and decomposition of continuous mappings, Rend. Circ.Mat. Palermo, 43 (2), pp. 303-308, (1994).
- [8] B. C. Tripathy and B. Hazarika, Paranormed *I*-convergent sequences spaces, Math. Slovaca, 59 (4), pp. 485-494, (2009).
- [9] B. C. Tripathy and B. Hazarika, *I*-monotonic and I-convergent sequences, Kyungpook Math. Journal, 51 (2), pp. 233-239, (2011).
- [10] B. C. Tripathy and S. Mahanta, On *I*-acceleration convergence of sequences, Jour. Franklin Inst., 347, pp. 591-598, (2010).
- [11] B. C. Tripathy, M. Sen and S. Nath, *I*-convergence in probabilistic *n*normed space, Soft Computing, ID 10.1007/s00500-011-0799-8, (2012).
- [12] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (3), pp. 71-89, (1963).

- [13] B. Dvalishvili; Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications; Elsevier, (2005).
- [14] S. Acharjee and B. C. Tripathy, On continuities and separation axioms of (γ, δ) -Bitopological Semi-closed-set (under communication).

Binod Chandra Tripathy

Mathematical Sciences Division Institute of Advanced Study in Science and Technology. Paschim Boragaon, Garchuk. Guwahati-781035, Assam. India. e-mail: tripathybc@rediffmail.com

and

Santanu Acharjee

Mathematical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati-781035, Assam India e-mail: santanuacharjee@rediffmail.com