Proyecciones Journal of Mathematics
Vol. 33, N ${ }^{o} 3$, pp. 245-257, September 2014.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172014000300002

On (γ, δ)-Bitopological semi-closed set via topological ideal

Binod Chandra Tripathy
and
Santanu Acharjee
Institute of Advanced Study in Science and Technology, India
Received: January 2014. Accepted: April 2014

Abstract

In this paper we introduce a new class of generalized closed sets in bitopological space using local function, two extension operators and semi-open sets. We have also investigated some properties in subspace bitopology defining kernel and image.

Keyword and phrases: Topological ideals; local function; γ-operator, continuous function, irresolute function.

AMS Classification (2000). 54H05; 54C08;54D10;54C10; 54D99; 54E55.

1. Introduction

Levine [2], introduced the concept of generalized closed set (briefly g-closed set) in 1970. An ideal I of a topological space (X, τ) is a non-empty collection of subsets satisfying the following two properties:

1) $A \in I$ and $B \subset A$ implies $B \in I$.
2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

The notions of ideals have been applied in different branches of mathematics. In sequence spaces ideals of natural numbers have been considered and different types of ideal convergent(I-convergent) sequence spaces have been introduced and their algebraic and topological properties have been investigated by Tripathy and Hazarika ([8], [9]), Tripathy and Mahanta [10], Tripathy, Sen and Nath [11] and many others.

Kuratowski [3] introduced the notion of local function of $A \subseteq X$ with respect to I and τ (briefly A^{*}). Let $A \subseteq X$, then $A^{*}(I)=\{x \in X \mid U \cap A \notin I$, for every open neighbourhood U of $x\}$.

Jankovic and Hamlett [4] introduced τ^{*}-closed set by $A \subset(X, \tau, I)$ is called τ^{*}-closed if $A^{*} \subseteq A$.

It is well known that $c l^{*}(A)=A^{*} \cup A$, defines a Kuratowski closure operator for a topology $\tau^{*}(I)$ finer than τ.

An operator γ (see for instance Kasahara [5], Ogata [6]) on a given topological space (X, τ) is a function from the topology τ into the power set $P(X)$ of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Tong [7] called the γ-operator as an expansion. The following operators are examples of the operator γ : the closure operator $\gamma_{c l}(U)=c l(U)$, the identity operator $\gamma_{i d}(U)=U$ and the interior closure operator $\gamma_{i c}(U)$ $=\operatorname{int}(c l(U))$. Another example of the operator γ is the γ_{f} - operator is defined by $U^{\gamma_{f}}=X \backslash \operatorname{Fr}(U)$ where $\operatorname{Fr}(U)$ denotes the frontier of U.

Two operators γ_{1} and γ_{2} are called mutually dual (Tong [7]) if $U^{\gamma_{1}} \cap$ $U^{\gamma_{2}}=U$ for each $U \in \tau$. For example identity operator is mutually dual to any other operator while the γ_{f}-operator is mutually dual to the closure operator.

Dontchev et al. [1], introduced the concept of (I, γ) - generalized closed set and investigated their properties.

Definition1.1. A subset A of a topological space (X, τ) is called :
(1) semi-open if $A \subseteq \operatorname{cl}(i n t A)$ and semi-closed if $\operatorname{int}(c l A) \subseteq A$.
(2) generalized closed set (see for instance [2])(briefly g-closed set) if $c l(A) \subseteq U$ whenever $A \subseteq U$ and U is open, where $\operatorname{cl}(A)$ denotes the closure of A.
(3) (I, γ)-generalized closed set (Dontchev etal.[1]) (briefly $(I, \gamma)-g$-closed set) if $A^{*} \subseteq U^{\gamma}$ whenever $A \subseteq U$ and U is open in (X, τ).
(4) A subset of a topological space is clopen if it is both closed and open set.

2. Some properties of (γ, δ) - $B S C$-sets

At first we define some existing definitions in topological space in terms of bitopological space. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. We define γ operator in a bitopological space as $\tau_{i^{-}} \gamma: \tau_{i} \rightarrow P(X)$ such that $\tau_{i^{-}} U \subseteq \tau_{i^{-}} U^{\gamma}$ whenever $i=1,2$.

This may be extended to semi-open sets such that $\tau_{i}^{s}-\gamma: \tau_{i}^{s} \rightarrow P(X)$ such that $\tau_{i}^{s}-U \subseteq \tau_{i}^{s}-U^{\gamma}\left(=U^{\tau_{i}^{s}-\gamma}\right)$ whenever $i=1,2$. Here $\tau_{i}^{s}-U$ indicates a semiopen set U of τ_{i}

Now we redefine local function on $\left(X, \tau_{1}, \tau_{2}\right)$ with respect to an ideal I on X by $A^{*}\left(I, \tau_{i}\right)$ or $\tau_{i}-A^{*}=\left\{x \in X \mid U \cap A \notin I\right.$ for every $\left.U \in \tau_{i}, x \in U\right\}$ and $\tau_{i}^{s}-A^{*}=\left\{x \in X \mid U \cap A \notin I\right.$ for every $\left.U \in \tau_{i}^{s}, x \in U\right\}$.
A is called τ_{i}^{*}-closed set if $\tau_{i}-A^{*} \subseteq A$ and A is called $\tau_{i}^{s *}$-closed set if
$\tau_{i}^{s}-A^{*} \subseteq A$

$$
\tau_{i}-c l^{*}(A)=A \cup \tau_{i}-A^{*} \text { and } \tau_{i}^{s}-c l^{*}(A)=A \cup \tau_{i}^{s}-A^{*}
$$

We define ideal in product bitopological space by if I_{1} and I_{2} are ideals of two bitopological space. We define $I_{1} \times I_{2}=\left\{A \times B \mid A \in I_{1}, B \in I_{2}\right\}$, Then clearly $I_{1} \times I_{2}$ is an ideal of product bitopological space.

So, we define $(\tau \theta)_{i^{-}}(A \times B)^{*}=\{(x, y) \mid(U \times V) \cap(A \times B)$ is not subset of $\left.P_{1} \times P_{2} \in I_{1} \times I_{2}, x \in U, y \in V ; U \in \tau_{i}, V \in \theta_{i}\right\}$ for $i=1,2$.

Throughout this paper $B S$ denotes the word bitopological space.
Definition 2.1. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a $B S, A \subseteq X$ is said to be (γ, δ) $B S C$-set if $\tau_{2}^{s}-U^{\gamma} \subseteq \tau_{1}-A^{*} \subseteq \tau_{2}^{s}-U^{\delta}$ whenever $A \subseteq \tau_{2}^{s}-U$ where γ, δ are two expansion operators as defined above.
$\left(X, \tau_{1}, \tau_{2}, I_{1}, \gamma, \delta\right)$ and $\left(Y, \theta_{1}, \theta_{2}, I_{2}, \zeta, \eta\right)$ be two bitopological spaces then $(A \times B) \subseteq(X \times Y)$ is said to be Product-2-($\gamma, \delta)$-BSC-set if $\tau_{2}^{s}-U^{\gamma} \times \theta_{2}^{s}-$ $V^{\zeta} \subseteq(\tau \theta)_{1}-(A \times B)^{*} \subseteq \tau_{2}^{s}-U^{\delta} \times \theta_{2}^{s}-V^{\eta}$, whenever $(A \times B) \subseteq\left(\tau_{2}^{s}-U \times \theta_{2}^{s}-V\right)$.

Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq X$ is called (γ, δ) $B S O$-set if $(X \backslash A)$ is (γ, δ)-BSC-set.

The collection of all $(\gamma, \delta)-B S C$-set of $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ is denoted by $B S C(X)$ and $(\gamma, \delta)-B S O$-set is denoted by $B S O(X)$.

Example 2.1. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}, \tau_{2}=$ $\{\emptyset, X,\{b\}\}, I=\{\emptyset,\{c\}\}$. We define $U^{\tau_{2}^{s}-\gamma}=\tau_{2}^{s}-U$ and $U^{\tau_{2}^{s}-\delta}=\tau_{2}-c l\left(\tau_{2}^{s}-\right.$ $U)$. Let us consider $A=\{a, b\}$ then τ_{2}-semi-open set containing A is X. Then $\tau_{1}-A^{*}=X, U^{\tau_{2}^{s}-\gamma}=X, U^{\tau_{2}^{s}-\delta}=X$. Thus $A=\{a, b\}$ is a $\left(\gamma_{i d}, \delta_{c l}\right)-$ $B S C$-set. Hence $\{c\}$ is $\left(\gamma_{i d}, \delta_{c l}\right)$-BSO-set

Theorem 2.1. Arbitrary union of (γ, δ) - $B S C$-sets is $(\gamma, \delta)-B S C$-set.
Proof. Let $\cup_{i \in I} A_{i} \subseteq \tau_{2}^{s}-U$. Then $A_{i} \subseteq \tau_{2}^{s}-U$ for all $i \in I$. As A_{i} is (γ, δ) $B S C$-set then $\tau_{2}^{s}-U^{\gamma} \subseteq \tau_{1}-A_{i}^{*} \subseteq \tau_{2}^{s}-U^{\delta}$. Thus $\tau_{2}^{s}-U^{\gamma} \subseteq \cup_{i \in I}\left(\tau_{1}-A_{i}^{*}\right) \subseteq \tau_{2}^{s}-U^{\delta}$ which implies $\tau_{2}^{s}-U^{\gamma} \subseteq \tau_{1}-\left(\cup_{i \in I} A_{i}\right)^{*} \subseteq \tau_{2}^{s}-U^{\delta}$. Thus $\cup_{i \in I} A_{i}$ is $(\gamma, \delta)-B S C$ set.

From above result it can be easily proved, if $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space then arbitrary intersection of locally finite family of (γ, δ) - $B S O$-sets is (γ, δ) - $B S O$-set.

Theorem 2.2. A subset of a (γ, δ) - $B S C$-set is not necessarily a (γ, δ) $B S C$-set.

Proof. The result can be verified on considering the following example.
Example 2.2. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}, \tau_{2}=$ $\{\emptyset, X,\{b\}\}, I=\{\emptyset,\{c\}\}$. We define $U^{\tau_{2}^{s}-\gamma}=\tau_{2}^{s}-U$ and $U^{\tau_{2}^{s-\delta}}=\tau_{2}-c l\left(\tau_{2}^{s}\right.$ $U)$. Let $A=X, B=\{a, b\}, C=\{a\}$; then A, B are $\left(\gamma_{i d}, \delta_{c l}\right)-B S C$-set. Then τ_{2} semi-open sets containing C is $X,\{a, b\}$. Here $\tau_{1}-C^{*}=\{a, c\}$. It can verified that C is not $\left(\gamma_{i d}, \delta_{c l}\right)-B S C$-set.

Note 2.1. The above theorem implies that superset of a (γ, δ) - $B S O$-set may not be (γ, δ) - $B S O$-set.

Theorem 2.3. A superset of a (γ, δ) - $B S C$-set is a (γ, δ) - $B S C$-set.

Proof. Let $A \subseteq B$ and A is $(\gamma, \delta)-B S C$ set. Let $B \subseteq U$ and if possible let B be not a (γ, δ) - $B S C$-set. Then obviously $\tau_{2}^{s}-U^{\gamma} \subseteq \tau_{1}-A^{*} \subseteq \tau_{1}-B^{*}$ but as B is not a (γ, δ) - $B S C$-set; only criteria is $\tau_{1}-B^{*}$ is not a subset of $\tau_{2}^{S}-U^{\delta}$. This implies A is not (γ, δ) - $B S C$-set; but this is a contradiction. Thus B is a $(\gamma, \delta)-B S C$-set.

Note 2.2. The above theorem implies that a subset of a (γ, δ) - $B S O$-set is (γ, δ) - $B S O$-set.

Remark 2.1. \emptyset is not a $(\gamma, \delta)-B S C$ set but X is not necessarily a (γ, δ) $B S C$ set.

Proof. For any ideal I, always $\emptyset \in I$, then $\tau_{1}-\emptyset^{*}=\emptyset$. Let $\emptyset \neq \tau_{2}^{s}-U$. If possible let \emptyset be (γ, δ) - $B S C$-set then $\emptyset \subseteq \tau_{2}^{s}-U \subseteq \tau_{2}^{s}-U^{\gamma} \subseteq \emptyset$ whenever $\emptyset \subseteq \tau_{2}^{s}-U$. It implies $\tau_{2}^{s}-U=\emptyset$; a contradiction. Thus \emptyset is not a (γ, δ) - $B S C$ set. The next part follows from the following example

Example 2.3. Let us consider $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}$,
$\tau_{2}=\{\emptyset, X,\{b\}\}, I=\{\emptyset,\{c\}\}$. We define $U^{\tau_{2}^{s}-\gamma}=\tau_{2}^{s}-U$ and $U^{\tau_{2}^{s}-\delta}=\tau_{2}-c l\left(\tau_{2}^{s}-U\right)$; then X is $\left(\gamma_{i d}, \delta_{c l}\right)-B S C$-closed set.

Next we consider $X=\{a, b\}, \tau_{1}=\{\emptyset, X,\{a\}\}, \tau_{2}=\{\emptyset, X,\{b\}\}$ and $I=\{\emptyset,\{a\}\}$. Define $U^{\tau_{2}^{s}-\gamma}=\tau_{2}^{s}-U$ and $U^{\tau_{2}^{s}-\delta}=\tau_{2}-c l\left(\tau_{2}^{s}-U\right)$; then X is not $\left(\gamma_{i d}, \delta_{c l}\right)$-BSC-closed set.

Corollary 2.1. If A, B are $(\gamma, \delta)-B S C$ sets then $(A \cap B)$ is not necessarily a $(\gamma, \delta)-B S C$ set.

Proof. It is clear from Theorem 2.2.

Corollary 2.2. If $A \in B S C(X)$ and $B \in B S C(Y)$ then $(A \times B)$ is Product-2-($\gamma, \delta)$-BSC-set.

Proof. Proof is straight forward in view of $(\tau \theta)_{1^{-}}(A \times B)^{*}=\tau_{1}-A^{*} \times \theta_{1}-B^{*}$.
Definition 2.2. A is said to be $I-\tau_{2}$ - $g s$-closed set in $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ if $\tau_{1}-A^{*} \subseteq \tau_{2}^{s}-U$ whenever $A \subseteq \tau_{2}^{s}-U$.
A is said to be $I^{s}-\tau_{2}-g s$-closed set in $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ if $\tau_{1}-A^{*} \subseteq\left(\tau_{2}^{s}-\right.$ $U) \cap S$ whenever $A \subseteq\left(\tau_{2}^{s}-U\right) \cap S$ where $S \subseteq X$.

Theorem 2.4. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq$ $X, F \subseteq X$.If A is $I-\tau_{2}$-gs closed set and F is τ_{2}-closed set and τ_{1}^{*}-closed set in $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ then $(A \cap F)$ is a I - τ_{2}-gs-closed set.

Proof. Let $(A \cap F) \subseteq \tau_{2}^{s}-U$. Then $A \subseteq\left(\tau_{2}^{s}-U\right) \cup(X \backslash F)$. Then clearly $\left(\tau_{2}^{s}-U\right) \cup(X \backslash F)$ is τ_{2} semi open. Also $\tau_{1}-F^{*} \subseteq F$.

Now $\left(\tau_{1}-A^{*}\right) \subseteq\left(\tau_{2}^{s}-U\right) \cup(X \backslash F)$ implies $\left(\tau_{1}-A^{*}\right) \cap F \subseteq \tau_{2}^{s}-U$.
Then $\tau_{1}-(A \cap F)^{*} \subseteq\left(\tau_{1}-A^{*}\right) \cap\left(\tau_{1}-F^{*}\right) \subseteq\left(\tau_{1}-A^{*}\right) \cap F \subseteq\left(\tau_{2}^{s}-U\right)$.Thus $(A \cap F)$ is a $I-\tau_{2}-g s$-closed set.

Corollary 2.3. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq$ $X, F \subseteq X . A$ is $I^{s}-\tau_{2}$-gs-closed set, F is τ_{2}-closed set and τ_{1}^{*}-closed set in $\left(X, \tau_{1}, \tau_{2}\right)$. If $(U \cap S)$ is τ_{2}-clopen set for all τ_{2}-semi-open sets U and $S \subseteq X$ then $(A \cap F)$ is a I^{s} - τ_{2} - $g s$-closed set.

Proof. Let $(A \cap F) \subseteq\left(\tau_{2}^{s}-U\right) \cap S$. Then $\left(\tau_{2}^{s}-U\right) \cap S$ is τ_{2}-clopen, so it is also τ_{2}-semi-open set. Then proceeding as previous we have the result.

Corollary 2.4. If A is $I-\tau_{2}$ - $g s$ closed subset of $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ and $F \subseteq X, F$ is τ_{2}-closed and τ_{1}^{*}-closed in $\left(X, \tau_{1}, \tau_{2}\right)$. If $(U \cap S)$ is τ_{2}-clopen set for all τ_{2}-semi-open sets U and $S \subseteq X$ then $(A \cap F)$ is a $I^{s}-\tau_{2}$ - $g s$-closed set.

We procure the following two results due to Dontchev etal [1] to establish Theorem 2.5.

Lemma 2.1. If A and B are subsets of (X, τ, I), then $(A \cap B)^{*}(I) \subseteq$ $A^{*}(I) \cap B^{*}(I)$.

A subset S of a topological space (X, τ, I) is a topological space with an ideals $I_{S}=\{F \cap S: F \in I\}$.
Lemma 2.2. Let (X, τ, I) be a topological space and $A \subseteq S \subseteq X$ then $A^{*}\left(I_{s},\left.\tau\right|_{S}\right)=A^{*}(I, \tau) \cap S$ holds.

Theorem 2.5. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq S \subseteq$ X. If A is τ_{1}^{*}-closed set and $\left.I_{S^{-}} \tau_{2}\right|_{S^{-}} g s$-closed set in $\left(S,\left.\tau_{1}\right|_{S},\left.\tau_{2}\right|_{S}\right)$ contained in τ_{2}-open set but not contained in any τ_{2}-semi-open sets which is not $\tau_{2^{-}}$ open set, then A is $I^{s}-\tau_{2^{-}} g s$-closed set in $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$.

Proof. A is $\left.I_{S^{-}} \tau_{2}\right|_{S^{-}} g s$-closed set in $\left(S, \tau_{1}\left|S, \tau_{2}\right|_{S}\right)$. So, $\left.A^{*}\left(I_{S},\left.\tau_{1}\right|_{S}\right) \subseteq \tau_{2}\right|_{S^{-}}$ V whenever $\left.A \subseteq \tau_{2}\right|_{S^{-}} V$. This implies $A^{*}\left(I, \tau_{1}\right) \cap S \subseteq S \cap \tau_{2}-U$ Whenever $A \subseteq S \cap \tau_{2}-U$ (say). As we know that every $\tau_{i}, i=1,2$ open sets are $\tau_{i}, i=1,2$ semi-open sets and thus $\tau_{1}-A^{*} \subseteq\left(\tau_{2}^{s}-U\right) \cap S$ Whenever $A \subseteq\left(\tau_{2}^{s}-\right.$ $U) \cap S$. This establishes the result.

Definition 2.3. Let $A \subseteq X$, then $\omega(A)=\cup\{G \mid G \subseteq A, G$ is a (γ, δ)-BSCset $\}$

Proposition 2.1. Let $A \subseteq X$ then
(i) $\omega(A) \subseteq \tau_{i}-c l^{*}(A)$
(ii) $\omega(A) \subseteq \tau_{i}-c l(A)$

Theorem 2.6. If $\tau_{i}-c l^{*}(A) \subseteq \omega(A)$ then A is τ_{i}^{*}-closed.
Proof. $\tau_{i}-l^{*}(A) \subseteq \omega(A)$ then $\omega(A)=\cup G$ where $G \subseteq A$ and G is (γ, δ) $B S C$-set. then $\tau_{i}-c l^{*}(A) \subseteq \cup G \subseteq A$ then τ_{i}-cl* $(A) \subseteq A$.Hence the result.

Theorem 2.7. If ($X, \tau_{1}, \tau_{2}, I, \gamma, \delta$) be a bitopological space and $A \subseteq X$ and
(i) $\tau_{1}^{s}-c l^{*}(A) \subseteq \omega(A)$.
(ii) A is $(\gamma, \delta)-B S C$-set.
(iii) $\tau_{1}^{s}-c l^{*}(A)$ is $(\gamma, \delta)-B S C$-set.

Then $(i) \Rightarrow(i i) \Rightarrow(i i i)$.
Proof. (i) $\Rightarrow($ ii $) \tau_{1}^{s}-c l^{*}(A) \subseteq \omega(A)$ implies $A \subseteq \omega(A)$. So, $A \subseteq(\cup G)$ where $G \subseteq A$ and G is $(\gamma, \delta)-B S C$-set.

Then $A=A \cap(\cup G)=\cup(A \cap G)=\cup G$, which is $(\gamma, \delta)-B S C$-set. Thus A is $(\gamma, \delta)-B S C$-set.
$($ ii $) \Rightarrow($ iii $) A$ is (γ, δ) - $B S C$-set then clearly by Theorem $2.3, \tau_{1}^{s}-c l^{*}(A)$ is $(\gamma, \delta)-B S C$-set.

Corollary 2.5. If A is (γ, δ)-BSC-set then the inclusion $\tau_{1}^{s}-c l^{*}(A) \subseteq \omega(A)$ may not hold in general.

This result can be verified by the following example.
Example 2.4. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}, \tau_{2}=$ $\{\emptyset, X,\{b\}\}, I=\{\emptyset,\{c\}\}$. We define $U^{\tau_{2}^{s}-\gamma}=\tau_{2}^{s}-U$ and $U^{\tau_{2}^{s}-\delta}=\tau_{2}-c l\left(\tau_{2}^{s}-\right.$ $U)$. Let $A=\{a, b\}$ then $\tau_{1}^{s}-c l^{*}(A)=X$. Clearly A is $\left(\gamma_{i d}, \delta_{c l}\right)-B S C$-set. But A is the only $\left(\gamma_{i d}, \delta_{c l}\right)$ - $B S C$-set which is contained in A. thus $\omega(A)=A$ and $\tau_{1}^{s}-c l^{*}(A)$ is not a subset of $\omega(A)$. Hence the result.

Definition 2.4. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space. Then the Kernel of $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ is denoted by $\operatorname{Ker}(\gamma, \delta)$ which is defined by $\operatorname{Ker}(\gamma, \delta)=\left\{A \subseteq X \mid \tau_{1}-A^{*}=\emptyset, A \notin B S C(X)\right\}$.

Let ($X, \tau_{1}, \tau_{2}, I, \gamma, \delta$) be a bitopological space. Then Image of $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ is denoted by $\operatorname{Img}(\gamma, \delta)$ which is defined by $\operatorname{Img}(\gamma, \delta)=$ $\left\{A \subseteq X \mid \tau_{1}-A^{*} \neq \emptyset, A \notin B S C(X)\right\}$.

Remark 2.2. $\operatorname{Ker}(\gamma, \delta) \neq \emptyset$.
Theorem 2.8. If $A \subseteq X$ and $A \in \operatorname{Ker}(\gamma, \delta)$ then $\left.\tau_{j}\right|_{A} \subseteq \operatorname{Ker}(\gamma, \delta), j=1,2$.
Proof. Let $\left.B \in \tau_{j}\right|_{A}$ then $B=\left(A \cap \tau_{j}-U\right)$, then $\tau_{1}-B^{*}=\emptyset$ and clearly $B \notin B S C(X)$. Thus $B \in \operatorname{Ker}(\gamma, \delta), j=1,2$. Hence the proof.

Theorem 2.9. If $A \subseteq X$ and $A \in \operatorname{Img}(\gamma, \delta)$ then $\left.\tau_{j}\right|_{A} \backslash\{\emptyset\} \subseteq \operatorname{Img}(\gamma, \delta)$, $j=1,2$.

Proof. Let $\left.B \in \tau_{j}\right|_{A} \backslash\{\emptyset\}$, then $B=\left(A \cap \tau_{j}-U\right) \neq \emptyset$ and $\tau_{1}-A^{*} \neq \emptyset$, then clearly $\tau_{1}-B^{*} \neq \emptyset$ and $B \notin B S C(X)$. This establishes the result.

Definition 2.5. Let $A \subseteq X$, then (γ, δ)-closure of A and (γ, δ)-interior of A is denoted by $(\gamma, \delta)-c l(A)=\cap\{C \mid A \subseteq C, C \in B S C(X)\}$ and (γ, δ) $\operatorname{int}(A)=\cup\{P \mid P \subseteq A, P \in B S O(X)\}$.

If ($X, \tau_{1}, \tau_{2}, I_{1}, \gamma, \delta$) and $\left(Y, \theta_{1}, \theta_{2}, I_{2}, \zeta, \eta\right)$ be two bitopological spaces and $A \subseteq X, B \subseteq Y$ then (γ, δ)-cl $(A \times B)=\cap\{C \times D \mid A \times B \subseteq C \times D ; C \in$ $B S C(X), D \in B S C(Y)\}$ and $(\gamma, \delta)-\operatorname{int}(A \times B)=\cup\{P \times Q \mid P \times Q \subseteq$ $A \times B ; P \in B S O(X), Q \in B S O(Y)\}$.

Proposition 2.2. If ($\left.X, \tau_{1}, \tau_{2}, I_{1}, \gamma, \delta\right)$ and $\left(Y, \theta_{1}, \theta_{2}, I_{2}, \zeta, \eta\right)$ be two bitopological spaces, then
(i) $A \subseteq(\gamma, \delta)-c l(A)$ where $A \subseteq X$.
(ii) $A \subseteq B \Rightarrow(\gamma, \delta)-c l(A) \subseteq(\gamma, \delta)-c l(B)$ where $A, B \subseteq X$.
(iii) $(\gamma, \delta)-c l(A \cup B)=(\gamma, \delta)-c l(A) \cup(\gamma, \delta)-c l(B)$.
(iv) $(\gamma, \delta)-c l(A \cap B) \subseteq(\gamma, \delta)-c l(A) \cap(\gamma, \delta)-c l(B)$.
(v) $(\gamma, \delta)-c l(A \times B)=(\gamma, \delta)-c l(A) \times(\zeta, \eta)-c l(B)$ where $A \subseteq X, B \subseteq Y$.

Proposition 2.3. If ($\left.X, \tau_{1}, \tau_{2}, I_{1}, \gamma, \delta\right)$ and $\left(Y, \theta_{1}, \theta_{2}, I_{2}, \zeta, \eta\right)$ be two bitopological spaces, then
(i) $(\gamma, \delta)-\operatorname{int}(A) \subseteq A$ where $A \subseteq X$.
(ii) $A \subseteq B \Rightarrow(\gamma, \delta)-\operatorname{int}(A) \subseteq(\gamma, \delta)-\operatorname{int}(B)$ where $A, B \subseteq X$.
(iii) $(\gamma, \delta)-\operatorname{int}(A \cap B)=(\gamma, \delta)-\operatorname{int}(A) \cap(\gamma, \delta)-\operatorname{int}(B)$.
(iv) $(\gamma, \delta)-\operatorname{int}(A \cup B) \supseteq(\gamma, \delta)-\operatorname{int}(A) \cup(\gamma, \delta)-\operatorname{int}(B)$.
(v)) $(\gamma, \delta)-\operatorname{int}(A \times B)=(\gamma, \delta)-\operatorname{int}(A) \times(\zeta, \eta)-\operatorname{int}(B)$ where $A \subseteq X, B \subseteq$ Y.

Theorem 2.10. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space, $A \subseteq X$ and $x \in X$. Then $x \in(\gamma, \delta)-c l(A)$ if and only if $U \cap A \neq \emptyset$ where $x \in U, U \in B S O(X)$.

Proof. Let $x \in(\gamma, \delta)-c l(A)$. If possible, let $x \in U, U \in B S O(X)$ such that $U \cap A=\emptyset$. So, $A \subseteq(X \backslash U)$, then clearly $x \notin U$, which is a contradiction. So, $U \cap A \neq \emptyset$ where $x \in U, U \in B S O(X)$.

Conversely, let $U \cap A \neq \emptyset$ where $x \in U, U \in B S O(X)$. If possible let $x \notin(\gamma, \delta)-c l(A)$. Then $x \notin \cap C$, where $A \subset C, C$ is a (γ, δ)-BSC set. so $x \notin A$ implies $U \cap A=\emptyset$ - a contradiction. Hence $x \in(\gamma, \delta)-c l(A)$.

Corollary 2.6. (i) $(\gamma, \delta)-c l(X \backslash A)=X \backslash(\gamma, \delta)-\operatorname{int}(A)$.

$$
(\mathrm{ii})(\gamma, \delta)-\operatorname{int}(X \backslash A)=X \backslash(\gamma, \delta)-c l(A) .
$$

Definition 2.6. A is called (γ, δ)-closed if $(\gamma, \delta)-c l(A)=A$ and then ($X \backslash A$) is called (γ, δ)-open.
A is called Product-2-($\gamma, \delta)$-closed if $(\gamma, \delta)-\operatorname{cl}(A \times B)=(A \times B)$ and then $(X \times Y \backslash(A \times B))$ is called Product-2-($\gamma, \delta)$-open.
A is called (γ, δ)-clopen set if A is both (γ, δ)-closed and (γ, δ)-open.
Theorem 2.11. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq X$.
A is (γ, δ)-open if and only if $A=(\gamma, \delta)-\operatorname{int}(A)$.
Theorem 2.12. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space. If A is (γ, δ) - $B S C$ set; then $(\gamma, \delta)-c l(A) \backslash A$ does not contain any non-empty (γ, δ) open set.

Proof. Let $F \neq \emptyset, F$ is (γ, δ)-open set. If possible, let us assume that $F \subseteq(\gamma, \delta)-c l(A) \backslash A$ Then $F \subseteq(\gamma, \delta)-c l(A)$ but $A \subseteq(X \backslash F)$. Then, (γ, δ) $c l(A) \subseteq(X \backslash F)$. Thus $F \subseteq(\gamma, \delta)-c l(A) \cap(X \backslash(\gamma, \delta)-c l(A)))=\emptyset$. So $F=\emptyset$, a contradiction. Hence the result.

Definition 2.7. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq X$. Then we define $\operatorname{Ker}(A)=\cap\{U \in B S O(X): A \subseteq U\}$.

If $A \in B S O(X)$, then it is easy to verify that $\operatorname{Ker}(A)=A$.
Theorem 2.13. Let $\left(X, \tau_{1}, \tau_{2}, I, \gamma, \delta\right)$ be a bitopological space and $A \subseteq X$. Then following results hold-
(i) $A \subseteq \operatorname{Ker}(A)$.
(ii) $A \subseteq B \Rightarrow \operatorname{Ker}(A) \subseteq \operatorname{Ker}(B)$.
(iii) $x \in \operatorname{Ker}(A)$ if and only if $A \cap M \neq \emptyset$ where $x \in M$ and $M \in$ $B S C(X)$.

Proof. proofs of (i) and (ii) are easy and so omitted.
(3) Let $x \in \operatorname{Ker}(A)$. If possible let $A \cap M=\emptyset$ where $x \in M$ and $M \in B S C(X)$. Then $A \subseteq(X \backslash M)$. So, $\operatorname{Ker}(A) \subseteq \operatorname{Ker}(X \backslash M)=(X \backslash M)$. Which implies $x \notin M$, a contradiction. Hence $A \cap M \neq \emptyset$.

Conversely, let $x \notin \operatorname{Ker}(A)$ and let $A \cap M \neq \emptyset$ where $x \in M$ and $M \in$ $B S C(X)$. Then $\exists U \in B S O(X), x \notin U, A \subseteq U$. So, $(X \backslash U) \in B S C(X)$. Thus $x \notin A$. Now by the assumption, $A \cap(X \backslash U) \neq \emptyset$ i.e. A is not subset of U, a contradiction. Thus $x \in \operatorname{Ker}(A)$.

Acknowledgement

Authors are thankful to the reviewer for the valuable comments, those improved the presentation of this paper.

References

[1] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon., 49, pp. 395401, (1999).
[2] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, pp. 89-96, (1970).
[3] K. Kuratowski, Topologie I, warszawa, (1933).
[4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer.Math.Monthly, 97, pp. 295-310, (1990).
[5] S. Kasahara, Operation-compact spaces, Math. Japon, 24, pp. 97-105, (1979).
[6] H. Ogata, operations on topological spaces and Associated topology, Math. Japon, 36, pp. 175-184, (1991).
[7] J. Tong, Expansion of open sets and decomposition of continuous mappings, Expansion of open sets and decomposition of continuous mappings, Rend. Circ.Mat. Palermo, 43 (2), pp. 303-308, (1994).
[8] B. C. Tripathy and B. Hazarika, Paranormed I-convergent sequences spaces, Math. Slovaca, 59 (4), pp. 485-494, (2009).
[9] B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. Journal, 51 (2), pp. 233-239, (2011).
[10] B. C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, Jour. Franklin Inst., 347, pp. 591-598, (2010).
[11] B. C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n normed space, Soft Computing,ID 10.1007/s00500-011-0799-8, (2012).
[12] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (3), pp. 71-89, (1963).
[13] B. Dvalishvili; Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications; Elsevier, (2005).
[14] S. Acharjee and B. C. Tripathy, On continuities and separation axioms of (γ, δ)-Bitopological Semi-closed-set (under communication).

Binod Chandra Tripathy
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology.
Paschim Boragaon, Garchuk.
Guwahati-781035, Assam.
India.
e-mail: tripathybc@rediffmail.com
and

Santanu Acharjee

Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Garchuk
Guwahati-781035, Assam
India
e-mail: santanuacharjee@rediffmail.com

