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Abstract

Let E,F be sets, G an Abelian topological group and b : E×F → G.
Then (E,F,G) is called an abstract triple. Let w(F,E) be the weakest
toplogy on F such that the maps {b(x, ·) : x ∈ E} from F into G
are continuous. A subset B ⊂ F is w(F,E) sequentially conditionally
compact if every sequence {yk} ⊂ B has a subsequence {ynk} such that
limk b(x, ynk) exists for every x ∈ E. It is shown that if a formal seriesP

xj in E is subseries convergent in the sense that for every subse-
quence {xnj} there is an element x ∈ E such that

P∞
j=1 b(xnj , y) =

b(x, y) for every y ∈ F , then the series
P∞

j=1 b(xnj , y) converge uni-
formly for y belonging to w(F,E) sequentially conditionally compact
subsets of F . This result is used to establish Orlicz-Pettis Theorems
in locall convex and function spaces. Applications are also given to
Uniform Boundedness Principles and continuity results for bilinear
mappings.
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In this paper we give an abstraction of the classical notion of duality
between two vector spaces and prove several versions of the Orlicz-Pettis
Theorem for subseries convergent series in the abstract setting. We give a
number of applications to classical versions of the Orlicz-Pettis Theorem
as well as versions of the theorem in various function spaces and spaces of
operators, the Uniform Boundedness Priciple and a version of the Mazur-
Orlicz Theorem on continuity of bilinear operators.

The notion of abstract triples was first developed in the mathematics
department of New Mexico State University in the period of 1988-1990
when Professor Ronglu Li was a visiting scholar from China. After return-
ing to China, Li invited Min-Hyung Cho to join in the development of the
subject. The original notes were never published in full although various
results have appeared in publications (see the remarks following Example
8). This paper contains a full development of the original results with some
improvements and additional results which were obtained later; see in par-
ticular the Uniform Boundedness Principle and the Mazur-Orlicz results in
Cases 29, 31 and 32.

This paper is dedicated to the memory of Professor Ronglu Li
who tragically passed away on Feb. 4, 2014.

Abstract Triples.

Let E,F be sets and G a Hausdorff, abelian topological group with
b : E × F → G; if x ∈ E and y ∈ F , we often write b(x, y) = x · y for
convenience. We refer to E,F,G as an abstract duality pair with respect
to G or an abstract triple and denote this by (E,F : G). In what follows
(E,F : G) will denote an abstract triple. Note that (F,E : G) is an abstract
triple under the map b(y, x) = b(x, y).

We give examples of abstract triples shortly.

Let w(E,F ) be the weakest topology on E such that the family of maps
{b(·, y) : y ∈ F} are continuous from E into G.

If
P

gj is a formal series in G, the series is subseries convergent if the
series

P∞
j=1 gnj converges inG for every subsequence {nj}. If σ is an infinite

subset of N , we write
P

j∈σ gj =
P∞

j=1 gnj , where the elements of σ are
arranged in a subsequence {nj}; if σ is finite, the meaning of

P
j∈σ gj is

clear.

Definition 1. A sequence {xj} ⊂ E or a (formal) series
P

xj is w(E,F )
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subseries convergent if for every σ ⊂ N, there exists xσ ∈ E such thatX
j∈σ

xj · y = xσ · y

for every y ∈ F . We symbolically write
P

j∈σ xj = xσ and say that the
series

P
xj is w(E,F ) subseries convergent.

Note that we do not assume any algebraic structure on E, the algebraic
operations are transferred to G via the map b : E × F → G; of course, if
the set E has sums defined on it the meaning of

P
j∈σ xj is clear.

We give some examples which will be employed later.

Example 2. Of course, the simplest example of an abstract triple is a
pair of vector spaces E,F in duality where G is just the scalar field and
the topology w(E,F ) is just the weak topology σ(E,F ) from the duality.
In this case, if

P
xj is w(E,F ) subseries convergent,

P
j∈σ xj is the usual

weak sum.

Example 3. Let Σ be a σ-algebra of subsets of a set S andM be a family
of countably additive G valued measures on Σ. Define b : Σ × M →
G by b(A,µ) = µ(A) so (Σ,M : G) is an abstract triple. If {Aj} is a
pairwise disjoint sequence fromΣ, then the series

P
Aj is w(Σ,M) subseries

convergent with
P

j∈σ Aj = ∪j∈σAj .

Example 4. Let E,F be abelian groups such that there exists a biadditive
map b : E × F → G. Then (E,F : G) is an abstract triple; this abstract
setting was utilized in [Sw2].

Example 5. Let E be a topological space and C(E,G) be the space of
all continuous maps from E into G. If b(x, f) = f(x) for x ∈ E and f ∈
C(E,G), then (E,C(E,G) : G) is an abstract triple. Also, (C(E,G), E : G)
is an abstract triple under the map (f, x)→ f(x).

Example 6. Let E,G be topological vector spaces and L(E,G) the space
of all continuous linear operators from E into G, then (L(E,G), E : G)
forms an abstract triple under the map b(T, x) = T (x); in this case the
topology w(L(E,G), E) is just the strong operator topology. Also, (E,L(E,G) :
G) forms an abstract triple under the map b(x, T ) = T (x).
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Example 7. Let X be a Hausdorff topological vector space and E be a
vector space of X valued sequences which contains the subspace c00(X) of
all X valued sequences which are eventually 0. Assume that E has a vector
topology under which it is an AK space,i.e., the coordinate projection Pk
which sends each sequence x = (x1, x2, ...) in E into the sequence with xk
in the kth coordinate and 0 in the other coordinates is continuous and if
Qk =

Pk
j=1 Pj , then Qkx → x in the topology of E for every x ∈ E. Let

F = {Qk : k ∈ N}. Then (E,F : E) is an abstract triple under the map
(x,Qk) = Qkx. This situation covers the case of the sequence spaces l

p(X)
and c0(X) when X is a locally convex space.

Example 8. Let X be a Hausdorff topological vector space and E be a
vector space of X valued sequences which contains the subspace c00(X)
of all X valued sequences which are eventually 0. Let Y be a topological
vector space. The β-dual of E with respect to Y is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞X
j=1

Tjxj converges for every x = {xj} ∈ E}.

Then (E,EβY : Y ) is an abstract triple under the map ({xj}, {Tj}) →P∞
j=1 Tjxj .

Other examples will be given in the application section.
There have been several similar abstractions of the duality between

vector spaces which have been used to treat versions of the Orlicz-Pettis
Theorem. For example, Blasco, Calabuig and Signes ([BCS]) have consid-
ered a bilinear map b : E × F → G where E, F,G are Banach spaces and
b is a bilinear operator satisfying continuity conditions. They establish a
general version of the theorem for subseries convergent series and apply
it to vector integration. There is a more general version given in [Sw7]
where E is a vector space, F,G are locally convex spaces and b is a bi-
linear map and multiplier convergent series are considered. Applications
to multiplier convergent series in spaces of operators are given. Another
generalization is given by Chen and Li ([CL]) where E, F are vector spaces,
G is a locally convex space and b is what they call a bi-quasi-homogeneous
operator. They consider multiplier convergent series of quasi-homogeneous
operators. Li and Wang ([LW]) have considered the case when E is a set
and F is a set of G valued functions. They consider operator valued multi-
plier convergent series where the space of multipliers is vector valued. The
case where E,F are vector spaces, G is a locally convex space and b is a
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bilinear map is considered in [LS3]; general versions of the Orlicz-Pettis
Theorem are established and numerous applications are given. A similiar
treatment is given in Chapter 4 of [Sw6], pages 73-82. Li and Cho ([LC])
have used the general abstract setting above to obtain a generalization of
an Orlicz-Pettis result of Kalton; we will consider this result later. Zheng,
Cui and Li ([ZCL]) have also considered abstract duality pairs in spaces
with sectional operators and indicated applications to sequence spaces. By
considering subseries convergent series only, we are able to treat the case
of group valued series in our setup.

Orlicz-Pettis Theorems.
We now establish several versions of the Orlicz-Pettis Theorem for ab-

stract triples. The classical version of the Orlicz-Pettis Theorem for normed
spaces asserts that a series in a normed space which is subseries convergent
in the weak topology of the space is subseries convergent in the norm topol-
ogy ([Or],[Pe]). The theorem has been extended to locally convex spaces
and many other situations including topological groups. See [K1],[FL] for
a discussion of the history of the subject. We refer to any result which
asserts that a series which is subseries convergent in some weak topology is
subseries convergent in a stronger topology as an Orlicz-Pettis Theorem.

Let w(F,E) be the weakest topology on F such that all of the maps
{b(x, ·) : x ∈ E} from F into G are continuous. A subset B ⊂ F is
sequentially conditionally w(F,E) compact if every sequence {yk} ⊂ B
has a subsequence {ynk} such that the sequence {x · ynk} = {b(x, ynk)}
converges in G for every x ∈ E (this is terminology of Dinculeanu ([Di]).

The method of proof used in treating our versions of the Orlicz-Pettis
Theorem relies on the Antosik-Mikusinski Matrix Theorem which we now
state for convenience.

Theorem 9. (Antosik-Mikusinski) Let G be an abelian topological group
and xij ∈ G for i, j ∈ N. Suppose (I) limi xij = xj exists for each j
and (II) for each increasing sequence of positive integers {mj} there is a
subsequence {nj} of {mj} such that {

P∞
j=1 xinj} is Cauchy. Then limi xij =

xj uniformly for j ∈ N. In particular,

lim
i
lim
j
xij = lim

j
lim
i
xij = 0 and lim

i
xii = 0.

A matrix M = [xij ] which satisfies conditions (I) and (II) of Theorem
9 is referred to as a K matrix.

For the proof, see [Sw5] 2.2, [Sw6]Appendix D.
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Theorem 10. If the series
P

xj is w(E,F ) subseries convergent, then the
series

P
j∈σ xj ·y converge uniformly for y ∈ B and σ ⊂ N , where B is any

sequentially conditionally w(F,E) compact subsetB ⊂ F [ that is, for every
closed neighborhood of 0, U , in G there exists N such that

P
j∈σ xj · y ∈ U

whenever y ∈ B and minσ > N ; a strong form of unordered convergence
for the series].

Proof. If the conclusion fails to hold, there exists a closed neighborhood
U of 0 such that for every k there exist σk with minσk > k and yk ∈ B
such that

P
j∈σk xj · yk /∈ U . Put k1 = 1 so we have

P
j∈σ1 xj · y1 /∈ U .

We may assume that σ1 is finite since U is closed. Put k2 = maxσ1.
Apply the condition above to k2 to obtain

P
j∈σ2 xj · y2 /∈ U with σ2 finite,

minσ2 > k2 and y2 ∈ B. This construction produces finite sequences {σk}
with minσk+1 > maxσk and {yk} ⊂ B satisfying

(&)
X
j∈σk

xj · yk /∈ U.

There exists a subsequence {ynk} such that limx·ynk exists for every x ∈ E.
Consider the matrix

M = [mij ] = [
X
l∈σj

xl · yni ].

We claim that M is a K matrix. The columns of M converge and for every
subsequence {rj} the subseries

P∞
j=1

P
l∈σrj xl is w(E,F ) convergent and

lim
i

∞X
j=1

mirj = lim
i

∞X
j=1

X
l∈σrj

xl · yni

exists. Therefore, M is a K matrix whose diagonal converges to 0 by the
Antosik-Mikusinski Theorem. But, this contradicts (&). 2

A subset B ⊂ F is sequentially relatively w(F,E) compact if every
sequence {yk} ⊂ B has a subsequence {ynk} and there exists y ∈ F such
that limk x · ynk = x · y for every x ∈ E. A sequentially relatively w(F,E)
compact is obviously sequentially conditionally w(F,E) compact so the
result above holds for this family of subsets of F .

The unordered convergence form of the conclusion of Theorem 10 is
useful in treating the Hahn-Schur Theorem given in Case 18.

We consider the theorem for w(F,E) compact subsets.
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Theorem 11. Let G be metrizable under the metric ρ. If
P

xj is w(E,F )
subseries convergent, then the series

P
j∈σ xj · y converge uniformly for

y ∈ B and σ ⊂ N , where B is any w(F,E) compact subset B ⊂ F .

Proof. Let B be w(F,E) compact. Define an equivalence relation on B
by y ∼ z iff xj ·y = xj ·z for every j. Let bB be the collection of equivalence
classes and by the equivalence class to which y belongs. Define a metric d
on bB by

d(by, bz) = ∞X
j=1

1

2j
ρ(xj · y, xj · z)

1 + ρ(xj · y, xj · z)

so cyα → by with respect to d iff limα xj · yα = xj · y for all j.
Let S be the set of partial sums of the series Pxj ; i.e., S = {

P
j∈σ xj :

σ ⊂ N}. Note that if y, z ∈ B and y ∼ z, then xσ · y = xσ · z for all σ ⊂ N.
Thus, (S, bB;G) is an abstract triple under the map (xσ, by) = xσ ·y. Since B
is w(F,E) compact, bB is w( bB,S) compact. [If {cyα} is a net in bB, then {yα}
is a net in B and so has a subnet {yβ} which is w(F,E) convergent to some
y ∈ B and then x·yβ → x·y for x ∈ E. In particular, xσ ·yβ → xσ ·y for every
σ so {cyβ} is w( bB,S) convergent to by.] The inclusion ( bB,w( bB,S))→( bB, d) is
continuous so d=w( bB,S) on bB. Now Pxj is w(S, bB) subseries convergent
and bB is w( bB,S) sequentially compact since this topology is metrizable
so it follows from the previous Orlicz-Pettis Theorem that the series

P
xj

converges uniformly on bB and, therefore, on B. 2
We will discuss applications of Theorems 10 and 11 to locally convex

spaces in Case 16 below.
A result of Kalton ([K2]) asserts that if τ is a separable polar topology

on E from the dual pair E,F , then any series
P

xj in E which is σ(E,F )
subseries convergent is τ subseries convergent. If τ is the polar topology of
uniform convergence on the family A of σ(F,E) bounded subsets of F , then
for every x ∈ E and A ∈ A the set {x · y : y ∈ A} is sequentially relatively
compact in the scalar field. We give an abstraction of this condition and
use it to give a generalization of Kalton’s result to abstract triples.

Definition 12. A subset B ⊂ F is conditionally sequentially compact at
each x ∈ E if {x · y : y ∈ B} = x ·B is conditionally sequentially compact
in G for every x ∈ E.

Note that if B ⊂ F is sequentially conditionally w(F,E) compact, then
B is sequentially conditionally compact at each x ∈ E. Under a separability
assumption, the converse holds.
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Theorem 13. Let G be sequentially complete. Let F be a family of sub-
sets of F such that each member of F is sequentially conditionally compact
at each x ∈ E and let τ be the topology on E of uniform convergence on the
members of F . If (E, τ) is separable, then each member of F is sequentially
conditionally w(F,E) compact.

Proof. Let D = {dk : k ∈ N} be τ dense in E. Let B ∈ F and
{yk} ⊂ B. Since B is sequentially conditionally compact at each x ∈ E,
by the diagonalization procedure {yk} has a subsequence {ynk} such that
the sequence {d · ynk} converges in G for every d ∈ D. Let x ∈ E. There
is a net {dα} ⊂ D which is τ convergent to x so lim dα · y = x · y uniformly
for y ∈ B. Let U be a neighborhood of 0 in G and pick a symmetric
neighborhood V of 0 in G such that V + V + V ⊂ U . There exists β such
that dβ · ynk −x · ynk ∈ V for all k. Since {dβ · ynk}k converges, there exists
N such that k, j ≥ N implies dβ · ynk − dβ · ynj ∈ V . Hence, if k, j ≥ N ,
then

x·ynk−x·ynj = x·ynk−dβ·ynk+dβ·ynk−dβ·ynj+dβ·ynj−x·ynj ∈ V+V+V ⊂ U

so {x · ynk} is Cauchy and, therefore, convergent since G is sequentially
complete. Hence, B is sequentially conditionally w(F,E) compact. 2

Corollary 14. If the conditions of Theorem 13 hold and
P

xj is w(E,F )
subseries convergent, then

P
xj is τ subseries convergent.

Proof. The result is immediate from Theorems 13 and 10. 2

The separability assumption in Theorem 13 is important.

Example 15. The series
P

ej is σ(l∞, l1) subseries convergent but is not
β(l∞, l1) = k·k∞ subseries convergent.

Applications
We begin with the Orlicz-Pettis Theorem for locally convex spaces.

Case 16. Let E be a Hausdorff locally convex space with dual E0. Sup-
pose

P
xj is subseries convergent with respect to σ(E,E

0). We may assume
that E is separable by replacing E with the span of {xj}, if necessary. Let
γ(E,E0) (λ(E,E0); τ(E,E0)) be the topology of uniform convergence on the
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sequentially conditionally σ(E0, E) compact subsets of E0 (σ(E0, E) com-
pact subsets; convex σ(E0, E) compact subsets). It follows from Theorem
10 that

P
xj is γ(E,E

0) subseries convergent. Also, when E is separable the
σ(E0, E) topology on any σ(E0, E) compact subset is metrizable ([Wi]9.5.3)
so any σ(E0, E) compact subset is sequentially σ(E0, E) compact and it fol-
lows from Theorem 10 that

P
xj is subseries convergent with respect to

λ(E,E0) and, therefore, subseries convergent with respect to τ(E,E0), the
Mackey topology.

The locally convex version of the Orlicz-Pettis Theorem for the Mackey
topology is due to McArthur ([Mc]); the version for the topology λ(E,E0)
is due to Bennett and Kalton ([BK]) and the version for γ(E,E0) is due
to Dierolf ([Die]). Kalton’s version of the Orlicz-Pettis Theorem will be
considered in Case 25.

Next, we consider a theorem of Nikodym for group valued measures.

Case 17. (Nikodym Convergence Theorem) Let Σ be a σ algebra of sub-
sets of a set S and let µn : Σ → G be a countably additive measure for
n ∈ N and set M = {µn}. Suppose limn µn(A) = µ(A) exists for every
A ∈ Σ. The Nikodym Theorem asserts that (i) µ is countable additive and
(ii) {µn} is uniformly countably additive.We observe that (ii) follows from
Example 3 and Theorem 10. Let {Aj} be a pairwise disjoint sequence from
Σ. Then the series

P
Aj is w(Σ,M) subseries convergent by the countable

additivity of the µn. Also, the sequence {µn} is sequentially conditionally
w(Σ, {µn}) compact by hypothesis. Hence, from Theorem 10 it follows that
the series

P∞
j=1 µn(Aj) converge uniformly for n ∈ N. But, this is just (ii).

Condition (i) follows from (ii).

For the case of the Nikodym Theorem for groups see [AS1]. Using a
result of Drewnowski, the Nikodym Convergence Theorem can be extened
to strongly additive set functions. An additive set function µ : Σ → G is
strongly additive if µ(Aj) → 0 for every disjoint sequence {Aj} ⊂ Σ; see
[Sw5] 2.3.5 for details.

We note in passing that a version of the Nikodym Boundedness Theorem
can be obtained from the Nikodym Convergence Theorem. SupposeM is a
family of countably additive scalar valued set functions defined on Σ which
is pointwise bounded on Σ. The Nikodym Boundedness Theorem asserts
thatM is uniformly bounded on Σ ([DU]). To show thatM is uniformly
bounded on Σ it suffices to show that {µn(An)} is bounded for every {µn} ⊂
M and every pairwise disjoint sequence {An} ⊂ Σ (see [Sw5]4.7.1; we
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develop a more general result later in Theorem 34). {µn(An)} is bounded if
1
nµn(An)→ 0. SinceM is pointwise bounded, 1nµn(A)→ 0 for every A ∈ Σ
so the Nikodym Convergence Theorem implies the series

P∞
j=1

1
nµn(Aj)

converge uniformly for n ∈ N. In particular, 1nµn(An)→ 0 as desired. The
version of the theorem for locally convex valued measures follows from the
scalar version and the Uniform Boundedness Theorem. We consider a more
general version of the theorem in Corollary 36.

We next consider a version of the Hahn-Schur Theorem for group valued
series (see [AS1]; [Sw6]8.1).

Case 18. (Hahn-Schur Theorem) Let
P

j xij be a subseries convergent se-
ries in G for every i ∈ N and suppose limi

P
j∈σ xij exists for every σ ⊂ N.

Set xj = limi xij . The subseries version of the Hahn-Schur Theorem then
assets that (i)

P
xj is subseries convergent, (ii) the series

P
j∈σ xij converge

uniformly for i ∈ N, σ ⊂ N, and (iii) limi
P

j∈σ xij =
P

j∈σ xj uniformly
for σ ⊂ N. We show that (ii) follows directly from Theorem 10. Let E
be the power set of N , define fi : E → G by fi(σ) =

P
j∈σ xij and set

F = {fi : i ∈ N}. Then (E,F : G) is an abstract triple and the (formal)
series

P
j j is w(E,F ) subseries convergent with

P
j fi(j) =

P
j xij . By hy-

pothesis, F is sequentially conditionally w(F,E) compact so from Theorem
10 , it follows that (ii) holds. Conditions (i) and (iii) follow immediately
from (ii).

The usual scalar version of the theorem can be obtained easily from
Case 18 (see [AS1]8.2; [Sw5]8.1).

We now consider subseries convergence in the space of continuous linear
operators.

Case 19. Let E,G be topological vector spaces with G metrizable and
consider the abstract triple (L(E,G), E : G) as in Example 6. Suppose
that

P
Tj is a series in L(E,G) which is subseries convergent in the strong

operator topology. Note that any subset B ⊂ E which is compact in E
is w(E,L(E,G)) compact so the series

P
Tj is subseries convergent in

Lc(E,G), the topology of uniform convergence on compact subsets of E,
by Theorem 11.

We consider subseries convergence with respect to pointwise conver-
gence in spaces of continuous functions.

Case 20. Let Ω be a sequentially compact topological space and let SC(Ω, G)
be the space of all sequentially continuous functions from Ω intoG. Suppose
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P
fj is a series in SC(Ω, G) which is subseries convergent in the topology

of pointwise convergence on G. We claim the series
P

fj(t) is subseries
convergent uniformly for t ∈ Ω. To see this consider the abstract triple
(SC(Ω,G),Ω : G) under the map (f, t) = f(t). The series

P
fj is subseries

convergent with respect to w(SC(Ω, G),Ω) and the set Ω is w(Ω, SC(Ω, G))
sequentially compact since Ω is sequentially compact so the claim follows
from Theorem 10.

Case 21. Let Ω be a topological space, G be metrizable and C(Ω, G) the
space of continuous functions from Ω to G. Suppose

P
fj is a series in

C(Ω, G) which is subseries convergent in the topology of pointwise conver-
gence on Ω. We claim that the series is subseries convergent in the topology
of uniform convergence on compact subsets of Ω. To see this consider the
abstract triple (C(Ω, G),Ω : G) under the map (f, t) → f(t). The seriesP

fj is w(C(Ω, G),Ω) subseries convergent and any compact subset of Ω is
w(Ω, C(Ω, G)) compact so the claim follows from Theorem 11.

Theorems of this type relative to pointwise convergent series in spaces
of continuous functions were established in [Th] and [Sw2].

Case 22. Let X be a topological vector space and assume that E is a
vector space of X valued sequences which contains the space c00(X) of all
X valued sequences which are eventually 0. If z ∈ X and k ∈ N, let ek ⊗ z
be the sequence with z in the kth coordinate and 0 in the other coordinates.
Assume that E has a vector topology under which the coordinate mappings
{xk} → ek ⊗ xk form E into E are continuous (i.e., E is a K-space) and
for every x = {xk} ∈ E we have x =

P∞
k=1 e

k ⊗ xk (i.e., E is an AK-
space). Suppose that

P
xj is a series in E which is subseries convergent

with respect to the topology of coordinatewise convergence. We claim that
the series

P
xj is subseries convergent in the original topology of E. To

see this consider the following abstract triple. Define Pk : E → E by
Pkx =

Pk
i=1 e

i⊗xi so Pkx→ x in E for every x ∈ E by the AK assumption.
Set F = {Pk : k ∈ N} and note that (E,F : E) is an abstract triple under
the map (x, Pk) → Pkx and that the series

P
xj is subseries convergent

with respect to w(E,F ). The set F is sequentially conditionally w(F,E)
compact by the AK hypothesis so it follows from Theorem 10 that the
series

P∞
j=1 Pkx

j is subseries convergent uniformly for k ∈N. To establish
the claim let U be a closed neighborhood of o in E. Set sn =

Pn
j=1 x

j

and s =
P∞

j=1 x
j , where this is the coordinate sum of the series. Since

limn Pks
n = Pks uniformly for k ∈N, there existsN such that Pks

n−Pks ∈
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U for n ≥ N, k ∈ N. Fixing n and letting k → ∞ gives sn − s ∈ U for
n ≥ N . Since the same argument can be applied to any subsequence,
the claim follows. This result applies to such sequence spaces as lp(X)
,1 < p <∞, and c0(X).

We next consider a result of Stiles for spaces with a Schauder basis.

Case 23. (Stiles) Let E be a topological vector space with a Schauder
basis {bk} and coordinate functionals {fk} . For each k let Pk : E → E be
the projection Pkx =

Pk
j=1 hfj , xi bj . If

P
xj is subseries convergent with

respect to σ(E, {fj}), we claim that the series is subseries convergent in
the original topology of E. To see this, set F = {Pj : j ∈ N} and consider
the abstract triple (E,F : E) under the map (x, Pj)→ Pjx. Then

P
xj is

w(E,F ) subseries convergent and F is sequentially conditionally w(F,E)
compact since Pkx → x so the series

P∞
j=1 Pkxj is subseries convergent

uniformly for k ∈ N by Theorem 10. As in Case 22 this establishes the
claim.

Stiles established this result for metrizable, complete spaces ([St]; see
also [B],[Sw4]); the metrizable and completeness assumptions were later
removed ([Sw5]10.4.1).

The result in Case 23 can be generalized somewhat. Assume that E
is a topological vector space and there exist a sequence of linear operators
{Pk} such that for each x ∈ E we have x =

P∞
k=1 Pkx with convergence

in E. When the {Pk} are continuous, then {Pk} is called a Schauder de-
composition ([LT]). Then the proof in Case 22 shows that if a series is
subseries convergent in w(E, {Pk}), then the series is subseries convergent
in the topology of E.

We next consider a result of Tweddle.

Case 24. (Tweddle) Let E,F be a pair of vector spaces in duality. Let E
be the family of all σ(E,F ) subseries convergent series in E and let E# be

all linear functionals x0 on E such that
P∞

j=1 hx0, xji =
D
x0,
P∞

j=1 xj
E
for all

{xj} ∈ E , where
P∞

j=1 xj is the σ(E,F ) sum of the series. Then E,E
# form

a dual pair and each {xj} ∈ E is σ(E,E#) subseries convergent. It follows
from Case 16 that every {xj} ∈ E is subseries convergent in the Mackey
topology τ(E,E#) of uniform convergence on convex σ(E,E#) compact
subsets of E#. This is the Tweddle topology of E and Tweddle has shown
that this is the strongest locally convex topology on E which has the same
σ(E,F ) subseries convergent series ([Tw]).
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The topology of Tweddle can also be extended to our abstract setting.
Let (E,F : G) be an abstract triple and let E be the family of all w(E,F )
subseries convergent series. Let E# be all functions f : E → G such that
f(
P∞

j=1 xj) =
P∞

j=1 f(xj) for every {xj} ∈ E . Then (E,E# : G) form an

abstract triple and each {xj} ∈ E is w(E,E#) subseries convergent. If G
is metrizable, it follows from Theorem 11 that each {xj} ∈ E is subseries
convergent in the topology of uniform convergence on w(E#, E) compact
subsets of E#.

We indicate applications of Theorem 13. First, we consider a result of
Kalton ([K2]).

Case 25. (Kalton) Let E,F be a dual pair of vector spaces and τ a polar
topology onE from this duality which is separable. If τ is the polar topology
of uniform convergence on the family A of σ(F,E) bounded subsets of F ,
then every subset A of A is sequentially conditionally compact at each x ∈
E so by Theorem 13 any series in E which is σ(E,F ) subseries convergent
is τ subseries convergent.

Next, we consider the space of compact operators.

Case 26. Let E,G be Hausdorff topological vector spaces and K(E,G)
the space of all continuous linear operators which carry bounded subsets of
E into sequentially conditionally compact subsets of G. If E,G are Banach
spaces K(E,G) is the space of compact operators. Then (K(E,G), E : G)
is an abstract triple and if B is the family of bounded subsets of E each
B ∈ B is sequentially conditionally compact at each T ∈ K(E,G). The
topology w(K(E,G), E) is just the strong operator topology. Let Kb(E,G)
be the topology of uniform convergence on the members of B; if E,G are
normed spaces this is just the uniform operator topology of K(E,G). From
Theorem 13 it follows that if F(E,G) is any separable subspace ofKb(E,G),
then any series in F(E,G) which is subseries convergent in the strong
operator topology is subseries convergent in Kb(E,G).

We indicate situations where Case 26 is applicable. Let E,G be Banach
spaces and let F(E,G) be the space of operators with finite dimensional
range. Thus, every operator T ∈ F(E,G) has a representation Tx =Pn

j=1

D
x0j , x

E
yj with x0j ∈ E0, yj ∈ G. If E0 and G are separable, then

F(E,G) is a separable subspace of Kb(E,G) so Case 26 applies. If, in
addition, either E0 or G has the approximation property, then F(E,G) is
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dense in Kb(E,G) ([LT]1.e.4 or 1.e.5) so Case 26 also applies in this case
to Kb(E,G).

Another situation where Case 26 applies is given as follows. Let E be a
metrizable nuclear space and G be separable. Then any continuous linear
operator from E into G is in Kb(E,G) since bounded subsets of E are
relatively compact. Now E is separable ([G]II.VI.5) and E0b is separable
([G]II.VI.12) so Lb(E,G) is separable ([G]III.II.11.b and 13.c) and Case 26
applies.

Also, if E is dual nuclear (i.e., the strong dual of E is nuclear) and G is
nuclear, then Lb(E,G) is nuclear ([Pi] 5.5.1) and , therefore, separable so
Case 26 applies.

Finally, IfE,G are normed spaces andE0, G are separable, thenF(E,G)
is separable under the nuclear norm ν on F(E,G) (see [Pi]3.1) so the
space of nuclear operators N (E,G) is separable under the nuclear norm
ν ([Pi]3.1.4) and Case 26 applies. Similar remarks apply to the space of
Hilbert-Schmidt (absolutely summing) operators on Hilbert spaces ([Pi]2.5).

Some of the results of this case were announced without proofs in [LC].

We consider another result related to compact operators and a family
of operators introduced by A. Mohsen. Let X,Y,Z be normed spaces and
let W ∗(Y 0, Z) be the space of all sequentially weak*-k·k continuous linear
operators from Y 0 into Z (these operators were introduced and studied by
Mohsen ([Mo]) and were shown to be bounded).

Case 27. Let B(Z) denote the unit ball of any normed space Z. Assume
B(Y 0) is weak* sequentially compact and that the series

P
Uj is subseries

convergent in the strong operator topology of W ∗(Y 0, Z). Consider the
abstract triple (W ∗(Y 0, Z), B(Y 0) : Z) under the map (U, y0)→ Uy0. Then
the series

P
Uj is w(W

∗(Y 0, Z), B(Y 0)) subseries convergent and B(Y 0)
is w(B(Y 0),W ∗(Y 0, Z)) sequentially compact since if {y0j} ⊂ B(Y 0), then
there is a subsequence {y0nj} which is weak* convergent to some y0 ∈ B(Y 0)

and
°°°Uy0nj − Uy0

°°°→ 0 by the definition of W ∗(Y 0, Z). Hence, by Theorem

10 the series
P∞

j=1 Ujy
0 converge uniformly for y0 ∈ B(Y 0) and similarly for

any subseries. That is, the series
P

Uj is subseries convergent in norm.

As a special case of Case 27, we can obtain a result of Kalton ([K3]). We
say a normed space Z has the Diestel-Faires property (DF property) if any
weak* subseries convergent series

P
zj in Z 0 is norm subseries convergent

([DF]; Diestel and Faires have characterized the Banach spaces with DF as
the spaces Z whose dual does not contain a copy of l∞ ).
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Case 28. (Kalton) Let
P

Tj be subseries convergent in the weak operator
topology of K(X,Y ) and assume X has the DF property. Since each Tj has
separable range we may assume that Y is separable by replacing Y with
the union of the ranges of the Tj , if necessary. For each z0 ∈ Y 0 the seriesP

T 0jz
0 is weak* subseries convergent in X 0 and by the DF property is norm

subseries convergent. Let K 0(X,Y ) be {T 0 ∈ K(Y 0,X 0) : T ∈ K(X,Y )}
and consider the abstract triple (K 0(X,Y ), B(Y 0);X 0). The series

P
T 0j

is w(K 0(X,Y ), B(Y 0)) subseries convergent by the observation above and
the ball of Y 0 is weak* sequentially compact since Y is separable. Also,
K 0(X,Y ) ⊂ W ∗(Y 0,X 0) ([DS]VI.5.6) so Case 27 implies that the seriesP

T 0j is norm subseries convergent and, hence, the series
P

Tj is norm
subseries convergent.

We show that a version of the Uniform Boundedness Principle can be
obtained from the Orlicz-Pettis Theorem.

Case 29. (Uniform Boundedness Principle) Let G be a locally convex
space and let E be a sequentially complete locally convex space. Let Γ
be a subset of L(E,G) which is pointwise bounded on E. We claim that Γ
is uniformly bounded on bounded subsets of E; a version of the Uniform
Boundedness Principle (see [Sw5] 4.2 for this version; if E is metrizable,
Γ is equicontinuous which is a more familiar conclusion of the Uniform
Boundedness Principle). Suppose there exists a bounded subset B of E
such that Γ(B) is not bounded. Then there exists a continuous seminorm
p on G such that

sup{p(Tx) : T ∈ Γ, x ∈ B} =∞.

Pick Tk ∈ Γ and xk ∈ B such that

(∗) p(Tkxk) > 2
2k.

Since {xk} is bounded, the series
P

k xk/2
k is absolutely convergent and,

therefore, subseries convergent in E by the sequential completeness hypoth-
esis. Set F = {Tk/2k : k ∈ N} and consider the abstract triple (E,F : G)
under the map (x, T ) → Tx. Since the series

P
k xk/2

k is subseries con-
vergent in E, the series is w(E,F ) subseries convergent. For each x ∈ E
the sequence {Tkx} is bounded by hypothesis so Tkx/2k → 0 which implies
that that the sequence {Tk/2k} is sequentially relativelyw(F,E) compact;
i.e., F is sequentially relatively w(F,E) compact. The Orlicz-Pettis Theo-
rem 10 implies that the series

P∞
j=1(Tk/2

k)(xj/2
j) converge uniformly for

k ∈ N. In particular, Tkxk/22k → 0 in G. But, this contradicts (*).
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The proof of Case 29 also gives an operator version of the Banach-
Mackey Theorem ([Wi]10.4.8; [Sw5]4.2.7).

Case 30. (Banach-Mackey) Namely, if Γ ⊂ L(E,G) is pointwise bounded
on E and B ⊂ E is bounded, absolutely convex and sequentially complete,
then Γ(B) is bounded. Thus, if E is a sequentially complete locally convex
space, then weakly bounded subsets of E0 are strongly bounded; this is the
usual version of the Banach-Mackey Theorem.

A theorem of Mazur and Orlicz asserts that a separately continuous
bilinear mapping from the product of two metric linear spaces one of which
is complete is (jointly) continuous ([MO]). We show that the Orlicz-Pettis
Theorem can be used to derive a similiar result.

Case 31. Let E,G be locally convex spaces and F be a topological vector
space. Assume that E is sequentially complete. Let b : E × F → G be a
bilinear separately continuous map. If A ⊂ E,B ⊂ F are bounded, then
b(A,B) is bounded (i.e., b is a bounded bilinear map). If the conclusion
fails to hold, there is a continuous seminorm p on G such that

sup{p(x, y) : x ∈ A, y ∈ B} =∞.

Pick xk ∈ A, yk ∈ B such that

(#) p(xk, yk) > 2
2k

and consider the abstract triple (E,F : G) under the map b. The seriesP
xk/2

k is absolutely convergent in E since A is bounded and, therefore,
the series is subseries convergent by the sequential completeness assump-
tion. Since b(·, y) is continuous, the series Pxk/2

k is w(E,F ) subseries
convergent. Also, yk/2

k → 0 in F since B is bounded and yk/2
k → 0

in w(F,E) since b(x, ·) is continuous. Therefore, {yk/2k} is w(F,E) rela-
tively compact. By Theorem 10 the series

P∞
j=1 b(xj/2

j , yk/2
k) converges

uniformly for k ∈ N. In particular, b(xk/2k, yk/2k)→ 0 contradicting (#).

If in addition to the assumptions above the space E is a braked space
(i.e., whenever xk → 0 there exists a sequence tk →∞ such that tkxk → 0
([Kh]); for example metric linear spaces are braked), b is hypocontinuous
in the sense that if xk → 0 in E and B ⊂ F is bounded, then b(xk, y)→ 0
uniformly for y ∈ B. To see this it suffices to show that b(xk, yk) → 0 for
yk ∈ B. Now there exists tk →∞ such that tkxk → 0 and the result above
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implies that {b(tkxk, yk)} is bounded so 1
tk
b(tkxk, yk) = b(xk, yk) → 0 as

desired. This implies a result similar to that of Mazur and Orlicz. Namely,
if E is braked and sequentially complete, then b is jointly sequentially con-
tinuous.

We finally consider a uniform boundedness result for bilinear mappings.

Case 32. Let E,F,G be locally convex spaces with E,F sequentially com-
plete and E braked. Let Γ be a family of separately continuous bilinear
mappings from E × F into G which is pointwise bounded on E × F . If
A ⊂ E,B ⊂ F are bounded, we claim that Γ(A,B) is bounded, i.e., Γ is
uniformly bounded on bounded subsets of E × F . If the conclusion fails
to hold, there exist a continuous seminorm p on G,xk ∈ A, yk ∈ B, bk ∈ Γ
such that

(∗) p(bk(xk, yk)) > 2
2k.

Consider the triple (E × F, {bk} : G) under the map ((x, y), bk)→ bk(x, y).
The series

P
k(xk, yk)/2

k is absolutely convergent in E × F and, therefore,
subseries convergent by the sequential completeness assumption. By the
remarks following Case 31, each bk is jointly sequentially continuous so
the series is w(E × F, {bk}) subseries convergent. Also, by the pointwise
boundedness assumption the sequence bk/2

k → 0 in w({bk}, E × F ) so
the sequence is relatively w({bk}, E × F ) compact. By Theorem 10 the
series

P∞
j=1 bk(xj/2

j , yj)/2
k converge uniformly for k ∈ N. In particular,

bk(xk, yk)/2
2k → 0 contradicting (*). This result also implies that Γ is

left sequentially equihypocontinuous with respect to the bounded subsets
of F . For suppose xk → 0 in E and B ⊂ F is bounded in F and tk → ∞
with tkxk → 0. Let p be a continuous seminorm on G and set M =
sup{p(b(tkxk, y) : k ∈ N, y ∈ B, b ∈ Γ}; M <∞ by the result above. Then

p(b(xk, y)) =
1

tk
p(b(tkxk, y)) ≤M/tk → 0

uniformly for b ∈ Γ. In particular, this implies that Γ is sequentially
equicontinuous.

A similar uniform boundedness result for bilinear maps is given in 6.3.1
of [Sw5].

Partial Sums
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We consider boundedness for the partial sums of a subseries convergent
series. Let

P
xj be a w(E,F ) subseries convergent series. The partial sums

of the series is defined to be

S = {
X
j∈σ

xj : σ ⊂ N}.

We first consider compactness for S. Recall that a subseries convergent
series is also unordered convergent in the sense that for any neighborhood
of 0, U , there exists N such that

P
j∈σ xj ∈ U whenever minσ ≥ N (see

[R] or the conclusion of Theorem 10).

Lemma 33. Let Ω = {0, 1} and define ϕ : ΩN → E by ϕ({tj}) =
P

j∈σ xj ,

where σ = {j : tj = 1}. Then ϕ is continuous when ΩN has the product
topology and E has w(E,F ).

Proof. Let {tδ} be a net in ΩN which converges to t = {tj} ∈ ΩN. If
{tδj} = tδ and t = {tj}, then tδj → tj for every j so tδj = tj eventually. Let
U be a neighborhood of 0 in G and pick a symmetric neighborhood of 0, V,
such that V +V ⊂ U . Let y ∈ F and set σ = {j : tj = 1}, σδ = {j : tδj = 1}
and σ(n) = {j ∈ σ : j ≥ n}. By the unordered convergence of Pxj there
exists n such that

P
j∈σ(n) xj ∈ V,

P
j∈σδ(n) xj ∈ V for all δ. There exists

δ0 such that δ ≥ δ0 implies t
δ
j = tj for 1 ≤ j ≤ n. Hence, if δ ≥ δ0, then

ϕ({tδj}) · y − ϕ({tj}) · y =
X

j∈σδ(n)
xj · y −

X
j∈σ(n)

xj · y ∈ V + V ⊂ U.

so ϕ(tδ)→ ϕ(t) in w(E,F ). 2
Since ΩN is compact, sequentially compact and countably compact with

respect to the product topology, Lemma 33 gives

Theorem 34. S is compact, sequentially compact and countably compact
with respect to w(E,F ).

In particular, the set of partial sums of a subseries convergent series in
an Abelian topological group is compact, sequentially compact and count-
ably compact ([R]).

We next consider the boundedness of the partial sums in a semiconvex
topological vector space. A subset U of a topological vector space is semi-
convex if there exists a > 0 such that U + U ⊂ aU ; for example, if U is
convex we may take a = 2. A topological vector space G is semiconvex
if it has a neighborhood base of semiconvex subsets ([R]). The spaces lp

(0 < p < 1) are semiconvex but not locally convex.
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Theorem 35. Let G be a semiconvex space and let B ⊂ F be pointwise
bounded on E, i.e., {x · y : y ∈ B} is bounded in G for every x ∈ E. Then
{x · y : x ∈ S, y∈B} is bounded, i.e., B is uniformly bounded on S.

Proof. First, note that if σ ⊂ N satisfies the condition that the set
Eσ = {

P
j∈τ xj : τ ⊂ σ} is not absorbed by the semiconvex neighborhood

U of G and if V is a symmetric neighborhood such that V + V ⊂ U ,
then for every k ∈ N there exists a partition (αk, βk) of σ, nk > k and
yk ∈ B such that

P
j∈αk xj · yk /∈ nkV ,

P
j∈βk xj · yk /∈ nkV . [By the

bounded hypothesis for each x =
P

j∈σ xj ∈ S, there is an nk ≥ k such
that {Pj∈σ xj · y : y ∈ B} ⊂ nkV . But, Eσnk(V +V ) since V +V ⊂ U . So

there exist αk ⊂ σ, yk ∈ B such that
P

j∈αk xj · yk /∈ nk(V +V ) and, hence,P
j∈αk xj · yk /∈ nkV . If β

k = σ \ αk, then Pj∈βk xj · yk /∈ nkV because
otherwiseX

j∈αk
xj · yk =

X
j∈σ

xj · yk −
X
j∈βk

xj · yk ∈ nkV + nkV ⊂ nk(V + V ).]

If the conclusion fails, there exists a semiconvex neighborhood U of 0
which does not absorb EN. Let V be a closed, symmetric neighborhood
such that V + V ⊂ U . By the observation above there exists a partition
(α1, β1) of σ1 = N , n1 and y1 ∈ B such that

P
j∈α1 xj ·y1 /∈ n1V,

P
j∈β1 xj ·

y1 /∈ n1V . Either Eα1 or Eβ1 is not absorbed by U [ if both are absorbed
by U , there is m such that Eα1 + Eβ1 = Eσ1 ⊂ m(U + U) ⊂ m(aU);
this is where semiconvexity is used ]; pick whichever of α1 or β1 satisfies
this condition and label it A1 and set B1 = σ1 \ A1. Now treat A1 as
above and obtain a partition (A2, B2) of A1, n2 > n1, y2 ∈ B such thatP

j∈A2 xj · y2 /∈ n2V,
P

j∈B2 xj · y2 /∈ n2V . and EA2 is not absorbed by U .
Continuing this construction produces a pairwise disjoint sequence {Bk} of
subsets of N , increasing {nk} and yk ∈ B such that

(#)
X
j∈Bk

xj · yk /∈ nkV,

and since V is closed we may assume that each Bk is finite.
Now consider the matrix

M = [mij ] = [
1

ni

X
l∈Bj

xl · yi].

We claim that M is a K matrix. First, the columns of M converge to 0
since B is pointwise bounded on E. Suppose {kj} is an increasing sequence
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of integers and set τ = ∪∞j=1Bkj . Since the {Bj} are pairwise disjoint and
finite and

P
xj is w(E,F ) subseries convergent, we have

∞X
j=1

1

ni

X
l∈Bkj

xl · yi =
1

ni

X
l∈τ

xl · yi =
1

ni
xτ · yi → 0.

Hence, M is a K matrix and by the Antosik-Mikusinski Matrix Theorem
the diagonal of M converges to 0. But this contradicts (#). 2

We will make a remark on the semiconvexity assumption following
Corollary 37.

Corollary 36. Let E be a semiconvex space with a nontrivial dual E0.
If
P

xj is σ(E,E
0) subseries convergent, then the set of partial sums, S,

of
P

xj is β(E,E
0) bounded. In particular, this holds for locally convex

spaces.

Example 15 shows that a series may be weak subseries convergent but
fail to be subseries convergent in the strong topology while Corollary 36
shows that the partial sums are always bounded in the strong topology.

We now observe that the Nikodym Boundedness Theorem follows from
Theorem 35.

Corollary 37. (Nikodym) Let Σ be a σ algebra of subsets of a set S, G
be a semiconvex space. If M is a family of countably additive G valued
set functions defined on Σ which is pointwise bounded on Σ, then M is
uniformly bounded on Σ, i.e., {µ(A) : µ ∈M, A ∈ Σ} is bounded.

Proof. The proof of Theorem 35 shows that if {µ(A) : µ ∈M, A ∈ Σ}
is not bounded, there exist {µk} ⊂ M and a pairwise disjoint sequence
{Bk} ⊂ Σ such that {µk(Bk)} is not bounded [this is a generalization of a
well known result of Drewnowski ([Dr])]. In the notation of Example 3 the
series

P
Bk is w(Σ,M) subseries convergent andM is pointwise bounded

on S = {∪j∈σBj : σ ⊂ N} so M is uniformly bounded on S by Theorem
35. In particular, {µk(Bk)} is bounded. 2

Corollary 37 is applicable to the case when M is single measure so
a countably additive set function with values in a semiconvex space has
bounded range; this gives a generalization of 3.6.3 of [Rol]. Turpin has
given an example of a countably additive set function defined on a σ algebra
with values in a nonlocally convex space which has unbounded range so the
semiconvex assumption cannot be dropped ([Rol]3.6.4). What conditions
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on the space which are necessary and sufficient for a vector measure to have
bounded range seem to be unknown.

The version of the Nikodym Boundedness Theorem for semiconvex
spaces is due to Contantinescu ([Co]) and Weber ([We]).
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